Skip to main content
Log in

Remarkable NanoConfinement Effects on Equilibrated Reactions: Statistical-Mechanics Modeling Focused on Ir Dimerization Beneath Surface Sites in Pd–Ir Nanoparticles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Chemical equilibrium involving a small number of molecules inside a confined nanospace can exhibit considerable deviations from the macroscopic thermodynamic limit due to reduced mixing entropy, as was predicted in several of our works using statistical-mechanics partition-functions and the lattice-gas model (LGM). In particular, significant enhancements of the equilibrium extent and constant are generally anticipated in the case of exothermic reactions. The present work is a substantial extension of this exploration of the so-called “nanoconfinement entropic effect on chemical equilibrium” (NCECE), focusing now on several new issues: (i) general derivation and computations for addition reactions in the non-lattice model (NLM), including endergonic reactions exhibiting significantly weakened NCECE, (ii) comparison with effects predicted for dimerization reactions, for which a novel “inverse NCECE” is obtained for the endergonic range, (iii) a concrete system modeling of Ir dimerization in the core of Pd–Ir cuboctahedral nanoparticles using uniform bond energetics in the LGM versus the NLM. The latter reproduces quite accurately the NCECE effects obtained by the LGM, thus avoiding tedious combinatorial computations, and (iv) Ir dimerization at subsurface sites of the Pd nanoparticles in the framework of the LGM with a more elaborate coordination-dependent bond energetics. It should be noted that the latter subsurface compositional variations can affect catalytic properties of Pd–Ir nanoparticles such as those operating in several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polak M, Rubinovich L (2008) Nanochemical equilibrium involving a small number of molecules: a prediction of a distinct confinement effect. Nano Lett 8(10):3543–3547. https://doi.org/10.1021/nl801825q

    Article  CAS  PubMed  Google Scholar 

  2. Polak M, Rubinovich L (2011) Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H-D exchange reactions. Phys Chem Chem Phys 13(37):16728–16734. https://doi.org/10.1039/c1cp21719d

    Article  CAS  PubMed  Google Scholar 

  3. Renou R, Szymczyk A, Maurin G, Malfreyt P, Ghoufi A (2015) Superpermittivity of nanoconfined water. J Chem Phys. https://doi.org/10.1063/1.4921043

    Article  PubMed  Google Scholar 

  4. Schlaich A, Knapp EW, Netz RR (2016) Water dielectric effects in planar confinement. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.117.048001

    Article  PubMed  Google Scholar 

  5. Schaaf C, Gekle S (2016) Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water. J Chem Phys. https://doi.org/10.1063/1.4960775

    Article  PubMed  Google Scholar 

  6. Munoz-Santiburcio D, Marx D (2017) Chemistry in nanoconfined water. Chem Sci 8(5):3444–3452. https://doi.org/10.1039/c6sc04989c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polak M, Rubinovich L (2015) Nanoconfined nitrogen hydrogenation on Ru(0001): prediction of entropy related shifts in the reaction equilibria. Surf Sci 641:294–299. https://doi.org/10.1016/j.susc.2015.03.002

    Article  CAS  Google Scholar 

  8. Polak M, Rubinovich L (2017) Prediction of enhanced dimerization inside dilute alloy nanoparticles. Int J Nanomater Nanotechnol Nanomed 3(1):023–026

    Google Scholar 

  9. Hill TL (1994) Thermodynamics of small systems. Dover Publications, New York

    Google Scholar 

  10. García-Morales V (2011) Nanothermodynamics. In: Sattler KD (ed) Handbook of nanophysics: principles and methods, vol 1.CRC Press Inc, Boca Raton, FL

    Google Scholar 

  11. Turner CH, Johnson JK, Gubbins KE (2001) Effect of confinement on chemical reaction equilibria: the reactions 2NO ↔ (NO)2 and N2 + 3H2 ↔ 2NH3 in carbon micropores. J Chem Phys 114(4):1851–1859. https://doi.org/10.1063/1.1328756

    Article  CAS  Google Scholar 

  12. Malijevsky A, Lisal M (2009) Density functional study of chemical reaction equilibrium for dimerization reactions in slit and cylindrical nanopores. J Chem Phys. https://doi.org/10.1063/1.3125925

    Article  PubMed  Google Scholar 

  13. Turner CH, Brennan JK, Lisal M, Smith WR, Johnson JK, Gubbins KE (2008) Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review. Mol Simul 34(2):119–146. https://doi.org/10.1080/08927020801986564

    Article  CAS  Google Scholar 

  14. Patra S, Naik AN, Pandey AK, Sen D, Mazumder S, Goswami A (2016) Silver nanoparticles stabilized in porous polymer support: a highly active catalytic nanoreactor. Appl Catal A 524:214–222. https://doi.org/10.1016/j.apcata.2016.07.001

    Article  CAS  Google Scholar 

  15. Patra S, Pandey AK, Sen D, Ramagiri SV, Bellare JR, Mazumder S, Goswami A (2014) Redox decomposition of silver citrate complex in nanoscale confinement: an unusual mechanism of formation and growth of silver nanoparticles. Langmuir 30(9):2460–2469. https://doi.org/10.1021/la4048787

    Article  CAS  PubMed  Google Scholar 

  16. Shi L, Wu CY, Ding J (2016) Effect of solvent on the synthesis of AgBiSe2 nanostructures. J Alloy Compd 684:112–115. https://doi.org/10.1016/j.jallcom.2016.05.180

    Article  CAS  Google Scholar 

  17. Szymanski R, Sosnowski S, Maslanka L (2016) Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A plus B = C in ideally dispersed systems: an apparent violation of the law of mass action. J Chem Phys. https://doi.org/10.1063/1.4944695

    Article  PubMed  Google Scholar 

  18. Laurenzi IJ (2000) An analytical solution of the stochastic master equation for reversible bimolecular reaction kinetics. J Chem Phys 113(8):3315–3322. https://doi.org/10.1063/1.1287273

    Article  CAS  Google Scholar 

  19. McQuarrie DA, Jachimowski C, Russell M (1964) Kinetics of small systems. II. J Chem Phys 40(10):2914–2921

    Article  CAS  Google Scholar 

  20. Ishida K (1964) Stochastic model for bimolecular reaction. J Chem Phys 41(8):2472–2478

    Article  CAS  Google Scholar 

  21. Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. J Phys Chem 81(25):2340–2361. https://doi.org/10.1021/j100540a008

    Article  CAS  Google Scholar 

  22. Rubinovich L, Polak M (2013) The intrinsic role of nanoconfinernent in chemical equilibrium: evidence from DNA hybridization. Nano Lett 13(5):2247–2251. https://doi.org/10.1021/nl4008198

    Article  CAS  PubMed  Google Scholar 

  23. Koblenz TS, Wassenaar J, Reek JNH (2008) Reactivity within a confined self-assembled nanospace. Chem Soc Rev 37(2):247–262

    Article  CAS  PubMed  Google Scholar 

  24. Shon MJ, Cohen AE (2012) Mass action at the single-molecule level. J Am Chem Soc 134(44):14618–14623. https://doi.org/10.1021/ja310275g

    Article  CAS  PubMed  Google Scholar 

  25. Nilekar AU, Ruban AV, Mavrikakis M (2009) Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys. Surf Sci 603(1):91–96. https://doi.org/10.1016/j.susc.2008.10.029

    Article  CAS  Google Scholar 

  26. Rubinovich L, Polak M (2009) Prediction of distinct surface segregation effects due to coordination-dependent bond-energy variations in alloy nanoclusters. Phys Rev B. https://doi.org/10.1103/PhysRevB.80.045404

    Article  Google Scholar 

  27. Davis JBA (2014) Private communication

  28. Shen SY, Zhao TS, Xu JB (2010) Carbon-supported bimetallic Pdlr catalysts for ethanol oxidation in alkaline media. Electrochim Acta 55(28):9179–9184. https://doi.org/10.1016/j.electacta.2010.09.018

    Article  CAS  Google Scholar 

  29. Morfin F, Nassreddine S, Rousset JL, Piccolo L (2012) Nanoalloying effect in the preferential oxidation of CO over Ir-Pd catalysts. ACS Catal 2(10):2161–2168. https://doi.org/10.1021/cs3003325

    Article  CAS  Google Scholar 

  30. Zlotea C, Morfin F, Nguyen TS, Nguyen NT, Nelayah J, Ricolleau C, Latroche M, Piccolo L (2014) Nanoalloying bulk-immiscible iridium and palladium inhibits hydride formation and promotes catalytic performances. Nanoscale 6(17):9955–9959. https://doi.org/10.1039/c4nr02836h

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-De Jesus YM, Johnson CE, Monnier JR, Williams CT (2010) Selective hydrogenation of benzonitrile by alumina-supported Ir-Pd catalysts. Top Catal 53(15–18):1132–1137. https://doi.org/10.1007/s11244-010-9546-0

    Article  CAS  Google Scholar 

  32. Rocha AS, Moreno EL, da Silva GPM, Zotin JL, Faro AC (2008) Tetralin hydrogenation on dealuminated Y zeolite-supported bimetallic Pd-Ir catalysts. Catal Today 133:394–399. https://doi.org/10.1016/j.cattod.2007.12.099

    Article  CAS  Google Scholar 

  33. Piccolo L, Nassreddine S, Aouine M, Ulhaq C, Geantet C (2012) Supported Ir-Pd nanoalloys: size-composition correlation and consequences on tetralin hydroconversion properties. J Catal 292:173–180. https://doi.org/10.1016/j.jcat.2012.05.010

    Article  CAS  Google Scholar 

  34. Hill TL (1986) An introduction to statistical thermodynamics. Courier Dover Publications, Dover

    Google Scholar 

  35. Kolb B, Mueller S, Botts DB, Hart GLW (2006) Ordering tendencies in the binary alloys of Rh, Pd, Ir, and Pt: density functional calculations. Phys Rev B. https://doi.org/10.1103/PhysRevB.74.144206

    Article  Google Scholar 

  36. Barcaro G, Fortunelli A, Polak M, Rubinovich L (2011) Patchy multishell segregation in Pd-Pt alloy nanoparticles. Nano Lett 11(4):1766–1769. https://doi.org/10.1021/nl200322s

    Article  CAS  PubMed  Google Scholar 

  37. Brown D, Quinn PD, Woodruff DP, Noakes TCQ, Bailey P (2002) Surface and sub-surface segregation at the Pt25Rh75(111) surface: a medium energy ion scattering study. Surf Sci 497(1–3):1–12

    Article  CAS  Google Scholar 

  38. Treglia G, Legrand B, Ducastelle F (1988) Segregation and ordering at surfaces of transition-metal alloys—the tight-binding Ising-model. Europhys Lett 7(7):575–580

    Article  CAS  Google Scholar 

  39. Bligaard T, Norskov JK (2007) Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 52(18):5512–5516. https://doi.org/10.1016/j.electacta.2007.02.041

    Article  CAS  Google Scholar 

  40. Stephens IEL, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L, Johansson TP, Jepsen AK, Frydendal R, Knudsen BP, Rossmeisl J, Chorkendorff I (2011) Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J Am Chem Soc 133(14):5485–5491. https://doi.org/10.1021/ja111690g

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Jack Davis for providing DFT data for the Pd and Ir CBEV parametrization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micha Polak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubinovich, L., Polak, M. Remarkable NanoConfinement Effects on Equilibrated Reactions: Statistical-Mechanics Modeling Focused on Ir Dimerization Beneath Surface Sites in Pd–Ir Nanoparticles. Top Catal 61, 1237–1246 (2018). https://doi.org/10.1007/s11244-018-0978-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0978-2

Keywords

Navigation