Skip to main content
Log in

Flow Mechanism and Simulation Approaches for Shale Gas Reservoirs: A Review

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The past two decades have borne remarkable progress in our understanding of flow mechanisms and numerical simulation approaches of shale gas reservoir, with much larger number of publications in recent 5 years compared to that before year 2012. In this paper, a review is constructed with three parts: flow mechanism, reservoir models and numerical approaches. In mechanism, it is found that gas adsorption process can be concluded into different isotherm models for various reservoir basins. Multi-component adsorption mechanisms are taken into account in recent years. Flow mechanism and equations vary with different Knudsen numbers, which could be figured out in two ways: molecular dynamics (MD) and lattice Boltzmann method (LBM). MD has been successfully applied in the study of adsorption, diffusion, displacement and other mechanisms. LBM has been introduced in the study of slippage, Knudsen diffusion and apparent permeability correction. The apparent permeability corrections are introduced to improve classic Darcy’s model in matrix with low velocities and fractures with high velocities. At reservoir-scale simulation, gas flow models are presented with multiple porosity classified into organic matrix with nanopores, organic matrix with micropores, inorganic matrix and natural fractures. A popular trend is to incorporate geomechanism with flow model in order to better understand the shale gas production. Finally, to solve the new models based on enhanced flow mechanisms, improved macroscopic numerical approaches, including the finite difference method and finite element method, are commonly used in this area. Other approaches like finite volume method and fast matching method are also developed in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadi, M.A., Shadizadeh, S.R.: Experimental investigation of a natural surfactant adsorption on shale-sandstone reservoir rocks: static and dynamic conditions. Fuel, 159, 15–26 (2015). http://www.sciencedirect.com/science/article/pii/S0016236115006158. Accessed 18 Mar 2018

  • Al-Otaibi, A., Wu, Y.-S.: An Alternative Approach to Modeling Non-Darcy Flow for Pressure Transient Analysis in Porous and Fractured Reservoirs. Society of Petroleum Engineers, Richardson (2011)

    Google Scholar 

  • Alotaibi, M., Calo, V.M., Efendiev, Y., Galvis, J., Ghommem, M.: Global-local nonlinear model reduction for flows in heterogeneous porous media. Comput. Methods Appl. Mech. Eng. 292, 122–137 (2015)

    Google Scholar 

  • Alpak, F.O.: Robust fully-implicit coupled multiphase-flow and geomechanics simulation. SPE J. 20, 1–366 (2015)

    Google Scholar 

  • Ambrose, R.J., Hartman, R.C., Diaz Campos, M., Akkutlu, I.Y., Sondergeld, C.: New pore-scale considerations for shale gas in place calculations. In: SPE unconventional gas conference. Society of Petroleum Engineers (2010). https://doi.org/10.2118/131772-MS

  • Ambrose, R.J., Hartman, R.C., Akkutlu, I.Y.: Multi-component sorbed phase considerations for shale gas-in-place calculations, p. 10 (2011). https://doi.org/10.2118/141416-MS

  • An, C., Fang, Y., Liu, S., Alfi, M., Yan, B., Wang, Y., Killough, J.: Impacts of matrix shrinkage and stress changes on permeability and gas production of organic-rich shale reservoirs. In: SPE reservoir characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers (2017). https://doi.org/10.2118/186029-MS

  • Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase darcy flow. Comput. Geosci. 6(3–4), 453–481 (2002)

    Google Scholar 

  • Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

    Google Scholar 

  • Aziz, K.: Petroleum Reservoir Simulation. Chapman & Hall, Boca Raton (1979)

    Google Scholar 

  • Babadagli, T., Raza, S., Ren, X., Develi, K.: Effect of surface roughness and lithology on the water–gas and water–oil relative permeability ratios of oil-wet single fractures. Int. J. Multiph. Flow, 75, 68–81 (2015). http://www.sciencedirect.com/science/article/pii/S0301932215001226. Accessed 18 Mar 2018

  • Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994)

    Google Scholar 

  • Bae, J.-S., Bhatia, S.K.: High-pressure adsorption of methane and carbon dioxide on coal. Energy Fuels 20(6), 2599–2607 (2006)

    Google Scholar 

  • Barree, R.D., Conway, M.W.: Beyond beta factors: a complete model for Darcy, Forchheimer, and trans-Forchheimer flow in porous media. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers (2004). https://doi.org/10.2118/89325-MS

  • Barree, R.D., Conway, M.: Multiphase non-Darcy flow in proppant packs. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2007). https://doi.org/10.2118/109561-MS

  • Bejan, A.: Convection Heat Transfer. Wiley, New York (2013)

    Google Scholar 

  • Belhaj, H., Agha, K., Nouri, A., Butt, S., Islam, M.: Numerical and Experimental Modeling of Non-Darcy flow in Porous Media. Society of Petroleum Engineers, Richardson (2003)

    Google Scholar 

  • Berkowitz, B., Ewing, R.P.: Percolation theory and network modeling applications in soil physics. Surveys Geophys. 19(1), 23–72 (1998)

    Google Scholar 

  • Beskok, A., Karniadakis, G.E.: Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    Google Scholar 

  • Beskok, A., Karniadakis, G.E., Trimmer, W.: Rarefaction and compressibility effects in gas microflows. J. Fluids Eng. 118(3), 448–456 (1996). https://doi.org/10.1115/1.2817779

    Google Scholar 

  • Bird, G.: Molecular gas dynamics and the direct simulation monte carlo of gas flows. Clarendon, Oxford 508, 128 (1994)

    Google Scholar 

  • Bjørner, M.G., Shapiro, A.A., Kontogeorgis, G.M.: Potential theory of adsorption for associating mixtures: possibilities and limitations. Ind. Eng. Chem. Res. 52(7), 2672–2684 (2013)

    Google Scholar 

  • Botan, A., Rotenberg, B., Marry, V., Turq, P., Noetinger, B.: Carbon dioxide in montmorillonite clay hydrates: thermodynamics, structure, and transport from molecular simulation. J. Phys. Chem. C 114(35), 14962–14969 (2010)

    Google Scholar 

  • Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation (sa) multigrid. SIAM Rev. 47(2), 317–346 (2005)

    Google Scholar 

  • Bros, T.: After the US Shale Gas Revolution. Editions Technip, Paris (2012)

    Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Google Scholar 

  • Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89(2), 251–263 (2011). https://doi.org/10.1007/s11242-011-9767-0

    Google Scholar 

  • Cai, J., Yu, B., Zou, M., Luo, L.: Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels 24(3), 1860–1867 (2010). https://doi.org/10.1021/ef901413p

    Google Scholar 

  • Cai, J., Wei, W., Hu, X., Liu, R., Wang, J.: Fractal characterization of dynamic fracture network extension in porous media. Fractals 25(02), 1750023 (2017)

    Google Scholar 

  • Cao, T., Song, Z., Wang, S., Cao, X., Li, Y., Xia, J.: Characterizing the pore structure in the silurian and permian shales of the sichuan basin, china. Mar. Pet. Geol. 61, 140–150 (2015). http://www.sciencedirect.com/science/article/pii/S0264817214003754. Accessed 18 Mar 2018

  • Chen, Z., Hou, T.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72(242), 541–576 (2003)

    Google Scholar 

  • Chen, S., Zhu, Y., Wang, H., Liu, H., Wei, W., Fang, J.: Shale gas reservoir characterisation: atypical case in the southern Sichuan Basin of China. Energy, 36(11), 6609–6616 (2011). http://www.sciencedirect.com/science/article/pii/S0360544211005986. Accessed 18 Mar 2018

  • Chen, L., Zhang, L., Kang, Q., Viswanathan, H.S., Yao, J., Tao, W.: Nanoscale simulation of shale transport properties using the lattice boltzmann method: permeability and diffusivity. Sci. Rep. 5, 8089 (2015)

    Google Scholar 

  • Chen, X., Yao, G., Cai, J., Huang, Y., Yuan, X.: Fractal and multifractal analysis of different hydraulic flow units based on micro-ct images. J. Nat. Gas Sci. Eng. 48, 145–156 (2017)

    Google Scholar 

  • Chung, E.T., Efendiev, Y., Leung, W.T.: Residual-driven online generalized multiscale finite element methods. J. Comput. Phys. 302, 176–190 (2015)

    Google Scholar 

  • Cipolla, C.L., Lolon, E.P., Erdle, J.C., Rubin, B.: Reservoir modeling in shale-gas reservoirs. SPE Reserv. Eval. Eng. 13(04), 638–653 (2010)

    Google Scholar 

  • Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82(2), 375–384 (2010)

    Google Scholar 

  • Clarkson, C.R., Ertekin, T.: A new model for shale gas matrix flow using the dynamic-slippage concept. In: AAPG Hedberg Conference, Austin, Texas (2010)

  • Curtis, J.B.: Fractured shale-gas systems. AAPG Bull. 86(11), 1921–1938 (2002)

    Google Scholar 

  • Curtis, M.E., Ambrose, R.J., Sondergeld, C.H.: Structural Characterization of Gas Shales on the Micro-and Nano-scales. Society of Petroleum Engineers, Richardson (2010)

    Google Scholar 

  • Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., Rai, C.S.: Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imagingmicrostructure of gas shales. AAPG Bull. 96(4), 665–677 (2012)

    Google Scholar 

  • Cygan, R.T., Romanov, V.N., Myshakin, E.M.: Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. J. Phys. Chem. C 116(24), 13079–13091 (2012)

    Google Scholar 

  • Dada, A., Olalekan, A., Olatunya, A., Dada, O.: Langmuir, freundlich, temkin and dubinin-radushkevich isotherms studies of equilibrium sorption of zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 (2012)

    Google Scholar 

  • Darcy, H.: Les fontaines publiques de la ville de dijon (dalmont, paris, 1856). Google Scholar, pp. 305–401 (2007)

  • Datta-Gupta, A., King, M.J.: Streamline Simulation: Theory and Practice, vol. 11. Society of Petroleum Engineers, Richardson (2007)

    Google Scholar 

  • Datta-Gupta, A., Xie, J., Gupta, N., King, M.J., Lee, W.J.: Radius of investigation and its generalization to unconventional reservoirs. J. Pet. Technol. 63, 52–55 (2011)

    Google Scholar 

  • de Gennes, P.-G.: On fluid/wall slippage. Langmuir 18(9), 3413–3414 (2002)

    Google Scholar 

  • Dean, R.H., Gai, X., Stone, C.M., Minkoff, S.E.: A comparison of techniques for coupling porous flow and geomechanics. SPE J. 11, 132–140 (2006)

    Google Scholar 

  • Di, J., Jensen, J.: A closer look at pore throat size estimators for tight gas formations. J. Nat. Gas Sci. Eng. 27, 1252–1260 (2015)

    Google Scholar 

  • Ding, D.Y., Langouët, H., Jeannin, L.: Simulation of fracturing-induced formation damage and gas production from fractured wells in tight gas reservoirs. SPE Prod. Oper. 28(03), 246–258 (2013)

    Google Scholar 

  • Ding, D.Y., Wu, Y., Jeannin, L.: Efficient simulation of hydraulic fractured wells in unconventional reservoirs. J. Pet. Sci. Eng. 122, 631–642 (2014)

    Google Scholar 

  • Dubinin, M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)

    Google Scholar 

  • Dubinin, M.: Modern state of the theory of gas and vapour adsorption by microporous adsorbents. Pure Appl. Chem. 10(4), 309–322 (1965)

    Google Scholar 

  • Efendiev, Y., Hou, T.Y.: Multiscale fInite Element Methods: Theory and Applications, vol. 4. Springer, Berlin (2009)

    Google Scholar 

  • Eijkel, J.C.T., Berg, Avd: Nanofluidics: What is it and what can we expect from it? Microfluid. Nanofluidics 1(3), 249–267 (2005). https://doi.org/10.1007/s10404-004-0012-9

    Google Scholar 

  • Ertekin, T., Abou-Kassen, J.H., King, G.R.: Basic Applied Reservoir Simulations. Society of Petroleum Engineers, Richardson (2001)

    Google Scholar 

  • Fathi, E., Akkutlu, I.Y.: Lattice Boltzmann method for simulation of shale gas transport in kerogen. Spe J. 18(1), 27–37 (2012)

    Google Scholar 

  • Fathi, E., Akkutlu, I.Y.: Multi-component gas transport and adsorption effects during co2 injection and enhanced shale gas recovery. Int. J. Coal Geol. 123, 52–61 (2014). http://www.sciencedirect.com/science/article/pii/S0166516213001808. Accessed 18 Mar 2018

  • Fathi, E., Tinni, A., Akkutlu, I.Y.: Shale Gas Correction to Klinkenberg Slip Theory. Society of Petroleum Engineers, Richardson (2012)

    Google Scholar 

  • Firoozabadi, A.: Thermodynamics of Hydrocarbon Reservoirs. McGraw-Hill, New York (1999)

    Google Scholar 

  • Firouzi, M., Rupp, E.C., Liu, C.W., Wilcox, J.: Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale. Int. J. Coal Geol. 121, 123–128 (2014). http://www.sciencedirect.com/science/article/pii/S0166516213002498. Accessed 18 Mar 2018

  • Ge, H., Zhang, X., Chang, L., Liu, D., Liu, J., Shen, Y.: Impact of fracturing liquid absorption on the production and water-block unlocking for shale gas reservoir. Adv. Geo-Energy Res. 2(2), 163–172 (2018)

    Google Scholar 

  • Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: Ml 5.0 smoothed aggregation user’s guide. Tech. Rep. (2006)

  • Gerke, K.M., Karsanina, M.V., Mallants, D.: Universal stochastic multiscale image fusion: an example application for shale rock. Sci. Rep. 5, 15880 (2015)

    Google Scholar 

  • Ghanbarian, B., Javadpour, F.: Upscaling pore pressure-dependent gas permeability in shales. J. Geophys. Res. Solid Earth 122(4), 2541–2552 (2017). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JB013846. Accessed 18 Mar 2018

  • Grieser, W.V., Shelley, R.F., Soliman, M.Y.: Predicting Production Outcome from Multi-stage, Horizontal Barnett Completions. Society of Petroleum Engineers, Richardson (2009)

    Google Scholar 

  • Guo, C., Wei, M., Chen, H., He, X., Bai, B.: Improved numerical simulation for shale gas reservoirs. In: Offshore Technology Conference (2014)

  • Guo, X., Kim, J., Killough, J.E.: Hybrid MPI-OpenMP scalable parallelization for coupled non-isothermal fluid-heat flow and elastoplastic geomechanics. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2017a). https://doi.org/10.2118/182665-MS

  • Guo, W., Hu, Z., Zhang, X., Yu, R., Wang, L.: Shale gas adsorption and desorption characteristics and its effects on shale permeability. Energy Explor. Exploit. 35(4), 463–481 (2017b). https://doi.org/10.1177/0144598716684306

  • Guo, X., Song, H., Wu, K., Killough, J.: Pressure characteristics and performance of multi-stage fractured horizontal well in shale gas reservoirs with coupled flow and geomechanics. J. Pet. Sci. Eng. 163, 1–15 (2018a). http://www.sciencedirect.com/science/article/pii/S0920410517309956. Accessed 18 Mar 2018

  • Guo, C., Wei, M., Liu, H.: Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms. PLoS ONE, 13(1), e0188480, (2018b). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761844/. Accessed 18 Mar 2018

  • Gupta, J., Zielonka, M., Albert, R.A., El-Rabaa, A.M., Burnham, H.A., Choi, N.H.: Integrated methodology for optimizing development of unconventional gas resources. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2012). https://doi.org/10.2118/152224-MS

  • Hadjiconstantinou, N.G.: The limits of Navier–Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 18(11), 111301 (2006)

    Google Scholar 

  • Hartman, R.C., Ambrose, R.J., Akkutlu, I.Y., Clarkson, C.R.: Shale gas-in-place calculations part ii—multicomponent gas adsorption effects, p. 17 (2011). https://doi.org/10.2118/144097-MS

  • He, W., Zou, J., Wang, B., Vilayurganapathy, S., Zhou, M., Lin, X., Zhang, K.H., Lin, J., Xu, P., Dickerson, J.H.: Gas transport in porous electrodes of solid oxide fuel cells: a review on diffusion and diffusivity measurement. J. Power Sources 237, 64–73 (2013)

    Google Scholar 

  • He, Y., Cheng, J., Dou, X., Wang, X.: Research on shale gas transportation and apparent permeability in nanopores. J. Nat. Gas Sci. Eng. 38, 450–457 (2017). http://www.sciencedirect.com/science/article/pii/S1875510016309325. Accessed 18 Mar 2018

  • Heer, C.V.: Statistical Mechanics, Kinetic Theory, and Stochastic Processes. Elsevier, New York (2012)

    Google Scholar 

  • Hefley, W.E., Wang, Y.: Economics of Unconventional Shale Gas Development. Springer, Berlin (2016)

    Google Scholar 

  • Heinemann, Z., Brand, C., Munka, M., Chen, Y.: Modeling Reservoir Geometry with Irregular Grids. Society of Petroleum Engineers, Richardson (1989)

    Google Scholar 

  • Herzog, R.O.: Kapillarchemie, eine darstellung der chemie der kolloide und verwandter gebiete. von dr. herbert freundlich. verlag der akademischen verlagsgesellschaft. leipzig 1909. 591 seiten. preis 16,30 mk., geb. 17,50 mk. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 15(23), 948–948 (2010). https://doi.org/10.1002/bbpc.19090152312

    Google Scholar 

  • Huang, H., Lu, X-y: Relative permeabilities and coupling effects in steady-state gas-liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21(9), 092104 (2009). https://doi.org/10.1063/1.3225144

    Google Scholar 

  • Huang, X., Bandilla, K.W., Celia, M.A.: Multi-physics pore-network modeling of two-phase shale matrix flows. Transp. Porous Media 111(1), 123–141 (2016). https://doi.org/10.1007/s11242-015-0584-8

    Google Scholar 

  • Huan-zhi, Z., Yan-qing, H.: Resource Potential and Development Status of Global Shale Gas [J]. In: Oil forum, vol. 6, pp. 53–59 (2010)

  • Hudson, J.D., Civan, F., Michel, G., Devegowda, D., Sigal, R.F.: Modeling Multiple-porosity Transport in Gas-bearing Shale Formations. Society of Petroleum Engineers, Richardson (2012)

    Google Scholar 

  • Jarvie, D., Pollastro, R.M., Hill, R.J., Bowker, K.A., Claxton, B.L., Burgess, J.: Evaluation of hydrocarbon generation and storage in the Barnett shale, Ft. Worth basin, Texas. In: Ellison Miles Memorial Symposium, pp. 22–23. Farmers Branch, Texas, USA (2004)

  • Javadpour, F.: Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 48(08), 16–21 (2009)

    Google Scholar 

  • Jayakumar, R., Sahai, V., Boulis, A.: A Better Understanding of Finite Element Simulation for Shale Gas Reservoirs Through a Series of Different Case Histories. Society of Petroleum Engineers, Richardson (2011)

    Google Scholar 

  • Jiang, J., Shao, Y., Younis, R.M.: Development of a multi-continuum multi-component model for enhanced gas recovery and co2 storage in fractured shale gas reservoirs, p. 17 (2014). https://doi.org/10.2118/169114-MS

  • Jin, Z., Firoozabadi, A.: Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations. J. Chem. Phys. 143(10), 104315 (2015). https://doi.org/10.1063/1.4930006

    Google Scholar 

  • Jones, F.O., Owens, W.: A laboratory study of low-permeability gas sands. J. Pet. Technol. 32(09), 1631–1640 (1980)

    Google Scholar 

  • Kärger, J.: Flow and transport in porous media and fractured rock. Zeitschrift für Physikalische Chemie 194(1), 135–136 (1996)

    Google Scholar 

  • Klinkenberg, L.: The permeability of porous media to liquids and gases. American Petroleum Institute (1941)

  • Koplik, J., Banavar, J.R.: Continuum deductions from molecular hydrodynamics. Ann. Rev. Fluid Mech. 27(1), 257–292 (1995)

    Google Scholar 

  • Lai, B., Miskimins, J.L., Wu, Y.-S.: Non-darcy porous-media flow according to the Barree and Conway model: laboratory and numerical-modeling studies. SPE J. 17, 70–79 (2012)

    Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Google Scholar 

  • Le, M.-T.: An assessment of the potential for the development of the shale gas industry in countries outside of North America. Heliyon, 4(2), e00516 (2018). http://www.sciencedirect.com/science/article/pii/S2405844017312549. Accessed 18 Mar 2018

  • Li, D., Engler, T.W.: Literature review on correlations of the non-Darcy coefficient. In: SPE Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers (2001). https://doi.org/10.2118/70015-MS

  • Li, Z., Wei, C., Leung, J., Wang, Y., Song, H.: Numerical and experimental study on gas flow in nanoporous media. J. Nat. Gas Sci. Eng. 27, 738–744 (2015)

    Google Scholar 

  • Logan, R., Lee, R., Tek, M.: Microcomputer Gas Reservoir Simulation Using Finite Element Methods. Society of Petroleum Engineers, Richardson (1985)

    Google Scholar 

  • Loucks, R.G., Reed, R.M., Ruppel, S.C., Hammes, U.: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 96(6), 1071–1098 (2012)

    Google Scholar 

  • Lu, X.-C., Li, F.-C., Watson, A.T.: Adsorption measurements in devonian shales. Fuel 74(4), 599–603 (1995)

    Google Scholar 

  • Luo, X., Wang, S., Wang, Z., Jing, Z., Lv, M., Zhai, Z., Han, T.: Adsorption of methane, carbon dioxide and their binary mixtures on jurassic shale from the qaidam basin in china. Int. J. Coal Geol. 150, 210–223 (2015)

    Google Scholar 

  • Ma, J., Sanchez, J.P., Wu, K., Couples, G.D., Jiang, Z.: A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel, 116, 498–508 (2014). http://www.sciencedirect.com/science/article/pii/S0016236113007692. Accessed 18 Mar 2018

  • Matthews, M.T., Hill, J.M.: Nanofluidics and the navier boundary condition. Int. J. Nanotechnol. 5(2–3), 218–242 (2008)

    Google Scholar 

  • McCain, W.D.: The Properties of Petroleum Fluids. PennWell Books, Houston (1990)

    Google Scholar 

  • Mertens, F.O.: Determination of absolute adsorption in highly ordered porous media. Surf. Sci. 603(10–12), 1979–1984 (2009)

    Google Scholar 

  • Ming, L., Anzhong, G., Xuesheng, L., Rongshun, W.: Determination of the adsorbate density from supercritical gas adsorption equilibrium data. Carbon 3(41), 585–588 (2003)

    Google Scholar 

  • Minkoff, S.E., Stone, C.M., Bryant, S., Peszynska, M., Wheeler, M.F.: Coupled fluid flow and geomechanical deformation modeling. J. Pet. Sci. Eng. 38(1), 37–56 (2003). http://www.sciencedirect.com/science/article/pii/S0920410503000214. Accessed 18 Mar 2018

  • Moradi, M., Imani, F., Naji, H., Moradi Behbahani, S., Taghi Ahmadi, M.: Variation in soil carbon stock and nutrient content in sand dunes after afforestation by Prosopis juliflora in the Khuzestan province (Iran). iForest Biogeosci. For. 10, 585 (2017)

    Google Scholar 

  • Moridis, G.J., Blasingame, T.A., Freeman, C.M.: Analysis of Mechanisms of Flow in Fractured Tight-gas and Shale-gas Reservoirs. Society of Petroleum Engineers, Richardson (2010)

    Google Scholar 

  • Møyner, O., Lie, K.-A.: A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. J. Comput. Phys.304, 46–71 (2016). http://www.sciencedirect.com/science/article/pii/S0021999115006725. Accessed 18 Mar 2018

  • Myers, T.G.: Why are slip lengths so large in carbon nanotubes? Microfluid. Nanofluidics 10(5), 1141–1145 (2011). https://doi.org/10.1007/s10404-010-0752-7

    Google Scholar 

  • Nacul, E., Lepretre, C., Pedrosa Jr., O., Girard, P., Aziz, K.: Efficient Use of Domain Decomposition and Local Grid Refinement in Reservoir Simulation. Society of Petroleum Engineers, Richardson (1990)

    Google Scholar 

  • Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.-J., Craig, V.S.: Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859 (2005)

    Google Scholar 

  • Nguyen, T.V.: Experimental study of non-Darcy flow through perforations. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1986). https://doi.org/10.2118/15473-MS

  • Ozkan, E., Raghavan, R.S., Apaydin, O.G.: Modeling of fluid transfer from shale matrix to fracture network. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010). https://doi.org/10.2118/134830-MS

  • Pollard, W., Present, R.D.: On gaseous self-diffusion in long capillary tubes. Phys. Rev. 73(7), 762 (1948)

    Google Scholar 

  • Pollastro, R.M.: Total petroleum system assessment of undiscovered resources in the giant barnett shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas. AAPG Bull. 91(4), 551–578 (2007). http://pubs.er.usgs.gov/publication/70029918. Accessed 18 Mar 2018

  • Reis Jr, N.C., De Angeli, J.P., de Souza, A.F., Lopes, R.H.: Petroleum reservoir simulation using finite volume method with non-structured grids and parallel distributed computing (2001)

  • Rexer, T.F.T., Benham, M.J., Aplin, A.C., Thomas, K.M.: Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels 27(6), 3099–3109 (2013). https://doi.org/10.1021/ef400381v

    Google Scholar 

  • Ross, D.J.K., Marc Bustin, R.: Shale gas potential of the lower Jurassic Gordondale member, Northeastern British Columbia, Canada. Bull. Can. Pet. Geol. 55, 51–75 (2007)

    Google Scholar 

  • Rubin, B.: Accurate simulation of non Darcy flow in stimulated fractured shale reservoirs. In: SPE Western regional meeting. Society of Petroleum Engineers (2010). https://doi.org/10.2118/132093-MS

  • Sakhaee-Pour, A., Bryant, S.: Gas permeability of shale. SPE Reserv. Eval. Eng. 15(04), 401–409 (2012)

    Google Scholar 

  • Sampath, K., Keighin, C.W.: Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta basin. J. Pet. Technol. 34(11), 2715–2720 (1982)

    Google Scholar 

  • Saulsberry, J., Schafer, P., Schraufnagel, R., G.R.I. (U.S.): A Guide to Coalbed Methane Reservoir Engineering. Gas Research Institute (1996). https://books.google.com.sa/books?id=D4UuuAAACAAJ

  • Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Shabro, V., Torres-Verdín, C., Javadpour, F., Sepehrnoori, K.: Finite-difference approximation for fluid-flow simulation and calculation of permeability in porous media. Transp. Porous Media 94(3), 775–793 (2012)

    Google Scholar 

  • Shan, X.-D., Wang, M.: Effective resistance of gas flow in microchannels. Adv. Mech. Eng. 5, 950681 (2013)

    Google Scholar 

  • Sharma, A., Namsani, S., Singh, J.K.: Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores. Mol. Simul. 41(5–6), 414–422 (2015)

    Google Scholar 

  • Shovkun, I., Espinoza, D.N.: Coupled fluid flow-geomechanics simulation in stress-sensitive coal and shale reservoirs: impact of desorption-induced stresses, shear failure, and fines migration. Fuel 195, 260–272 (2017). http://www.sciencedirect.com/science/article/pii/S0016236117300650. Accessed 18 Mar 2018

  • Song, H., Wang, Y., Wang, J., Li, Z.: Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media. Chem. Phys. Lett. 661, 246–250 (2016). http://www.sciencedirect.com/science/article/pii/S0009261416304687. Accessed 18 Mar 2018

  • Song, H., Yu, M., Zhu, W., Wu, P., Lou, Y., Wang, Y., Killough, J.: Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media. Int. J. Heat Mass Transf. 80, 626–635 (2015). http://www.sciencedirect.com/science/article/pii/S001793101400831X. Accessed 18 Mar 2018

  • Stadie, N.P., Murialdo, M., Ahn, C.C., Fultz, B.: Unusual entropy of adsorbed methane on zeolite-templated carbon. J. Phys. Chem. C 119(47), 26409–26421 (2015)

    Google Scholar 

  • Stüben, K.: A Review of Algebraic Multigrid, pp. 281–309. Elsevier, New York (2001)

    Google Scholar 

  • Su, X., Chen, R., Lin, X., Song, Y.: Application of adsorption potential theory in the fractionation of coalbed gas during the process of adsorption/desorption. Acta Geologica Sinica 82(10), 1382–1389 (2008)

    Google Scholar 

  • Sulucarnain, I.D., Sondergeld, C.H., Rai, C.S.: An NMR Study of Shale Wettability and Effective Surface Relaxivity. Society of Petroleum Engineers, Richardson (2012)

    Google Scholar 

  • Sun, H., Chawathe, A., Hoteit, H., Shi, X., Li, L.: Understanding shale gas flow behavior using numerical simulation. SPE J. 20(01), 142–154 (2015)

    Google Scholar 

  • Sun, J., Schechter, D., Huang, C.-K.: Grid-sensitivity analysis and comparison between unstructured perpendicular bisector and structured tartan/local-grid-refinement grids for hydraulically fractured horizontal wells in eagle ford formation with complicated natural fractures. SPE J. 21, 2–260 (2016)

    Google Scholar 

  • Takhanov, D.: Forchheimer model for non-darcy flow in porous media and fractures (2011). https://spiral.imperial.ac.uk/handle/10044/1/24389

  • Tan, J., Weniger, P., Krooss, B., Merkel, A., Horsfield, B., Zhang, J., Boreham, C.J., Graas, G.v., Tocher, B.A.: Shale gas potential of the major marine shale formations in the upper yangtze platform, South China, part ii: methane sorption capacity. Fuel, 129, 204–218 (2014). http://www.sciencedirect.com/science/article/pii/S0016236114003159. Accessed 18 Mar 2018

  • Tan, Z., Wang, W., Li, W., Lu, S., He, T.: Controlling factors and physical property cutoffs of the tight reservoir in the liuhe basin. Adv. Geo-Energy Res. 1, 190–202 (2017)

    Google Scholar 

  • Tang, X., Ripepi, N., Stadie, N.P., Yu, L., Hall, M.R.: A dual-site langmuir equation for accurate estimation of high pressure deep shale gas resources. Fuel, 185, 10–17 (2016). http://www.sciencedirect.com/science/article/pii/S0016236116306913. Accessed 18 Mar 2018

  • Tang, X., Ripepi, N.: High pressure supercritical carbon dioxide adsorption in coal: adsorption model and thermodynamic characteristics. J. CO2 Util. 18, 189–197 (2017)

    Google Scholar 

  • Thomas, J.A., McGaughey, A.J.H.: Water flow in carbon nanotubes: transition to subcontinuum transport. Phys. Rev. Lett. 102(18), 184502 (2009). https://doi.org/10.1103/PhysRevLett.102.184502

    Google Scholar 

  • Tian, C., Chao, Y., Ying, Y., Yan-Hong, D., Shui-Bin, G., Yi-Jun, X., Zhao-Yuan, N., Xiao-Ping, P., Zhen-Ming, W.: Photoluminescence of silicone oil treated by fluorocarbon plasma. Chin. Phys. B 21(9), 097802 (2012). http://stacks.iop.org/1674-1056/21/i=9/a=097802. Accessed 18 Mar 2018

  • Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes. University of Colorado at Denver, UCD=CCM Report, no. 34 (1994)

  • Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56(3), 179–196 (1996)

    Google Scholar 

  • Wang, Y., Hefley, W.E.: The Global Impact of Unconventional Shale Gas Development: Economics, Policy, and Interdependence, vol. 39. Springer, Berlin (2016)

    Google Scholar 

  • Wang, F.P., Reed, R.M.: Pore Networks and Fluid Flow in Gas Shales. Society of Petroleum Engineers, Richardson (2009)

    Google Scholar 

  • Wang, X., Wang, T.: The Shale Gas Potential of China. Society of Petroleum Engineers, Richardson (2011)

    Google Scholar 

  • Wang, Q., Chen, X., Jha, A.N., Rogers, H.: Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 30, 1–28 (2014)

    Google Scholar 

  • Wei, W., Xia, Y.: Geometrical, fractal and hydraulic properties of fractured reservoirs: a mini-review. Adv. Geo Energy 1(1), 31–38 (2017)

    Google Scholar 

  • Wei, X., Wei, G., Honglin, L., Shusheng, G., Zhiming, H., Farong, Y.: Shale reservoir characteristics and isothermal adsorption properties. Nat. Gas Ind. 32(1), 113–116 (2012)

    Google Scholar 

  • Wei, C., Wang, L., Li, B., Xiong, L., Liu, S., Zheng, J., Hu, S., Song, H.: A study of nonlinear elasticity effects on permeability of stress sensitive shale rocks using an improved coupled flow and geomechanics model: a case study of the Longmaxi shale in China. Energies 11, 329 (2018)

    Google Scholar 

  • Wheeler, M.F., Xiuli, G.: Iteratively coupled mixed and galerkin finite element methods for poro-elasticity. Numer. Methods Partial Differ. Equ. 23(4), 785–797 (2007). https://doi.org/10.1002/num.20258

    Google Scholar 

  • Whitaker, S.: Flow in porous media i: a theoretical derivation of darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)

    Google Scholar 

  • Wu, Y.S., Moridis, G.J., Bai, B., & Zhang, K.: A multi-continuum model for gas production in tight fractured reservoirs. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2009). https://doi.org/10.2118/118944-MS

  • Wu, Y.-S., Lai, B., Miskimins, J.L., Fakcharoenphol, P., Di, Y.: Analysis of multiphase non-darcy flow in porous media. Transp. Porous Media 88(2), 205–223 (2011). https://doi.org/10.1007/s11242-011-9735-8

    Google Scholar 

  • Wu, H., Chen, J., Liu, H.: Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. J. Phys. Chem. C 119(24), 13652–13657 (2015)

    Google Scholar 

  • Wua, K., Li, X., Guo, C., Chen, Z.: Adsorbed gas surface diffusion and bulk gas transport in nanopores of shale reservoirs with real gas effect-adsorption-mechanical coupling. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2015). https://doi.org/10.2118/173201-MS

  • Xie, J., Gupta, N., King, M.J., Datta-Gupta, A.: Depth of investigation and depletion behavior in unconventional reservoirs using fast marching methods. In: SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers (2012). https://doi.org/10.2118/154532-MS

  • Xie, J., Yang, C., Gupta, N., King, M.J., Datta-Gupta, A.: Integration of shale-gas-production data and microseismic for fracture and reservoir properties with the fast marching method. SPE J. 20(02), 347–359 (2015)

    Google Scholar 

  • Yan, B., Wang, Y., Killough, J.E.: Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs. Comput. Geosci. 20(1), 69–91 (2016). https://doi.org/10.1007/s10596-015-9548-x

    Google Scholar 

  • Yang, X., Zhang, C.: Structure and diffusion behavior of dense carbon dioxide fluid in clay-like slit pores by molecular dynamics simulation. Chem. Phys. Lett. 407, 427–432 (2005)

    Google Scholar 

  • Yang, F., Ning, Z., Liu, H.: Fractal characteristics of shales from a shale gas reservoir in the sichuan basin, china. Fuel, 115, 378–384 (2014). http://www.sciencedirect.com/science/article/pii/S001623611300639X. Accessed 18 Mar 2018

  • Yang, Y., Fu, S., Chung, E.T.: Online mixed multiscale finite element method with oversampling and its applications (2018). arXiv preprint arXiv:1807.00710

  • Yinghao, S., Ge, H., Zhang, X., Chang, L., Dunqing, L., Liu, J.: Impact of fracturing liquid absorption on the production and water-block unlocking for shale gas reservoir. Adv. Geo-Energy Res. 2, 163–172 (2018)

    Google Scholar 

  • Yu, W., Luo, Z., Javadpour, F., Varavei, A., Sepehrnoori, K.: Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs. J. Pet. Sci. Eng. 113, 1–7 (2014). http://www.sciencedirect.com/science/article/pii/S0920410513003537

  • Yu, W., Sepehrnoori, K., Patzek, T.W.: Modeling gas adsorption in Marcellus shale with Langmuir and bet isotherms. SPE J. 21(2), 589–600 (2016)

    Google Scholar 

  • Yuan, Q., Zhu, X., Lin, K., Zhao, Y.-P.: Molecular dynamics simulations of the enhanced recovery of confined methane with carbon dioxide. Phys. Chem. Chem. Phys. 17(47), 31887–31893 (2015)

    Google Scholar 

  • Zhang, Z., Yang, S.: On the adsorption and desorption trend of shale gas. J. Exp. Mech. 27(5), 492–497 (2012)

    Google Scholar 

  • Zhang, T., Ellis, G.S., Ruppel, S.C., Milliken, K., Yang, R.: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 47, 120–131 (2012). http://www.sciencedirect.com/science/article/pii/S0146638012000629. Accessed 18 Mar 2018

  • Zhang, Y., Yang, C., King, M.J., Datta-Gupta, A.: Fast-marching methods for complex grids and anisotropic permeabilities: application to unconventional reservoirs. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2013). https://doi.org/10.2118/163637-MS

  • Zhang, X., Xiao, L., Shan, X., Guo, L.: Lattice boltzmann simulation of shale gas transport in organic nano-pores. Sci. Rep. 4, 4843 (2014)

    Google Scholar 

  • Zhang, L., Li, D., Wang, L., Lu, D.: Simulation of gas transport in tight/shale gas reservoirs by a multicomponent model based on pebi grid. J. Chem. (2015a). https://doi.org/10.1155/2015/572434

  • Zhang, T., Salama, A., Sun, S., El-Amin, M.F.: Pore network modeling of drainage process in patterned porous media: a quasi-static study. J. Comput. Sci. 9, 64–69 (2015b). http://www.sciencedirect.com/science/article/pii/S1877750315000484. Accessed 18 Mar 2018

  • Zhao, H., Chen, M., Jin, Y., Ding, Y., Wang, Y.: Rock fracture kinetics of the facture mesh system in shale gas reservoirs. Pet. Explor. Dev. 39(4), 498–503 (2012). http://www.sciencedirect.com/science/article/pii/S1876380412600676. Accessed 18 Mar 2018

  • Zhao, J., Yang, L., Xue, K., Lam, W., Li, Y., Song, Y.: In situ observation of gas hydrates growth hosted in porous media. Chem. Phys. Lett. 612, 124–128 (2014)

    Google Scholar 

  • Zhou, Y., Zhou, L.: Fundamentals of high pressure adsorption. Langmuir 25(23), 13461–13466 (2009)

    Google Scholar 

  • Ziarani, A.S., Aguilera, R.: Knudsen’s permeability correction for tight porous media. Transp. Porous Media 91(1), 239–260 (2012)

    Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported in part by funding from King Abdullah University of Science and Technology (KAUST) through the grant BAS/1/1351-01-01. The authors are also grateful for financial support from the Beijing Nova Program under Grant No. Z171100001117081 and the Fundamental Research Funds for the Central Universities under Grant No. FRF-TP-17-001C1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuyu Sun or Hongqing Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Sun, S. & Song, H. Flow Mechanism and Simulation Approaches for Shale Gas Reservoirs: A Review. Transp Porous Med 126, 655–681 (2019). https://doi.org/10.1007/s11242-018-1148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1148-5

Keywords

Navigation