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Abstract
Wearable health devices and respiratory rates (RRs) have drawn attention to the 
healthcare domain as it helps healthcare workers monitor patients’ health status con-
tinuously and in a non-invasive manner. However, to monitor health status outside 
healthcare professional settings, the reliability of this wearable device needs to be 
evaluated in complex environments (i.e., public street and transportation). There-
fore, this study proposes a method to estimate RR from breathing sounds recorded 
by a microphone placed inside three types of masks: surgical, a respirator mask 
(Korean Filter 94), and reusable masks. The Welch periodogram method was used 
to estimate the power spectral density of the breathing signals to measure the RR. 
We evaluated the proposed method by collecting data from 10 healthy participants 
in four different environments: indoor (office) and outdoor (public street, public bus, 
and subway). The results obtained errors as low as 0% for accuracy and repeatability 
in most cases. This research demonstrated that the acoustic-based method could be 
employed as a wearable device to monitor RR continuously, even outside the hospi-
tal environment.

Keywords  Respiratory rate · Power spectral density · Microphone · Face mask · 
Wearable health device

1  Introduction

Respiratory rate (RR) is a vital sign that plays an important role in healthcare insti-
tutions for identifying various abnormal events including cardiac arrest, hypoxia, 
hyper-capnia, metabolic, and respiratory acidosis [1–4]. Furthermore, evidence 
shows that RR, along with other vital signs helps clinics lower fatality rates of 
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coronavirus 2019 (COVID-19) patients by detecting critically ill patients with RR 
over 30 breaths/min at resting state [5, 6]. However, RR remains neglected in clinical 
records since most clinics continue to rely on trained staff to measure it by manually 
counting chest wall movements, measuring breath sounds through the stethoscope, 
and self-reports by posing a question as follow: “Is your breathing faster, slower, 
or the same as normal?”. These methods are unreliable and time-consuming [7, 8]. 
Conversely, a few sensors showed the potential for an automated RR assessment, 
which depended on respiratory airflow, including differential flowmeters, turbine 
flowmeters, and hot wire anemometers. However, these instruments were reported to 
be inconvenient for patients and costly for general public use [9, 10].

Wearable health devices have become popular as they help people track their 
vital signs continuously and non-invasively, even outside the hospital. Moreover, 
they can provide health status data for healthcare workers to make early diagnoses 
and treatments [11]. Therefore, numerous studies have investigated various sensors 
that can be used to extract RR, including photoplethysmogram (PPG), electrocardio-
gram (ECG), piezoresistive pulse transducer (PZO), accelerometer, camera (vision-
based), and microphone (acoustic-based). Previous studies [12–18] showed that RR 
can be extracted from PPG and ECG signals by a physiological synchronization of 
heart rate (HR) variation and respiration system, which is called respiratory sinus 
arrhythmia, through HR increase during inspiration and decrease during expiration. 
The respiratory signal can be obtained from PPG and ECG signals by either fre-
quency modulation or amplitude modulation. Moreover, nowadays people carrying 
a smart device are exploding exponentially, this method could easily implement on 
either a smartphone or smartwatch to estimate the RR without any external device 
needed. However, such methods perform well when subjects remain still. Other-
wise, the quality of RR estimation is negatively affected by noises associated with 
motion artifacts and baseline drifting noises [10, 17]. The accelerometer approach 
was depended on measure the chest wall movement. This approach is sensitive to 
movement artifacts which allows the measurement of the RR in minor movements. 
Nonetheless, the signal is easily affected by large movement artifacts, which makes 
it difficult to extract respiratory signals from the accelerometer signal [10, 17]. 
Meanwhile, motion artifact also can be of an issue for PZO, it requires close contact 
with the skin to prevent a large baseline drift. Thus, the wearable PZO bands must 
be tight with the user’s body to achieve good results, perhaps making the user feel 
uncomfortable [10, 17]. A vision-based method was proposed to extract RR from 
the image based on tracking the thorax, face, or neck movement. Nonetheless, this 
non-contact method needs to be implemented in a static position, such as a bed-
room with a fixed camera position. Therefore, this approach could be implemented 
in a clinical setting to monitor the RR of multiple patients at once. However, this 
type of approach is sensitive to lighting, the influence of a thick blanket, and move-
ment of target people, which can have negative impacts [19, 20]. On the other hand, 
the acoustic-based approach which used breathing sound signals to estimate RR has 
shown more accurate estimation even during movement and sitting far away from 
the recording device [21, 22]. Nonetheless, this approach is more suitable and com-
fortable as a daily wearable device than other sensors such as PZO, PPG, and ECG 
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which need to be attached to the skin directly. However, this approach needs further 
investigation in different environments.

Recent studies have shown that wearing face masks could help prevent the spread 
of COVID-19, and researchers have suggested that people wear masks whenever 
they go outside or meet at a crowded place [23, 24]. However, different types of 
masks have different effectiveness. The KF94 mask, equivalent to the N95 mask, 
effectively prevent airborne infection through droplets [25, 26]. KF-94 is a class of 
face masks used in the Republic of Korea. KF stands for Korean Filter whereas 94 
refers to the filtering percentage of particles indicting that KF-94 face masks are 
designed to filter 94% of particles, instead of 95% (N-95). Nonetheless, owing to the 
shortage of mask production, researchers advise to use alternative masks, such as 
surgical masks and reusable fabric mask, to slow down the spread of the virus [27, 
28]. In addition, even fully vaccinated people in South Korea and the USA no longer 
need to wear masks in a public place, there are exceptions where they still require 
masks, such as crowded places, public transportation, and airplanes [29, 30]. There-
fore, an opportunity arises for embedding a sensor in a face mask that can continu-
ously monitor vital signs (i.e., respiration). It is recommended that people wear face 
masks in crowded area even when they are outdoors. However, most previous stud-
ies conducted experiments under structured indoor environments (i.e., office rooms 
and intensive care units), while few studies have been conducted in outdoor environ-
ments (i.e., sports activities) [9, 10]. To the best of our knowledge, no studies have 
investigated interactions between mask types and surroundings (i.e., public streets 
and transportation) even though different structure or materials of such masks may 
influence RR estimation. Therefore, in this study, we describe the development of 
three different types of face masks embedding a microphone for RR estimation and 
report the RR estimation performance on the masks under three different environ-
mental conditions, such as indoor environments (sitting in an office) and outdoor 
environments (walking on a public street, taking a public bus, and subway).

The remainder of this paper is organized as follows: Sect. 2 provides the materials 
and methods of study. The experimental results are presented in Sect. 3 In Sect. 4, 
we discuss the finding. Finally, we conclude the paper in Sect. 5.

2 � Materials and methods

2.1 � Prototype of the mask

The proposed device was developed using a low-cost ESP-32 microcontroller 
(MCU) from Espressif system Co., LTD [31]. The MCU contains two central pro-
cessing unit cores that can perform at based frequency of 80 MHz and boost up to 
240 MHz. The SPH0645LM4H (Knowles Elec-tronic, LLC) microelectromechani-
cal system (MEMS) integrated interchip-sound (I2S) microphone breakout board 
from Adafruit was used for audio recording [32]. The MCU receives an audio signal 
from the MEMS microphone via the I2S protocol. Subsequently, the data signal is 
converted to waveform audio file format and stored in a secure digital card with a 
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sampling rate of 44.1 kHz. Figure 1 shows the overall circuit configuration of the 
proposed device. A smartphone application was used as a remote for the proposed 
device. It can start and stop recording, and trigger a beeping sound, as explained in 
the next section.

2.2 � Data acquisition

In this study, ten volunteers were enrolled as participants (five men, five women) 
with ages ranging from 22 to 29. Figure 2 shows the overall experimental protocols 

Fig. 1   Configuration circuits of the developed device

Fig. 2   Experiment design
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and three types of masks (surgical, KF94, and reusable fabric masks) were used for 
each experiment (see Fig.  3). The participants were trained to breathe according 
to the given beeping sound under different breathing conditions before the experi-
ments. Once the training session of each participant was completed, they enrolled 
experiments. Each participant was asked to wear three different types of face masks 
and perform three types of breathing for 60 seconds (nose breathing, mouth breath-
ing, and each type of breathing for 30 seconds in four different environments: in 
an office, on a street, on a bus, and on a subway. The participants were instructed 
to perform controlled breathing at a frequency ranging from 0.2 to 0.4 Hz with an 
increase of 0.1 Hz with each breath, which corresponds to 12 to 24 breaths/min with 
the step of 6 breaths. The data were collected for 1-minute and the participants were 
given a break until they felt comfortable starting the next experiment.

Before the experiment began, the participants were asked to wear earphones and 
listen to metronome beeping sounds produced by the smartphone application at 
a given frequency. Furthermore, each participant was instructed to inhale at each 
beeping sound and exhale before the next beeping sound occurred. Participants 
were advised to give instant feedback during the experiment if they failed to follow 
instructions, such as breathing out of sync with the beeping sound, so that the experi-
ment could begin all over again. Every participant was trained to breath according to 
given breathing interval as operated by beeping sound before enrolling experiments. 
Breathing rate (BR) tested in the experiments were within the normal range of RR 
in healthy adults and would not cause any harm to the participants in this study [33, 
34]. The experiment protocols including the three different breathing rates, which 
do not cause the symptoms of hyperventilation, were screened and approved by 
the Institute Review Board on Human Subject Research and Ethics Committees of 
Soonchunhyang University (Approval No. 1040875-202102-SB-019).

2.3 � Data preprocessing and analysis

Figure 4 shows the work-flow of the proposed method. The breathing audio was col-
lected at a 44.1 kHz sampling rate with 32-bit per sample. The data consisted of 
various background noises, including sounds from crowded areas, transportations 
sound, and random noise. DC component removal with bandpass filter within the 

(a) Surgical (b) KF94 (c) Reusable

Fig. 3   Three types of masks used for the experiment
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range of 500-5000 Hz was applied to eliminate noise from the original signal. After-
ward, to reduce computational time complexity, the filtered signal was down-sam-
pled to 1 kHz. The signal envelope of the breathing sound was extracted using the 
Hilbert transform which defined as follows:

where p denotes the Cauchy principal value, and u(t) is a continuous-time signal. 
Then, a low-pass filter at 2 Hz with a Hanning moving window was applied to 
smoothen the signal envelope [22, 35]. Near-real-time estimation was obtained by 
cropping the 1-min smoothed envelope signal into 20 s intervals with overlapped 
of 10 s and then down-sampling to 10 Hz. In total, five segments with a 1-min 
smoothed envelope signal were obtained.

In this study, the Welch-periodogram method was used for power spectral density 
(PSD) estimation from the breathing signal envelope. The frequency below 0.15 Hz 
was excluded in this study. Previous researches suggests that a frequency lower than 
0.15 Hz is likely to be a sympathetic tone that can be active in a frequency rang-
ing from 0.04 to 0.15 Hz. For example, if breathing frequency 0.2 Hz consists of a 
sympathetic tone, then the largest peak of PSD could show up within range between 
0.04 and 0.15 Hz instead of the actual breathing frequency [12]. Raw audio signals 
were preprocessed before estimating RR, and the resulting signals of each preproc-
essing procedure are presented in Fig. 5. A segment of raw signals, a smoothed sig-
nal envelop and power spectral density transformed from the segment are shown as 
shown in Fig. 6. Estimation of RR was achieved by finding the largest PSD peak 
obtained from segments of 20 seconds preprocessed signals.

(1)H(u(t)) =
1

�

p∫
∞

−∞

u(�)

t − �

d�

Fig. 4   Overall experimental flowchart procedures
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2.4 � Evaluation metric

The accuracy and repeatability of the methods were measured by calculating the 
percentage error of estimated RR from the 20 s cropped signal as follows:

where Rest and Ract represent the estimated and actual RRs, respectively. Further, 
we observed that the errors of five estimations had a non-normal distribution. Not 
only are median and interquartile range preferred measures when there are outli-
ers in the dataset, but also they are frequently used when reporting respiration rate 
estimation in previous studies. Therefore, median and interquartile range (IQR), cal-
culated as the difference between the 25th and 75th percentiles, were quantified as 
accuracy and repeatability instead of mean and standard deviation [12, 13]. Not only 
are median and interquartile range preferred measures when there are outliers in the 
dataset, but also they are frequently used measures when reporting respiration rate 
estimation in previous studies. Therefore, errors of median and interquartile ranges 

(2)%E =
Rest − Ract

Ract

× 100

Fig. 5   Examples of preprocessed signals from breathing at 12 breaths/min during taking a bus
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are reported in this study. The estimation errors in accuracy and repeatability closer 
to zero indicate a better performance of the method. Furthermore, to perform statis-
tically significant testing of masks and environments in the median of accuracy and 
repeatability, Kruskal-Wallis and Mann-Whitney tests were used. If there were any 
significant differences ( α = 0.05) found in the Kruskal-Wallis test, pair-wise com-
parisons were conducted using Mann-Whitney test was done.

3 � Results

3.1 � Experiments under nose breathing condition

Table 1 summarizes the results of accuracy, which represent median estimation 
errors by comparing three types of masks in different environments. The results 
yielded a 0% error for median and IQR of accuracy for every breathing frequency 
ranging from 0.2 to 0.4 Hz (12 to 24 breaths/min). There was no significant dif-
ference ( p > 0.05 ) in accuracy between the three types of masks for the same 
breathing rate and environment. Similarly, there was no significant difference 
( p > 0.05 ) in the accuracy among the four environments for the same type of 
mask and breathing rate.

A summary of the results of repeatability, which represent the IQR estimation 
errors, is shown in Table 2. Most of the results in the median and IQR of repeatabil-
ity were yielded as low as 0%. However, the IQR of repeatability for a frequency of 
0.4 Hz (24 breaths/min) when using a reusable fabric mask on the bus increased to 

Fig. 6   Example of PSD estimation from a breathing signal envelope at 0.2 Hz (12 breaths/min) that con-
tained both breathing through a nose and mouth signals
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18.75%. There was no significant difference (p > 0.05 ) in repeatability between the 
three types of masks for the same breathing rate and environment. Similarly, there 
was no significant ( p > 0.05 ) in the repeatability among the four environments for 
the same type of mask and breathing rate.

3.2 � Experiments under mouth breathing condition

Table 3 summarizes the results of accuracy by comparing the three types of masks 
in different environments. The overall results yielded a 0% error for median and IQR 
of accuracy in every frequency ranging from 0.2 to 0.4 Hz (12 to 24 breaths/min). 
There was no significant difference ( p > 0.05 ) in accuracy between three types of 
masks for the same frequency and environment. Furthermore, no significant differ-
ence ( p > 0.05 ) in accuracy by comparing the four different environment results for 
the same mask type and breathing frequency.

Table 1   The median and IQR of accuracy using three types of masks in four different environments 
(Nose breathing condition)

Environment Beep rate (Hz) Accuracy error (%) Types of masks p value

Surgical KF94 Reusable

Indoor 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Street 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Bus 0.2 Median 0 0 0 0.59
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 0.36
IQR 0 0 0

Train 0.2 Median 0 0 0 0.23
IQR 0 0 0

0.3 Median 0 0 0 0.1
IQR 0 0 0

0.4 Median 0 0 0 0.32
IQR 0 0 0
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A summary of the results of repeatability is shown in Table  4. Most of the 
median and IQR of repeatability obtained results as low as 0%. However, the IQR of 
repeatability increased to an error of 18.75% at a frequency of 0.2 Hz (12 breaths/
min) when using a surgical mask on the train. There was no significant difference 
( p > 0.05 ) in repeatability between three types of masks for the same frequency and 
environment. Further, no significant difference ( p > 0.05 ) in repeatability for the 
same mask type and breathing frequency.

3.3 � Experiments under nose/mouth breathing condition

Table 5 summarized the results of accuracy by comparing three types of masks in 
different environments. Most of results yielded as low as 0% error for median and 
IQR of accuracy in every frequency ranging from 0.2 to 0.4 Hz (12 to 24 breaths/
min). However, the IQR of the accuracy was increased to an error of 9.37% when 

Table 2   The median and IQR of repeatability using three types of masks in four different environments 
(Nose breathing condition)

Environment Beep rate (Hz) Repeatability 
error (%)

Types of masks p value

Surgical KF94 Reusable

Indoor 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 0.59
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Street 0.2 Median 0 0 0 0.36
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Bus 0.2 Median 0 0 0 0.81
IQR 0 0 0

0.3 Median 0 0 0 0.36
IQR 0 0 0

0.4 Median 0 0 0 0.18
IQR 0 0 18.75

Train 0.2 Median 0 0 0 0.83
IQR 0 0 0

0.3 Median 0 0 0 0.31
IQR 0 0 0

0.4 Median 0 0 0 0.71
IQR 0 0 0
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using reusable fabric mask at 0.4 Hz (24 breaths/min) in the bus environment. 
There was no significant difference ( p > 0.05 ) in accuracy between three types of 
masks for the same frequency and environment. Further, no significant difference 
( p > 0.05 ) in accuracy by comparing the four different environment results for the 
same mask type and breathing frequency.

A summary of the results of repeatability is shown in Table  6. The results 
achieved a 0% error for the median repeatability for all experimental cases. How-
ever, the IQR of repeatability was found to increase in the bus and train environ-
ments. For the experiment that used a surgical mask on the bus, the errors yielded 
25%, 16.66%, and 9.37% for a breathing frequency of 0.2, 0.3, and 0.4 Hz (12, 18, 
and 24 breaths/min), respectively. For the experiment that used a reusable fabric 
mask on the bus, the errors increased to 43.75%, 12.49%, and 12.5% for breath-
ing frequencies of 0.2, 0.3, and 0.4 Hz (12, 18, and 24 breaths/min), respectively. 
Further, the experiment on the train that used a reusable mask yielded an error of 

Table 3   The median and IQR of accuracy using three types of masks in four different environments 
(Mouth breathing condition)

Environment Beep rate (Hz) Accuracy error (%) Types of masks p value

Surgical KF94 Reusable

Indoor 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Street 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Bus 0.2 Median 0 0 0 0.36
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 0.59
IQR 0 0 0

Train 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 0.36
IQR 0 0 0

0.4 Median 0 0 0 0.23
IQR 0 0 0
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12.49% for a breathing frequency 0.3 Hz (18 breaths/min). There was no significant 
difference ( p > 0.05 ) in repeatability for three types of masks for the same breath-
ing frequency and environment. Nonetheless, significant difference ( p < 0.05 ) was 
found in repeatability at a breathing frequency 0.2 Hz (12 breaths/min) for indoor 
vs. bus, and street vs. bus.

4 � Discussion

This study investigated the possibility of estimating RR in outdoor environments by 
utilizing a proposed microphone device placed inside a face mask. Many previous 
researchers have investigated RR estimation based on data collected from various 
sensors, including PPG, ECG, camera, PZO, accelerometer, and microphone [10, 
22]. However, these studies examined the methods by conducting experiments in an 

Table 4   The median and IQR of repeatability using three types of masks in four different environments 
(Mouth breathing condition)

Environment Beep rate (Hz) Accuracy error (%) Types of masks p value

Surgical KF94 Reusable

Indoor 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 1.01
IQR 0 0 0

0.4 Median 0 0 0 0.36
IQR 0 0 0

Street 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Bus 0.2 Median 0 0 0 0.36
IQR 0 0 0

0.3 Median 0 0 0 0.59
IQR 0 0 0

0.4 Median 0 0 0 0.33
IQR 0 0 0

Train 0.2 Median 0 0 0 0.36
IQR 18.75 0 0

0.3 Median 0 0 0 0.59
IQR 0 0 0

0.4 Median 0 0 0 0.59
IQR 0 0 0
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indoor environment and static positions (i.e., office room in a supine position). This 
type of approach is well suited for hospital settings. Therefore, the purpose of this 
proposed device and method is to allow people to continue monitoring their health 
status even outside the hospital.

Accuracy and repeatability of RR estimation obtained from experiments under 
three different breathing conditions suggest that the proposed method effectively 
measures the RR in many cases. As described in [9, 22], acoustic-based methods 
performed extremely well in an indoor environment, which correlates to the results 
of the experiments in an office. In addition, we also found that the results of the 
experiment in an outdoor open area (walking on a public street) and indoors (sitting 
in an office room) achieved remarkably similar outcomes, and obtained 0% errors 
for every experiment case. Moreover, the results showed that the developed device 
performed extremely well with the KF94 mask, obtaining 0% errors in accuracy and 
repeatability for every environment. This could be due to the thickness of the mask, 

Table 5   The median and IQR of accuracy using three types of masks in four different environments 
(Nose/Mouth breathing condition)

Environment Beep rate (Hz) Accuracy error (%) Types of masks p value

Surgical KF94 Reusable

Indoor 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 0.36
IQR 0 0 0

0.4 Median 0 0 0 0.59
IQR 0 0 0

Street 0.2 Median 0 0 0 0.36
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 1.0
IQR 0 0 0

Bus 0.2 Median 0 0 0 0.75
IQR 0 0 0

0.3 Median 0 0 0 0.75
IQR 0 0 0

0.4 Median 0 0 0 0.96
IQR 0 0 9.37

Train 0.2 Median 0 0 0 0.8
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 0.77
IQR 0 0 0
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which makes the airflow sound louder than the surrounding noises. However, there 
was no evidence of a significant difference ( p > 0.05 ) found in the statistical testing 
between the three types of masks in experimental cases. According to the statistical 
tests of accuracy and repeatability, it is possible to conclude that influence of struc-
ture or materials on RR estimation achieved by detecting largest peaks in PSD esti-
mation can be neglected. Nevertheless, this can be further investigated by recording 
the breathing airflow, which is beyond the scope of this study. Another benefit of our 
method is that the signal duration used for estimation was approximately 20 s, which 
is a real-time estimation and has been considered by many researchers [12, 18].

Even though the results from the experiments tended to achieve 0% errors for 
accuracy and repeatability, the IQR of repeatability for surgical and reusable masks 
was found to increase for every breathing condition we tested. There were three 
occasions where lower repeatability was observed. It was found that repeatabil-
ity was lowered mostly in the experiments on a bus with reusable masks at 0.4Hz 

Table 6   The median and IQR of repeatability using three types of masks in four different environments 
(Nose/Mouth breathing condition)

Environment Beep rate (Hz) Repeatability 
error (%)

Types of masks p value

Surgical KF94 Reusable

Indoor 0.2 Median 0 0 0 1.0
IQR 0 0 0

0.3 Median 0 0 0 1.0
IQR 0 0 0

0.4 Median 0 0 0 0.36
IQR 0 0 0

Street 0.2 Median 0 0 0 0.36
IQR 0 0 0

0.3 Median 0 0 0 0.36
IQR 0 0 0

0.4 Median 0 0 0 0.36
IQR 0 0 0

Bus 0.2 Median 0 0 0 0.26
IQR 25 0 43.75

0.3 Median 0 0 0 0.26
IQR 16.66 0 12.49

0.4 Median 0 0 0 0.4
IQR 9.37 0 12.5

Train 0.2 Median 0 0 0 0.26
IQR 0 0 0

0.3 Median 0 0 0 0..26
IQR 0 0 12.49

0.4 Median 0 0 0 0.40
IQR 0 0 0
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breathing rate. Possible causes of this can be the nose breathing condition which is 
not as loud as the mouth breathing condition because lower repeatability was not 
observed with the experiments where involved with the mouth breathing condition 
or other types of masks. When manually inspecting audio recordings of breathing of 
the experiments , it was found that noises caused by the bus drove over road bumps 
that affected RR estimation, which may have interfered with nose breathing sounds 
In [9, 10], the authors mentioned that the acoustic could be susceptible to back-
ground noise and must be carefully investigated. Therefore, it is expected that future 
experiments by either our laboratory or others should consider recording the sound 
level from both breathing sounds and ambient sounds. Furthermore, in [22], the 
authors mentioned that using acoustic-based methods can achieve an RR estimation 
of up to 90 breaths/min. Thus, future research should consider breathing rates above 
the normal range in various environments so that it could indicate the abnormality 
in any situation. Finally, this study employed relatively small number of participants 
to estimate RR under three different breathing types in four different environments 
while wearing three frequently used types of masks. The result obtained from the 
experiments is difficult to generalize due to the small sample size. However, the 
errors of RR estimation observed in this study is little that it is reasonable to assume 
that the proposed method can be a robust method in the tested settings. Neverthe-
less, further investigation is required by recruiting more number of people.

5 � Conclusion

In this study, we presented an accurate RR estimation method using breathing audio 
signals by placing a microphone inside three types of masks, including surgical, 
KF94, and reusable fabric masks. We evaluated the performance of the developed 
device and method under four different environmental conditions: indoor (sitting in 
an office) and outdoor (walking on a public street, taking a public bus, and subway). 
The results were significant and yielded as low as 0% errors of accuracy and repeat-
ability in most cases. RR was measured using a Welch periodogram method to esti-
mate the PSD of breathing signals. In addition, we believe that this research opens 
the door to new possibilities by taking the findings from this research and combining 
with various sensors to monitor important vital signs that could quickly indicate an 
abnormality, either in a public or a clinical setting.
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