Skip to main content

Advertisement

Log in

A model of large-scale Device Collaboration system based on PI-Calculus for green communication

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In recent years, there has been an increasing interest to reduce the electricity bill and increase the energy efficiency of large-scale distributed systems. How to model device collaboration system for green communication is an important issue for distributed large-scale devices integration and collaboration in a seamless and green way. Although PI-Calculus has an advantage of modeling concurrent and dynamic systems, only functional aspects of device collaboration have been addressed, non-functional aspects such as energy consumption have been ignored due to the fact that PI-Calculus lacks for capability of modeling and analyze them. This paper proposes a PI-Calculus extended with price information—Price PI-Calculus. Firstly, it associates energy cost with process in PI-Calculus through price function. Second, with the help of the semantics of PI-Calculus transitional and price function, it associates the change of collaboration cost with the system evolution. After that a large-scale device control system modeling method based on Price PI-Calculus is presented. Finally, take advantage of operational and transitional semantics and a formal deduction, function correctness of device collaboration has been checked, in the meantime the system energy consumption has also been analyzed, it is very useful for choosing the energy-saving flow of device collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coroama, V., & Hilty L. (2009). Energy consumed vs. energy saved by ICT—a closer look. In Proc. EnviroInfo 2009 (pp. 353–361), Berlin, Germany, 2009.

    Google Scholar 

  2. International Energy Agency. World Energy Outlook (2009). OECD Publishing.

  3. European Commission DG INFSO (2008). Impacts of information and communication technologies on energy efficiency.

  4. van Rensburg, L. (2009). Energy demand research project: review of progress for period 04/2008–08/2008. TR Ofgem.

  5. Laitner, J. A., & Ehrhardt-Martinez, K. (2009). Information communication technologies: the power of productivity. Part I. Environmental Quality Management, 18(2), 47–66.

    Article  Google Scholar 

  6. Laitner, J. A., & Ehrhardt-Martinez, K. (2009). Information communication technologies: the power of productivity. Part II. Environmental Quality Management 18(3), 19–35.

    Article  Google Scholar 

  7. Feng, W., & Scogland, T. (2009). The green500 list: year one[C]. In IPDPS ’09: Proceedings of the IEEE international symposium on parallel & distributed processing, Washington, DC, USA, 2009.

    Google Scholar 

  8. The G. Grid (2007). The green grid data center power e_ciency metrics: Pue and dcie (Technical report).

  9. Da Costa, G., et al. (2009). The GREEN-NET framework: energy efficiency in large scale distributed systems. In Proceedings of the 2009 IEEE international symposium on parallel & distributed processing, Washington, DC, USA, 2009 (pp. 1–8).

    Chapter  Google Scholar 

  10. Da Costa, G., et al. (2010). Multi-facet approach to reduce energy consumption in clouds and grids: the GREEN-NET Framework[C]. In Proceedings of the 1st international conference on energy-efficient computing and networking, Passau, Germany, 2010 (pp. 95–104).

    Chapter  Google Scholar 

  11. European COST Action IC0804 (2009). Accessed Jan 23, 2009. http://www.cost804.org.

  12. Friedemann, M., Staake, T., & Weiss, M. (2010). ICT for green—how computers can help us to conserve energy. In Proceedings of the 1st international conference on energy-efficient computing and networking, 2010 (pp. 1–10).

    Google Scholar 

  13. Ilic, A., Bowman, P., Ng, J., & Staake, T. (2009). The value of RFID for RTI management. Electronic Markets, 19(2–3), 125–135.

    Article  Google Scholar 

  14. Gershenfeld, N., Krikorian, R., & Cohen, D. (2004). The Internet of things. Scientific American, 291(4), 76–81.

    Article  Google Scholar 

  15. Ning, K. (2008). Research on key technology of the resource addressing in the internet of things. Graduate University of Chinese Academy of Sciences.

  16. Li, R. (2009). Study on the Internet of things based on RFID technique. Journal of China Academy of Electronics and Information Technology, 6, 594–597.

    Google Scholar 

  17. Wang, B. (2009). Review on internet of things. Journal of Electronic Measurement and Instrument, 12, 1–7.

    Google Scholar 

  18. Palmisano, S. (2008). A Smarter planet: instrumented, interconnected, intelligent. http://www.ibm.com/smarterplanet/us/en/overview/ideas/

  19. Ning, H., Zhang, Y., Liu, F., et al. (2006). Research on China Internet of things’ services and management. Acta Electronica Sinica, 2006(S1), 2514–2517.

    Google Scholar 

  20. Zhang, C., & Wang, G. (2010). Cognitive China—key technologies of the next generation information-based and information service society in China. Telecommunications Network Technology, 1, 8–11.

    Google Scholar 

  21. Qia, N.Y., Qi, G., et al. (2005). Research on web–based sharing of instruments & equipment. Computer Integrated Manufacturing Systems, 11(8), 1169–1173.

    Google Scholar 

  22. Cao, J., Jarvis, S. A., Saini, S., et al. (2003). GridFlow: workflow management for grid computing. In 3rd international symposium on cluster computing and the Grid[C], Tokyo, Japan, May 2003 (p. 12215). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  23. Zhang, D., & Liu, H. (2007). Research on multi-hierarchy cooperation model in CSCW. Application Research of Computers, 24(3), 59–61.

    Google Scholar 

  24. Wang, Y., Liu, L., et al. (2004). The study on simulation grid technology for equipment resource sharing system. In Proceedings of 5th world congress on intelligent control and automation (p. 6).

    Google Scholar 

  25. Milner, R. (1999). Communicating and mobile systems: the [Pi]-Calculus. Cambridge: Cambridge University Press.

    Google Scholar 

  26. Liao, J., Tan, H., & Liu, J. (2005). Describing verifying Web service using PI-Calculus. Chinese Journal of Computers, 28(4), 635–643.

    Google Scholar 

  27. Liao, J., Tan, H., & Liu, J. (2005). Verifying Web services substitution using Pi-Calculus. Journal of Huazhong University of Science and Technology, 33, 168–171.

    Google Scholar 

  28. Liu, W., Song, J., & Lin, C. (2005). Modeling and analysis of grid computing application based price timed Petri net. Acta Electronica Sinica, 33(8), 1416–1420.

    Google Scholar 

  29. Liu, X., & Li, S., et al. (2007). A time Petri net extended with price information. Journal of Software, 18(1), 1–10.

    Article  Google Scholar 

  30. Parosh, A.A., & Mayr, R. (2009). Minimal cost reachability/coverability in priced timed petri nets. In Lecture notes in computer science, vol. 5504 (pp. 348–363). Berlin: Springer.

    Google Scholar 

  31. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., & Vaandrager, F. (2001). Minimum-Cost reachability for priced timed automata. In M. D. D. Benedetto, & A. Sangiovanni-Vincentelli (eds.) Proc. of the 4th int’l workshop on hybrid systems: computation and control. LNCS, vol. 2034 (pp. 147–161). Berlin: Springer.

    Chapter  Google Scholar 

  32. Behrmann, G., Larsen, K., & Rasmussen, J. (2005). Optimal scheduling using priced timed automata. ACM SIGMETRICS Performance Evaluation Review, 32(4), 34–40.

    Article  Google Scholar 

  33. Bouyer, P., Brinksma, E., & Larsen, K.G. (2008). Optimal infinite scheduling for multi-priced timed automata. Formal Methods in System Design, 32, 3–23.

    Article  Google Scholar 

  34. Fahrenberg, U., & Larsen, K. G. (2009). Discount-optimal infinite runs in priced timed automata. Electronic Notes in Theoretical Computer Science, 7(239), 179–191.

    Article  Google Scholar 

  35. Grid Enabled Remote Instrument with Distributed Control and Computation (GRIDCC) website (2011). http://www.gridcc.org.

  36. McGough, A. S., Akram, A., Guo, L., Krznaric, M., Dickens, L., Colling, D., Martyniak, J., Powell, R., Kyberd, P., Huang, C., Kotsokalis, C., & Tsanakas, P. (2007). GRIDCC: a real-time grid workflow system with QoS. Scientific Programming, 15(4), 213–234.

    Google Scholar 

  37. Yamamoto, K., Fukunaga, M., Huang, J., et al. (2008). iopeNet and it’s goal. Electrical Technology of Intelligent Buildings, 4, 82–83.

    Google Scholar 

  38. Chen, F., Rong, X., & Deng, P. (2009). The design of a large-scale area lighting scheme design language for olympic park. In Proc. of 2009 international conference on information technology and computer science, Kiev, Ukraine. Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  39. Rong, X., Chen, F., & Deng, P. (2010). A large-scale device collaboration performance evaluation approach based-on dynamics. Journal of Computers, 8(5), 1177–1184.

    Google Scholar 

  40. Kang, H., Zeng, Y., & Liu, Z. (2009). Modeling the mobile communication service based on PI-Calculus. Journal on Communications, 30(4), 11–16.

    Google Scholar 

  41. Ehrharda, T., & Laurent, O. (2010). Interpreting a finitary pi-calculus in differential interaction nets. Information and Computation, 6(208), 606–633.

    Article  Google Scholar 

  42. Delaune, S., Kremer, S., & Ryan, M.D. (2010). Symbolic bisimulation for the applied pi calculus. Journal of Computer Security, 2(18), 317–377.

    Google Scholar 

  43. Puhlmann, F. (2010). Soundness verification of business processes specified in the Pi-Calculus. In Lecture notes in computer science, vol. 4803, pp. 6–23. Berlin: Springer.

    Google Scholar 

  44. Varaccaa, D., & Yoshidab, N. (2010). Typed event structures and the linear π-calculus. Theoretical Computer Science, 19(411), 1949–1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, P., Zhang, J., Rong, X. et al. A model of large-scale Device Collaboration system based on PI-Calculus for green communication. Telecommun Syst 52, 1313–1326 (2013). https://doi.org/10.1007/s11235-011-9643-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9643-9

Keywords

Navigation