Skip to main content

Advertisement

Log in

Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The multi-step conversion of sucrose to various C5-oxygenates and alkanes was achieved by integrating various homogeneous and heterogeneous catalytic systems. We have confirmed that the dehydration of sucrose to levulinic and formic acids is currently limited to about 30–40% in the presence of H2SO4, HCl, or Nafion NR50 in water. Performing the dehydration in the presence of a P(m-C6H4SO3Na)3 modified ruthenium catalyst under hydrogen resulted in the in situ conversion of levulinic acid to γ-valerolactone (GVL). Levulinic acid can be hydrogenated to GVL quantitatively by using P(m-C6H4SO3Na)3 modified ruthenium catalyst in water or Ru(acac)3/PBu3/NH4PF6 catalyst in neat levulinic acid. Formic acid can be used for the transfer hydrogenation of levulinic acid in water in the presence of [(η6-C6Me6)Ru(bpy)(H2O)][SO4] resulting in GVL and 1,4-pentanediol. The hydrogenation of levulinic acid or GVL can be performed to yield 1,4-pentanediol and/or 2-methyl-tetrahydrofuran (2-Me-THF). The hydrogenolysis of 2-Me-THF in the presence of Pt(acac)2 in CF3SO3H resulted in a mixture of alkanes. We have thus demonstrated that the conversion of carbohydrates to various C5-oxygenates and even to alkanes can be achieved by selecting the proper catalysts and conditions, which could provide a renewable platform for the chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Deffeyes KS (1981) Beyond oil: the view from Hubbert’s peak. Farrar, Straus and Giroux, New York

    Google Scholar 

  2. Chow J, Kopp RJ, Portney PR (2003) Science 302:1528

    Article  Google Scholar 

  3. Horváth IT, Anastas PT (2007) Chem Rev 107:2169

    Article  CAS  Google Scholar 

  4. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA (2001) Chem Rev 101:953

    Article  CAS  Google Scholar 

  5. National Research Council (2004) The hydrogen economy: opportunities, costs, barriers and R&D needs. National Academies Press, Washington, DC

    Google Scholar 

  6. Lichtenthaler FW (1991) Carbohydrates as organic raw materials. VCH, Weinheim

    Google Scholar 

  7. Klass DL (1998) Biomass for renewable energy, fuels and chemicals. Academic Press, San Diego; Ragauskas AJ, Williams CK, Davison BH, Britvosek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL (2006) Science 311:484

  8. Huber GW, Cortright RD, Dumesic JA (2003) AngewChem Int Ed 43:1549

    Article  CAS  Google Scholar 

  9. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446

    Article  CAS  Google Scholar 

  10. Moser J-E (2005) Nat Mater 4:723

    Article  CAS  Google Scholar 

  11. (a) Horváth IT (2006) 10th Annual Green Chemistry and Engineering Conference, Washington, DC, July 26–30, 2006, abstract number 27; (b) Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238

  12. Odor description: herbal, sweet, warm, cocoa, and woody—for additional information see Good Sence Company’s website for Parfumery Raw Materials Information Sheet (http://www.thegoodscentscompany.com/data/rw1024031.html)

  13. Paul SF (1996) US Patent 5,697,987

  14. Alternative Fuel Transportation Program (DOE) (1998) P-series fuels (Proposed Rules). Fed Regist 63:40202

    Google Scholar 

  15. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  16. Aas N, Li Y, Bowker M (1991) J Phys: Condens Matter 3:S281

    Article  CAS  Google Scholar 

  17. Armaroli T, Busca G, Carlini C, Giuttari M, Raspolli AM, Galletti Sbrana G (2000) J Mol Cat A: Chem 151:233; Leonard RH (1956) Ind Eng Chem 48:1331; Schraufnagel RA, Rase HF (1975) Ind Eng Chem Prod Res Dev 14:40; Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Biomass 14:185; Lourvanij K, Rorrer GL (1993) Ind Eng Chem Res 32:11

  18. Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Science 312:1933; Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Green Chem 9:342

  19. Horvat J, Klaic B, Metelko B, Sunjic V (1985) Tetrahedron Lett 26:2111

    Article  CAS  Google Scholar 

  20. Mehdi H, Bodor A, Tuba R, Horváth IT (2003) Abstracts of Papers of the American Chemical Society, 226: U721 310-INOR, Part 1, September 2003; Mehdi H, Bodor A, Horváth IT (2004) Abstracts of Papers of the American Chemical Society, 227: 095-CELL, Part 1, March 2004

  21. Joó F, Tóth Z, Beck MT (1977) Inorg Chim Acta 25:L61

    Article  Google Scholar 

  22. Heinen AW, Papadogianakis G, Sheldon RA, Peters JA, van Bekkum H (1999) J Mol Cat A Chem 142:17

    Article  CAS  Google Scholar 

  23. Broadbent HS, Selin TG (1963) J Org Chem 28:2343; Osakada K, Ikariya T, Yoshikawa S (1982) J Organomet Chem 231:79; Manzer LE (2003) US Patent 6,617,464

  24. Johnstone RAW, Wilby AH, Entwistle ID (1985) Chem Rev 85:129; F. Joó (2001) In: James BR, van Leeuwen PWNM (eds) Aqueous organometallic catalysis. Kluwer Academic Press, Dordrecht, pp 102–106; Chaloner PA, Esteruelas MA, Joó F, Oro LA (1994) In: Ugo R, James BR (eds) Homogeneous hydrogenation. Kluwer Academic Press, Dordrecht, pp 87–114

  25. Ogo S, Abura T, Watanabe Y (2002) Organometallics 21:2964

    Article  CAS  Google Scholar 

  26. Hara Y, Inagaki H, Nishimura S, Wada K (1992) Chem Lett 1983

  27. Christian RV, Brown HD, Hixon RM (1947) J Am Chem Soc 69:1961; Elliot DC, Frye JG (1999) US Patent 5,883,226

Download references

Acknowledgments

This work was funded by the Hungarian National Scientific Research Fund (T047207). The single crystal sapphire high-pressure NMR tubes were donated by ExxonMobil Research and Engineering Company, Annandale, NJ, USA. We are grateful to the Department of Chemistry at Princeton University for donating a Bruker AC 250 NMR Spectrometer and to the American Chemical Society for covering the shipping cost from Princeton to Budapest. The donation of the ReactIR 1000 instrument by Mettler Toledo Autochem Inc., is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István T. Horváth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdi, H., Fábos, V., Tuba, R. et al. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Top Catal 48, 49–54 (2008). https://doi.org/10.1007/s11244-008-9047-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9047-6

Keywords

Navigation