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Abstract
Real-time tracking and surveillance of patients’ health has become ubiquitous in 
the healthcare sector as a result of the development of fog, cloud computing, and 
Internet of Things (IoT) technologies. Medical IoT (MIoT) equipment often trans-
fers health data to a pharmaceutical data center, where it is saved, evaluated, and 
made available to relevant stakeholders or users. Fog layers have been utilized to 
increase the scalability and flexibility of IoT-based healthcare services, by providing 
quick response times and low latency. Our proposed solution focuses on an elec-
tronic healthcare system that manages both critical and non-critical patients simulta-
neously. Fog layer is distributed into two halves: critical fog cluster and non-critical 
fog cluster. Critical patients are handled at critical fog clusters for quick response, 
while non-critical patients are handled using blockchain technology at non-critical 
fog cluster, which protects the privacy of patient health records. The suggested solu-
tion requires little modification to the current IoT ecosystem while decrease the 
response time for critical messages and offloading the cloud infrastructure. Reduced 
storage requirements for cloud data centers benefit users in addition to saving money 
on construction and operating expenses. In addition, we examined the proposed 
work for recall, accuracy, precision, and F-score. The results show that the suggested 
approach is successful in protecting privacy while retaining standard network set-
tings. Moreover, suggested system and benchmark are evaluated in terms of system 
response time, drop rate, throughput, fog, and cloud utilization. Evaluated results 
clearly indicate the performance of proposed system is better than benchmark.
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1 Introduction

Recently, the IT sector has appeared to be vibrant with several new fields, e.g., 
healthcare 4.0 [1], interconnected industries, smart factories, industry 4.0 [2], 
and embedded Internet of Things (IoT). Today, we are on the edge of a techno-
logical insurgency that has radically transformed the way we live and work [3]. 
This change will be unprecedented in terms of both complexity and efficiency in 
human history. Internet-connected devices are increasingly being used in a wide 
range of industries to make manufacturing smarter, as well as health care smarter, 
cities smarter and homes smarter.  Because of the huge volumes of data gener-
ated every second by smart machines and systems, decision-making has become 
extremely relevant. It is becoming increasingly common for researchers to focus 
on developing physical systems and embedded smart appliances as a research and 
development focus. Hardware and software systems in real-time embedded sys-
tems [4] are subjugated to many limitations, and pervasive computing must react 
within given time restrictions or deadlines. The message scheduler of embedded 
devices [5] should be equipped with smart decision-making capabilities so that it 
can make the best use of available resources and the order in which messages are 
run.

Advanced networking and rapidly advancing digital processing technology 
have aided in the expansion of a variety of digital services [6]. Numerous ser-
vices use the IoT as a way to communicate with processes and objects, enhancing 
social interaction among people. Technologists and researchers have been forced 
to move from a centralized to a decentralized framework by these microservices. 
As a result, smart homes, smart cities, smart transportation systems, smart weara-
bles, and smart health care are all developing [7]. Therefore, it is clear that data 
technology has been added to modern internet technology to support the growth 
of smart devices, which generate a significant amount of data. A group of major 
information technology (IT) organizations, including Amazon, Google, Micro-
soft, Apple, and many others, have already set up cloud data centers (DCs) [8] 
to process and store data produced by a range of applications and solutions on a 
pay-per-use basis. Despite the fact that the method actually works effectively, it is 
more appropriate for latency-tolerant devices than for real-time applications. The 
construction of a fog computing (FC) [9] management plane near end devices to 
promote portability and data localization has been prompted by the expectation 
that the current rate of data generation would result in a 92% data workload in the 
coming years.

Due to a strong push and deployment of all services by healthcare experts, 
suppliers, patients, and governments, e-healthcare facilities play a crucial part in 
people’s health. In the conventional medical model, patients must be hospital-
ized in order to have their health issues examined and tracked locally. We explore 
the development of smart technologies and the security requirements for applying 
them in the medical industry. The advantages of distributed ledger technology 
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are covered, as well as potential applications for healthcare organizations [10]. 
Since the beginning of healthcare services in the 1970s, the development of 
adaptable IT platforms has been observed. This period is referred to as healthcare 
1.0. The Healthcare 2.0 era was defined as the period from 1991 to 2005 [11] 
when medical systems were insufficient and not associated with digital systems, 
which caused a lack of resources. The development of contemporary healthcare 
systems took place during this time as healthcare and information systems were 
merged. The development of advanced tracking during this time period gave doc-
tors access to scanning technologies for assessing patients’ conditions. New user-
enabled technologies began to arrive in the healthcare sector at the same time that 
social media started to take off. Healthcare practitioners are beginning to create 
online communities where expertise can be shared, data are stored on cloud stor-
age, and patient records are accessible on mobile devices. This makes it possi-
ble for the patient and the doctor to have easy accessibility. Critics emphasized 
their concern with the erroneous information given and the violation of patients’ 
privacy during this period. Healthcare 3.0, which allowed users to choose how 
patient healthcare information was delivered, developed simultaneously as Web 
3.0 [12].

Interfaces have grown more streamlined and adaptable, enabling more individ-
ualized and optimized experiences. The introduction of wearable and embedded 
technologies, as well as electronic healthcare records (EHRs) [13], made it pos-
sible to track patients’ medical conditions everywhere, in real time. In a similar 
vein, EHR systems started to appear that used standalone, non-networked tech-
nology like social networks to store patient data. The process has been simplified 
by the sharing of health data through networked channels, such online network-
ing, between practitioners using EHR systems. The interaction and communica-
tion between medical staff and patients have also improved. The healthcare 4.0 
approach has been our way of living since 2016. This era was motivated by the 
idea of Industry 4.0, where strong and high-touch systems are implemented and 
blockchains are developed to enable real-time access to patient clinical data using 
cloud services, fog and computing capabilities, big data analytics, artificial intel-
ligence, and deep learning. The primary objective of this phase is to advance 
virtualization, enabling real-time customized health care. With the potential to 
improve health care’s predictability and specialization, collaboration, coherence, 
and convergence are currently in the spotlight.

Information about healthcare necessitates an exceptionally high level of con-
fidentiality and security. Personal privacy is the ability to permit or disclose per-
sonal information to third parties. Collaboration between authorities and health-
care experts is required for this, as well as the creation of accepted policies and 
procedures. To protect their healthcare data, many countries have passed legis-
lation and security regulations. Since the start of the 4.0 healthcare era, smart 
technologies have become more and more important to medical practitioners. 
These technologies provide the transmission, receiving, and collecting of patient 
records for health recordkeeping, as well as the cure and diagnostics of certain 
diseases. To be successful, a healthcare provider must have high-quality data 
stored in EHR systems. As a result, data must always secure and risk-free. The 
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technologies used might not function properly or be regarded as reliable if these 
requirements are not met.

The specific tasks that fog computing accomplishes depend on the application 
and domain. Filtering, aggregating, analyzing, and swiftly storing data are common 
activities [14]. Fog computing can be done by a single node or by a group of nodes 
working together. As a result, there are more adaptability, scalability, and redun-
dancy control because new fog nodes can be added as more computational power 
is required. Fog computing is influenced by many of the same ideas as cloud com-
puting. Using a decentralized network and blockchain technology, data are saved in 
tamper-resistant formats. Because blockchain transactions may only be amended or 
added by generating new hash values, prior transactions cannot be changed. To com-
prehend it, the prospective use of distributed ledger technology must be compared to 
all of the characteristics that distinguish the blockchain from others: [15]

• Distributed ledger: By eradicating a single point of failure, transactions are scat-
tered over a network, ensuring system recovery.

• Consensus tactic: Transactions are only recorded when the terms of the transac-
tion are accepted by all authorized network users.

• Provenance: The entire history of data stored on the blockchain network.
• Integrity: Network record cannot be manipulated or tampered with, ensuring the 

security and trustworthiness of all data.
• Finality: When a transaction is added to a blockchain and confirmed, it can no 

longer be changed or undone.
• Smart contract: Codes are written on simply on blockchain network and are 

mostly executed by computers and nodes when an event occurs. The programs 
automatically run within the specified time period or condition.

1.1  Contributions

Our research focuses on the key contributions of fog brokering, such as the segrega-
tion of messages at the fog broker into critical and non-critical patient conditions for 
quick response to critical symptoms of patients, obtaining cloud services for data 
mining to reduce operating costs, and access point add the priority with comparing 
received value to the predefined threshold values.

2  Related work

Integrating blockchain and cloud technologies, Badr et al. [16] provide a multitier 
framework for implementing IoT into EHR systems. The suggested method employs 
elliptic curve cryptography (ECC) that has the potential to provide greater security 
than existing cryptographic systems. The approach, however, does not enable access 
to health records on a local level. They are instead accessed through some kind of 
blockchain cloud service, which is not discussed in this paper. The fastened and 
smart healthcare system is proposed by Tripathi et al. [17] in [1] to ensure privacy 
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and security in healthcare systems. The project collects EHR data from IoT wear-
able technology to use a smart sensor network (WSN) architecture. Before putting 
data in the cloud, a blockchain is used to encrypt and standardize it. To prevent data 
fragmentation and also provide people with better access to their personal informa-
tion, shen et al. [18] propose a clinical data sharing method. The architecture has a 
dual-network structure for mutable and immutable data. Silva et al. [19] describe a 
fog approach for managing medical records using blockchain as well as the cloud. 
The main goal of the solution is to give patients control over their personal data. To 
build a decentralized blockchain permission layer and make data available to appli-
cations, fog nodes are placed strategically close to sensors. The paper offers a case 
study that examines the performance, transparency, and accessibility of suggested 
architecture in different scenarios, including residential health care. Tuli et al. [20] 
introduce a methodology for connecting IoT devices, fog, and cloud platforms. The 
proposal comprises of numerous fog nodes located near sensors that provide com-
puting and data processing capacity. Whenever fog nodes become congested, the 
infrastructure as a service serves as a back-end. Furthermore, blockchain is used to 
protect the integrity of secret data in the fog layer. The study did not rely on EHR in 
specifically. The authors, on the other hand, use sleep paralysis as a research study.

To store and manage electronic health records, Vora et al. [21] suggest a block-
chain-based architecture. This strategy employs many smart contracts to isolate 
various sorts of data. Giving patients privacy and revealing confidential informa-
tion are the main goal of this research. Akkaoui et al. [22] provide the EdgeMedi-
Chain architecture, which merges edge and blockchain technologies to simplify 
the exchange of medical data. It is a system that incorporates identification and 
authorization for gathering patient data via IoT medical devices. The architec-
ture’s main contribution is its capacity to utilize edge-mining pools to handle data 
from numerous sensors concurrently. Numerous edge nodes in each mining pool 
evaluate data from sensors placed in a specific area. [5] The goal of Amir Latif 
et  al.  [23] is to emphasize data sharing while also attempting to communicate 
patient information among other hospitals. The research suggests using smart 
contracts to store historical patient records in a blockchain-based architecture. 
Deep learning (DL) was proposed by Almaiah et al. [24] as a lightweight authen-
tication mechanism and  preservation technique for IoT-based CPS to enable 
decentralized authentication across legal devices. Authors have reduced the vali-
dation time among coupling devices with decentralized authentication, which was 
followed by better communication statistics. To enable a secure searching and 
keyword-based access to the database, Ali et al. [25] presented a distributed data-
base using a homomorphic encryption approach. A secure key revoking mecha-
nism is also offered by the suggested solution, and various policies are updated 
accordingly. To address the efficiency and security difficulties in the existing 
schemes for exchanging both forms of digital healthcare data, a robust patient 
healthcare information access scheme has been developed that merges blockchain 
and trust chain. The solution presented by Rahmadika et al. [26] makes use of pri-
vacy preserving bidirectional long short-term memory (BiLSTM) while enhanc-
ing security by incorporating blockchain technology built on the Ethereum smart 
contract setting. Further, the efficacy of the suggested model is empirically tested 
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for exhaustiveness, commensurate incentive schemes with an untrace ability char-
acteristic, and compact findings from a different neural network technique.

Hannah et al. [27] examined the usage of deep neural networks built on a block-
chain to transmit healthcare data more quickly and efficiently. The study displays 
real-time health surveillance for classification and evaluates the speed and accuracy 
of the responses. The model of deep learning divides brain conditions into benign 
and malignant categories. The study considers three separate classes—including 
AD, moderate cognitive deficits, and normal cognitive level—to predict whether a 
brain disease is benign or malignant. The majority of the data used in the study is 
used to train these classifiers in an ensemble model, and a metaclassifier is used to 
categorize the final resultant class. Hannah et al. [28] examined the usage of deep 
neural networks built on a blockchain to transmit healthcare data more quickly and 
efficiently. The study displays real-time health surveillance for classification and 
evaluates the speed and accuracy of the responses. The model of deep learning 
divides brain conditions into benign and malignant categories. The study considers 
three separate classes—including AD, moderate cognitive deficits, and normal cog-
nitive level to predict whether a brain disease is benign or malignant. The majority 
of the data used in the study is used to train these classifiers in an ensemble model, 
and a metaclassifier is used to categorize the final resultant class.

Das et al. [29] investigated the potential and advantages of combining cloud com-
puting with fog as well as edge-based computing to offer people urgent healthcare 
services. Using interconnected IoT-edge-fog-cloud computing environments, RES-
CUE (enabling green healthcare services) is an end-to-end framework that includes 
an effective spatial–temporal data and analytics module for effective information 
sharing and spatial–temporal data processing to predict the path for users to take 
to get to their destination (a hospital or relief camps) with the least amount of delay 
during an emergency (say, natural disaster). The proprietary blockchain-assisted 
EHR management was proposed by Ray et al. [30] exploits IoT usage in healthcare. 
In order to enable secure and trustworthy data transfer and prompt analysis of data 
sent over IoT networks, innovative blockchain integrated swarm exchange archi-
tectures were specifically suggested as the backbone of the suggested method. To 
deploy EHR transmission securely, a dynamic and modular server support technol-
ogy is used with an autonomous encryption–decryption technique. Additionally, a 
number of swarm listen, announcement, peer open, and peer closure algorithms are 
included in order to take advantage of the true potential of pervasive EHR trans-
mission for improved delivery of e-healthcare services. In order to diagnose the 
COVID-19 disease, Golec et al. [31] propose the security- and privacy-based light-
weight framework known as iFaaSBus. This framework uses the idea of the Inter-
net of Things (IoT), machine learning and Fnction as a Service (FaaS) or serverless 
computing. It also controls resources automatically to enable dynamic scalability. 
To secure the patient’s health data, iFaaSBus uses OAuth-2.0 Authentication proto-
col-based transparency and JSON Web Token and Transport Layer Socket protocol-
based security.

The protocol presented by Premkumar et al. [32] was contrasted with the tradi-
tional approach, the cognitive radio-based heterogeneous wireless sensor area net-
work. The test bed results demonstrate also that EEFCR protocol have significantly 
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improved upon the sum goodput in comparison with a number of other radio users, 
average likelihood of bit error, computing time in comparison with sensor nodes, 
and latency in comparison to sensing time. The D-SCN model, which Madhu et al. 
[33] proposed, comprises of the two critical steps of feature selection and feature 
discrimination. In order to capture feature invariances during the feature extraction 
phase, they suggested an end-to-end learned capsule network with such an impera-
tive routing (IR) mechanism. Finally, Lorentz, L1 and L2 probabilistic models were 
suggested for the assimilation of features during the feature discrimination stage.

3  Proposed framework

Due to many pandemics in the last 10 years, such as COVID-19, SARS-CoV-2, and 
MERS-CoV, improvements in the healthcare sector [34] now demand a high level 
of importance and concentration from academia and business. The diagnosis of the 
patient is made using symptoms, some of which may be life-threatening, such as 
high temperature, lack of oxygen saturation, and abnormal heart rate. If these signs 
are identified as soon as possible, the patient may recover earlier. In this study, we 
identified a patient’s three primary symptoms as well as any important symptoms. 
This subject is not new in this sector; there has already been extensive research on 
it. The critical messages are handled when their time comes, because all the data 
from the patient’s sensors is treated in a FIFO queued manner [35]. Processing the 
critical message could take some time, and it might take a long time. In order to 
address this issue, we developed a framework, and when compared to the present 
frameworks, it provides quicker access to critical messages. Non-critical messages, 
such as patient health records, are stored in blockchain after processing, providing 
safeguards to a patient’s medical history to prevent tampering.

The proposed method is based on the cloud layer, fog layer and device layers of 
the IoT ecosystem’s three-layered architecture. Data collection and creation are the 
responsibilities of the device layer. On the body of the patient, sensor nodes generate 
data, and an Access Point (AP) in our structure collects it and assign priority accord-
ing QoS. The fog layer is composed of a Fog Broker (FB), a Critical Fog Cluster 

Threshold
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Data
Transmission

Priority Bit
Assignment

Data
Acquisition

Data
Parsing

Access
Point

• Non-critical Symptoms
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• Blockchain Storage
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Fig. 1  System architecture
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(CFC), and a Non-critical Fog Cluster (NFC). Messages to the CFC  or NFC  are 
scheduled by the fog broker according to the priority set by the AP. If the condi-
tion of the patient is critical, the CFC receives the notification right away. When 
non-critical messages are received, FB generates a block that is mined using a cloud 
service as shown in Fig. 1.

3.1  Device layer

Oxygen saturation, heart rate and temperature were the three sensors that we used 
with the patient in our framework. Some sensors output data in digital form, while 
others do in analogue. Analogue temperature has a range of values within a tem-
poral domain. These sensors’ values must first be parsed prior processing. Digital 
oxygen saturation and heart rate sensor data were available, but because they only 
offer patterns, these are challenging to process. In order to make them meaningful, 
we parse these using the provided formulas.

3.2  Access point (Arduino)

Data are sent from each sensor to AP (Arduino). GPIO pins are available for Arduino 
to connect. GPIO can be digital or analogue. Wires connect sensors to the access 
point. Here, we additionally address the potential synchronizing issue brought on 
by millisecond-based sensor readings. The NODE MCU conducted segregation and 
added additional priority bits after receiving these data from the Arduino. For fur-
ther processing, these data are transferred to Fog in JSON format.

3.3  Fog layer

The FB, CFC, and NFC are the three main elements of the fog layer in this sug-
gested system. At the edge of the fog, FB receives all incoming messages and passes 
them to either CFC or NFC based on the QoS specifications of each. All incoming 
messages are held in the FB’s memory storage collection until they are forwarded 
to CFC or NFC. C critical and non-critical messages are considered and handled by 
this proposed technique. The CFC is informed of the patient’s abnormal condition 
as a life-threatening situation and is then notified to immediately for rescuers. In 
the case of a normal occurrence, messages will be sent to NFC. The data are com-
pressed into a block and transferred to the cloud for data mining. The emergency 
response layer, or CFC, where all relevant services are activated, receives the critical 
data immediately. We also compared the results after taking this queue’s forming at 
the access level into consideration. We provided analysis of this framework using 
a human-curated methodology and computed the system precision, accuracy, and 
F-score.



4007

1 3

IoT‑fog‑based healthcare 4.0 system using blockchain…

3.4  Working configuration of the fog layer

The suggested design employs two configurations. In this part, the internal organiza-
tion of each configuration is examined. The first setting is for critical requests, and 
the other one is for non-critical messages.

3.4.1  Scenario for patient critical condition

The CFC is responsible for responding instantly to critical signals because a delay 
could cause significant loss. There might be a slight delay because of some key deci-
sions or transmission issues, but the only thing that matters is that the necessary 
action is completed as quickly as possible. Assume a patient’s heartbeat mechanism 
is disrupted. It needs to act immediately; otherwise, a catastrophe could happen. 
When a risk happens, the sensors send a signal to the AP as shown in Fig. 2. The AP 
intercepts the message from the signal and assigns a priority using predefined crite-
ria and forwards the message to the fog broker. CFC receives the message and takes 
appropriate action. I might activate an alarm to inform the interested party and the 
appropriate department.

3.4.2  Scenario for patient normal condition

The non-critical fog cluster uses configuration 2 with an illustration. Due to the 
processing time of the system, applications that can tolerate delays are the best 

Fig. 2  Flowchart of emergency 
patients
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candidates for blockchain. Think about a patient’s condition, for instance. The mes-
sage request is generated by an authorized sensor, and when the parameters are 
checked, it is sent to the access point. The fog broker places these messages in a 
non-critical message queue and holds them there until the block length limit has 
been reached. The block is broadcast to all cluster members, including CH as shown 
in Fig. 3. This block is forwarded by the NFC cluster to the cloud for blockchain 
processing via mining services. After determining the nonce value, the cloud server 
sends the correct nonce back to the cluster head and it is broadcast to all members of 
the cluster.

4  Simulation setup

The technicalities of implementing the suggested technique and framework into 
operation are covered in this section. We have discussed the simulation used for this 
analysis as well as the problems that emerged during the framework’s development. 
We started working with electronics simulators early on in this project, using Packet 
Tracer,  Proteus, and LABView. The previously mentioned package excluded net-
work modules and solely supported the simulation of electronics. Despite having 
network modules, some networking simulation software was lacking of IoT sensors. 
To make our system simpler to understand and enhance in the future, we divided it 
into layers. We took considerable pains to cover every conceivable subsystem.

4.1  Tools used in research

The following resources are employed in the execution of this framework: We down-
loaded these open-source programs from the internet. The software configuration, if 
necessary, is covered in the paragraph that follows.

4.1.1  Library and boards

For the same purpose, engineers from all around the world have worked to shape 
up the libraries. The most of libraries are open access. We have added the following 
libraries of a certain designer: The following design must be conFig.d in order to 
view the firmware (Arduino, Node MCU) output [36] on the chronic screen. Set up 
the board that contains the ESP8266 [37] and Arduino UNO first. We imported the 
relevant board’s libraries as shown in (Table 1).

Table 1  Baud rate of hardware Board Baud rate

Serial output [Arduino] 115,000 bps
Serial output [ESP8266-node MCU] 115,000 bps
Serial communication [Arduino] 4820 bps
Serial communication [node MCU] 4820 bps
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4.2  Data acquisition

It is obvious that the sensor layer collects the sense data from the patient’s body. 
The sensor nodes have limited resources, so these cannot apply further operations on 
data. Due to easy availability, for example, sensors are used to get the sensed value 
and forward it for further processing.

4.2.1  Temperature sensor

We chose the LM35 temperature sensor [38] out of all the options available. The LM35 
sensor works on the basic idea of a diode, where the voltage across a diode grows at a 
known proportion as the temperature increases. By carefully magnifying the voltage 
change, it is simple to create an analogue signal that is directly related to temperature.

4.2.2  SPO2 and heart rate sensor

Max30102 [39] provides both SPO2 and heart rate, making it a dual-functional device. 
Its typical value is from 96 to 100%. After stating, it is imperative to follow some 
parameters for reasons of precision. The sensor is set up using the default configura-
tion. The IR LED kills the mood because the red LED is dim to even consider revealing 
that the sensor is operating. Small light beams that flow through your finger’s blood to 
measure the level of oxygen are used in pulse oximetry. Pulse oximeters measure vari-
ations in optical emission in oxygenated or deoxyhemoglobin blood, according to Brit-
ish Lung Foundation.

4.3  Queueing models for proposed solution

In this section, we provide some key explanations of the models employed in our 
framework technique.

4.3.1  Model M/M/1 [40]

This queue is a part of an end-to-end IoT connection that represents the smooth mes-
sage delivery (collection, processing or transmission). It is comparable to the traditional 
M/M/1 queue in which a single server manages Poisson arrivals across an exponen-
tially spaced service time. One way to describe an M/M/1 queue is as follows:

where the rates at which messages enter the queue is λ, and the rate at which they 
are handled is µ. Let D = 1/ µ be the service requirement for the processing delay 
of a message (service time). Queuing time plus service time, often known as mean 
responsiveness, is how long a message remains in an M/M/1 system.

(1)Qm∕m∕1 = (�,�)
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4.3.2  Multiclass model [41]

This queue architecture offers continuous service for messages from different 
classes, like critical and non-critical messages, in terms of transmission, receipt, or 
processing.

IoT communication is divided into two classes based on its many qualities. Criti-
cal and non-critical messaging represents  emergency and delay-tolerant services 
respectively, demand different transmission and processing resources. The multi-
class queue is composed of several M/M/1 queues because each class relates to a 
common M/M/1 queue with Poisson arrivals and an exponential service rate.

5  Results

5.1  Threshold values of symptoms

Values are compared to and placed against common attributes. The next task, "emer-
gencyAlert()," is conducted in the unlikely event that anything of value is found. At 
this capacity, all desirable boundaries are exceeded. We recorded the values from 
clinical sources. The normal and edge values are displayed in Table 2.

5.2  Reading and parsing of sensors values

We have approximately 1200 individuals with varied signs, including temperature, 
heart rate, and SPO2, available for examination. These characteristics are acquired 
using sensors and stored in a data base. We evaluate the framework’s presentation in 
the context of gathering attributes and afterward parsing them into a useful outcome 
for managing. With the assistance of Expert Identification, we assess the effective-
ness of our framework and estimate the quantity of correctness, accuracy, reviews, 
and F-scores that we  acquired. If the framework fails to account for a patient’s 
qualities, its performance will be poor and shaky. We demonstrated a delay of 1 S 
between each stretch, with an adjustment time of about ten milliseconds. We also 
demonstrate that this always has 3600  s. Therefore, 1200 quality can be obtained 

(2)Δm∕m∕1 =
D

(1 − �D)

Table 2  Threshold values of symptoms

Vital sign Normal value Above range Below range

Beats per min Different in different age groups, but an 
average is 50–150 bpm

 > 150  < 50

Temperature 97–100  > 102  < 96
SPO2 95–100  > 100  < 95
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in 20 min. The disarray grid for evaluating the presentation is displayed in Table 5. 
We concentrated on the four main activities in the setup of our framework for easy 
understanding of the disarray matrix. An outcome when the model incorrectly pre-
dictions the positive class is known as a false positive. Furthermore, a false negative 
is an outcome where the model forecasts the negative class incorrectly.

To further clarify, we stated  that true positive denotes the existence of patient 
worth in actuality and our framework’s acceptance of it, while true negative denotes 
the absence of patient worth in reality and our framework’s failure to provide any 
worth in the framework. False positive denotes the absence of patient value whereas 
our framework provides the value to the framework. False negative indicates that 
patient worth is present in reality but was ignored by our framework. We are now 
filling the confusion matrix using the rules given in Table 3.

In our framework, there’s many problems with precision. These characteristics 
differ due to the following factors: disengagement of the patient sensor arrangement, 
actual sensor execution, sequential correspondence, patient improvement, frame-
work hang with other program (hence the requirement of a dedicated server that is 
not delegated to some other task), and our attempts to tune the framework and note 
the response once more.

5.3  After tune‑up: patient values reading and parsing

Then, using the previously shown similarity, we recalculated the result (Table 4).
It is adjusted and will work better for a specific sensor, but if we apply it to 

another sensor, we risk ridicule. The evaluations both prior to and after making 

Table 3  Reading and parsing 
of sensors values (confusion 
matrix)

Reading and parsing of sensors values (confusion matrix)

Expert identification
↓

IoT hospital Total

Acquired values Not acquired values

Acquired values 1155 (TP) 45 (FN) 1200
Not acquired values 0 (FP) 0 (TN) 0
Total 1155 45 1200

Table 4  After tune-up—reading 
sensor values

After tune-up—reading and parsing of sensors values (confusion 
matrix)

Expert identification
↓

IoT hospital Total

Acquired values Not acquired values

Acquired values 1165 (TP) 35 (FN) 1200
Not acquired values 0 (FP) 0 (TN) 0
Total 1165 35 1200
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adjustments are averaged. The performance actors’ average values for the gathering 
of sensor values are shown in Table 5 and 6.

5.4  Found abnormal values

We compute the display of our approach for finding the peculiar traits using Table 8. 
Our framework must be changed in order to value the unexpected or miss it. We 
continue to use the same collection of 1200 quality characteristics that were used in 
earlier execution evaluation Table 6.

Table 5  Average value of 
reading sensors

Performance actors A/B Value% Average

Accuracy Before 96.3 96.61%
After 97

Precision Before 100 100%
After 100

Recall Before 96.3 96.7%
After 97

F-Score Before 98.1 98.3%
After 98.4

Table 6  Coined the abnormal 
values

Found out of range values (confusion matrix)

Expert Identification
↓

IoT hospital Total

Out of range 
value found

Out of range 
value not 
found

Out of range value found 656 (TP) 6 (FN) 662
Out of range value not found 0 (FP) 542 (TN) 541
Total 655 545 1203

Table 7  Blockchain mining Blockchain mining (confusion matrix)

Expert Identification
↓

IoT hospital Total

Blockchain success Blockchain 
not success

Eqpt found 647 (TP) 7 (FN) 654
Eqpt not found 1 (FP) 0 (TN) 1
Total 648 7 655
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5.5  Blockchain mining

In our system, blocks of blockchain are mined from cloud services. It provides a 
low-cost solution for blockchain implementation (Table 7).

5.6  Overall system accuracy

We now summarize the findings and determine the overall system performance. 
starting with the first step (Table 8):

IoT Hospital performed over 98% for almost all phases in terms of its overall 
performance.

5.7  Result comparisons

The results of the suggested solution are compared with [38] in terms of accuracy, 
precision, recall, and F-Score. Figure 4 compares the receiving and parsing of sen-
sor data for the suggested system and [38], and it is clear that our proposed tech-
nique produces better results than the alternative.

Table 8  Overall system accuracy

IoT hospital Accuracy Precision Recall F-score

Reading and parsing of sensor values 96.2% 100% 96.7% 98.3%
Found out of range values 99.6% 100% 99.3% 99.7%
Blockchain mining 98.5% 99.8% 98.8% 99.3%
Overall IoT hospital 97.7% 99.5% 97.9% 98.7%

Fig. 4  Reading and parsing of sensor values
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Figure  5 compares the performance of the suggested solution and article [38] 
across a range of values.

The performance of the proposed solution is observed  between 99 and 100%, 
according to this graph, while  the competing methods is between 96 and 98%. 
Figure 6 depicts the mining efficiency of blockchain, which ranges from 98.60 to 
99.80%, but [38] has not incorporated blockchain in his approach.

The total performance of both strategies is compared in Fig. 7.
When the critical message rate is 80% or above, as shown in simulation 4, 

Fig. 8  system response time clearly reveals that the suggested system is consider-
ably faster than benchmark  approach. The system performs noticeably better than 
benchmark. Packet drop rate and throughput of the system are shown in Figs. 9 and 
10, respectively. Figure 11 compares how benchmark and the suggested solution use 

Fig. 5  Found out range of values

Fig. 6  Blockchain mining
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Fig. 7  Overall IoT hospital performance

Fig. 8  System response time

Fig. 9  System drop rate
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Fig. 10  System throughput

Fig. 11  Fog utilization

Fig. 12  Cloud utilization
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fog. Figure 12 displays cloud usage. Due to the mining operations being obtained 
from the cloud, the suggested method obtains a little bit extra cloud resources than 
benchmark.

6  Discussions

All aspects of life are greatly affected by the IoT. Blockchain technology is utilized 
to make data immutable in order to address the IoT weaknesses of data tamper-
ing. IoT devices provide a variety of messages, some of which necessitate imme-
diate action while others can tolerate delay. Splitting data streams and responding 
appropriately is a difficult task. Clustering at the device layer is challenging due to 
resource constraints; in addition,  cloud deployment may cause delays. At the fog 
layer, our solution accomplishes message segregation. Authors of similar works [10, 
30–40] did not employ blockchain technology, as given in Table 1. The aforemen-
tioned issues are intended to be fixed in this solution. Moreover, IFaasBus solution 
has not used blockchain technology to secure data, and in our solution, we have 
implement it.

7  Limitations

It should be noted that all received messages through IoT devices follow a Poisson 
arrival data, which means incoming requests in real systems may fluctuate and fol-
low different patterns. The sources of the content could include businesses, smart 
phones, sensors, traffic density, etc. The needed service time may not necessarily 
be exponential for data. However, it is also important to keep in mind that Poisson 
arrival and exponential service time have been employed in the literature to obtain 
adequate approximations of real systems. We have got results for a predetermined 
set pattern. Our solution will perform well when receiving more critical messages 
compared to non-critical messages. If the system receives more non-critical mes-
sages, then response time may increase.

8  Conclusion and future work

Different scholars have proposed various methods to implement blockchain in IoT 
environment over the last decade  in different fields of life, including smart build-
ings, supply chains, farming, and smart health care. Blockchain incorporation with 
IoT provide a great research potential. This proposal examines IoT, fog, and block-
chain-based implementation in the healthcare industry in depth. The sensors that are 
affixed to the patient’s body produce both critical and non-critical messages. To alert 
the interested parties  to cope with the emergency scenario, important signals are 
given via the Critical Fog cluster on the fog layer in this system. Non-critical mes-
sages are handled through a cloud service but stored in the fog layer. Blockchain 
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processing from cloud service will cause more delay to process blockchain from the 
cloud. In the case of blockchain processing at the fog layer, it needs a significant 
amount of additional computing power. In our solution, blockchain processing takes 
place in the cloud, while storage takes place in the fog layer. Fog storage will cut 
down on latency, while cloud processing will provide a more affordable option. Sec-
ond, this approach will permit message scheduling because the demand is distrib-
uted over numerous systems. The fog layer is, after all, divided into two halves. For 
critical communications, the first subsystem will function as a legacy CDC-IoT, and 
for non-critical messages, the second subsystem will function as a CDC-IoT. This 
method might be used in the future to exploit both critical and non-critical signals 
in additional categories. Critical messages are urgent alerts that call for immediate 
action in a condensed amount of time. Non-critical messages are handled by block-
chain and are delay-tolerant. The findings of this study demonstrate that the response 
time and accuracy outperform previously suggested options.
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