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Abstract
As augmented reality technologies develop, real-time interactions between objects 
present in the real world and virtual space are required. Generally, recognition and 
location estimation in augmented reality are carried out using tracking techniques, 
typically markers. However, using markers creates spatial constraints in simulta-
neous tracking of space and objects. Therefore, we propose a system that enables 
camera tracking in the real world and visualizes virtual visual information through 
the recognition and positioning of objects. We scanned the space using an RGB-D 
camera. A three-dimensional (3D) dense point cloud map is created using point 
clouds generated through video images. Among the generated point cloud informa-
tion, objects are detected and retrieved based on the pre-learned data. Finally, using 
the predicted pose of the detected objects, other information may be augmented. Our 
system estimates object recognition and 3D pose based on simple camera informa-
tion, enabling the viewing of virtual visual information based on object location.
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1  Introduction

Augmented reality (AR) combines virtual and real worlds, allowing users to experi-
ence virtual objects in real space. AR is different from virtual reality, which allows 
users to immerse themselves in a new space by building an artificial world. AR 
complements the real world and helps users’ understanding by implementing virtual 
interfaces based on real world. Hence, it has recently been used in various industries 
such as healthcare, education, gaming, and entertainment [1, 2].

As the usability of augmented reality technologies improves, changes in interface 
expression methods and interaction functions according to user input are required. 
Display, tracking, and video processing technologies are used in augmented reality. 
Among them, tracking technology is crucial to the performance and functionality of 
applications as it identifies the point-in-time position and maintains a specific state 
through recognition. Therefore, many studies have been conducted to achieve high 
completeness.

Tracking techniques in augmented reality are generally based on markers, 
as shown in Fig.  1. When various types of markers are recognized, virtual visual 
information(interface) is augmented based on their location [3, 4]. Traditional track-
ing techniques visualize information based on markers, resulting in restrictions on 
the working space. To overcome this limitation, it is necessary to recognize objects 
that exist inside AR based on space; this is how spatial markers are used. However, 
when using spatial markers, the control unit is not an object; thus, it is not possible 
to interact with or control the change in the working space. In other words, depend-
ing on the type of marker, the challenges are to overcome the constraints of space 
and gain control of each object. Therefore, this study proposes a system that enables 
tracking of cameras in a real-world space, recognition of objects in real time, and 
visualization of virtual visual information through location estimation.

To realize the proposed system, point cloud data are generated based on the color 
and depth image information obtained using the camera. The generated point cloud 
data are used to construct a space through tracking. Using SLAM [5], the loca-
tions of objects in space are estimated based on the point cloud data. We propose 
a method to eliminate the gaps that arise in the characteristic points. The method is 
also applicable in recognizing objects and estimating three-dimensional (3D) poses 

Fig. 1   Augmented reality using marker (left is binary marker and right is image marker)



7511

1 3

A study on recognizing multi‑real world object and estimating…

in the video stream of AR execution process. We propose a 3D pose estimation 
method that recognizes two-dimensional (2D) objects using deep learning and uti-
lizes the recognized 2D positional information to minimize errors.

The contributions of our research are as follows. First, the space can be detected 
through real-world camera tracking, which can create a space map using an RGB-D 
camera without using special equipment. Second, objects can be recognized based 
on the generated space and the estimated camera positions. In this study, real time 
was ensured by applying multithread and fast deep learning algorithms. Third, the 
camera point of view was corrected by extending the recognized 2D object model 
to three dimensions. Finally, the 3D extension of object information was augmented 
via AR, allowing virtual visual information to be visualized according to the actual 
object location.

2 � Related work

2.1 � Object recognition and location estimation techniques

Studies that focus on object recognition use various techniques for estimating loca-
tions [6–8]. The method for recognizing objects from an input video or image is 
largely divided into computer vision-based and deep learning-based methods. Com-
puter vision-based recognition detects features in an image and determines object. 
Early object recognition studies mainly used computer vision methods. Scale invari-
ant feature transform(SIFT) [9], speeded up robust features(SURF) [10], and ori-
ented FAST and rotated BRIEF(ORB) [11] are the commonly used algorithms. Fea-
ture detection algorithms have different underlying techniques but detection occurs 
in the geometric feature part of the recognition object. Because it is performed pixel-
by-pixel, it can be applied to estimate location information while finding matching 
feature points.

In deep learning-based recognition, object recognition is performed through 
neural network learning. Early neural networks were used only for object rec-
ognition, followed by R-CNN [12] and spatial pooling in deep convolutional 
networks(SPPnet) [13], and single shot multibox detector(SSD) [14], which estimate 
object recognition and 2D locations. Because the location information of objects in 
real space has three dimensions, studies have been conducted to obtain vision-based 
3D location information [15–17], or deep learning-based 3D location information 
[18, 19]. Previous studies have the disadvantages of not recognizing objects, or not 
having sufficient accuracy in positioning. Deep learning-based studies have yielded 
high performance in terms of accuracy and object recognition. In addition, they 
either require many datasets for learning or are difficult to operate in large spaces. 
Our study proposes a system that can operate in a large real space, estimate 3D loca-
tions, and recognize objects with high accuracy even with small datasets.
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2.2 � Implementing augmented reality

Augmented reality was first reported in 1992 [20] and has since been studied 
together with computer vision technology. Subsequent studies have mainly 
focused on using markers to achieve accurate positioning and tracking. Marker 
forms include binaries, images, objects, and spaces. Initially, the binary mark-
ers were the main form of markers used. This was because it was easy to con-
struct multiple shapes and extract feature points using binary markers [21]. 
However, when placing markers in the real world, they are naturally connected 
to cover other objects without being seen. As image and object markers, objects 
that exist in the real world are used. Therefore, there are few cases of visual 
alienation or interference. However, feature extraction and throughput for 
marker recognition for image and object markers must be relatively large com-
pared to binary markers. Consequently, they were not applied in early track-
ing technologies. A research showed that lighter systems with high processing 
speeds were possible in real time but resulted in high usage [22]. AR using 
binary, image, or object markers is not suitable for AR applications in large 
spaces because augmented reality is possible only within a limited space where 
the camera recognizes the marker.

In augmented reality, space can be used as a marker, for example, in GPS-
based cases such as [23] and Pokemon GO games. However, it is difficult to 
expect a natural synthesis of virtual objects with real world because detailed 
location calculations or operations are not possible indoors. Therefore, the use 
of SLAM technology for augmented reality has been proposed [24]. If the space 
is used as a marker, it is impossible to estimate the recognition and location of 
objects in the real world. Recently, studies have been conducted to simultane-
ously recognize space and objects [25, 26]. Our system can construct real-world 
spaces and objects in three dimensions using AR technology and can be used as 
a space-based marker to implement AR.

3 � Proposed method

3.1 � System overview

In this study, we propose a method for visualizing virtual information in a 
real-world location by recognizing objects and estimating their location in a 
3D coordinate system while simultaneously tracking the camera. The operating 
stages of the system consist of image input, tracking, 2D object detection, 3D 
pose estimation, and visualization. The system receives color and depth image 
information through the camera and uses it to generate the point cloud data. 
The SLAM-based tracking system estimates the location of cameras in the real 
world in real time and configures the entered data in a map form. Before per-
forming deep learning-based object detection, we built the datasets and per-
formed neural network learning. The map created via the point cloud data in 
the last step, 2D spatial location obtained through object detection, and object 
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point cloud were input into the ICP algorithm to estimate the 3D position and 
posture of objects in the real world. The estimated location was augmented 
using virtual visual information through graphics technology. Figure  2 shows the 
conceptual flow of the system proposed in this study.

3.2 � Date collection

A definition of space is needed to estimate the location of users in the real 
world and track them. There is a method to obtain satellite signals and locate 
the users using GPS sensors without defining the space. However, this method 
cannot be used indoors and errors occur below meters. Additional equipment, 
such as a dead recoding module, geographic information system, inertial esti-
mation equipment, and cameras, was needed to compensate for this. For spatial 
definitions, the characteristics must be identifiable. The main target of the fea-
tures is visual information, and the image is used as a medium. In this study, 
location estimation and tracking are performed indoors and outdoors using 
RGB-D cameras as input devices without complex equipment. When color and 
depth video are input through the RGB-D camera, a point cloud is created. We 
conducted the study assuming that objects were separated from each other in 
the scanned space. This was because when objects overlap, estimating the pose 
was problematic. This issue is discussed at the end. Figure  3 shows an input 
image from the camera and an example of a generated point cloud.

Fig. 2   System overview (First, we retrieve color and depth image data using the RGB-D camera. Second, 
a dense point cloud map is generated using the feature map and spare point cloud. Using the dense point 
cloud map, 2D objects are detected. The detection is performed by Yolo algorithm. Finally, we estimate 
the pose of an object for augmented reality visualization)
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3.3 � Tracking

A definition of space is needed to estimate the location of users in the real 
world and track them. The algorithms used to select suitable AR construction 
systems must satisfy the following conditions:

•	 Real-time operation in a light system environment
•	 Definition of spatial markers indoors and outdoors
•	 Prevent performance degradation as maps increase
•	 Fast return if location estimation and tracking are stopped

Tracking was carried out using ORB-SLAM [5], which satisfied the above 
conditions. Although there are various SLAM techniques [5, 27–29], we used 
ORB-SLAM in our system because it is the most satisfactory with respect to 
our system specifications. ORB-SLAM2 is based on an ORB feature extrac-
tion algorithm. It can establish a light system environment and enable real-time 
operation. Safe performance is ensured through the deletion of redundant points 

Fig. 3   Example of input data and point cloud (left: RGB image from the real world, middle: depth image 
from the real world, right: generated point cloud)

Fig. 4   Result of tracking based 
on RGB-D camera (This is 
extracted sparse point cloud 
using ORB-SLAM2)
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and loop closing in indoor and outdoor environments. Using the bag-of-words 
technique, it is also possible to quickly return to the positioning process at a 
tracking stop instant. Figure 4 shows the results of map creation and tracking 
based on the information input through the RGB-D camera.

Because the distribution of the point cloud is very sparse, the resulting map 
in Fig. 4 does not cause any problems in tracking. However, the map does not 
work when estimating the pose of an object later. This can be seen in Fig. 5. 
The object coordinates on the left side of Fig.  5 differ by 45◦ from the map 
coordinates. After estimating the pose, it is evident that the positional move-
ment has been performed normally, as shown on the right side of Fig. 5, but the 
rotation shows a difference of approximately 90◦.

To solve this problem, we used the point library to create a dense point 
cloud. Figure  6a shows the results of a single frame. This information gener-
ates maps via SLAM. At this point, it is necessary to locate and synthesize 
each frame. In general, point matching algorithms, such as ICP, are used to syn-
thesize different point cloud data. However, there are difficulties in real-time 
operation owing to the need for a long performance time. The optimization 
of duplicate points is also required. Therefore, this study uses ORB-SLAM to 
omit the processing of the frame position and redundant points. The synthesis 
is performed through feature maps and the dense point cloud matching method, 
and can be completed in real time. Figure 6b shows the process and result of 
creating a dense point cloud map.

3.4 � 2D object detection

Based on ORB-SLAM, feature points were extracted from the images, and maps 
were generated. Because space was defined, tracking and camera positioning 
were possible. However, it was impossible to recognize objects and estimate 
their locations in three dimensions. This was because objects were included 
in space, but the computer system could understand only a geometric form of 
space. Therefore, additional systems are needed to define the characteristics 
of the objects and estimate their recognition and location. This study detects 

Fig. 5   Result of generating pose estimation with spare point cloud (left: before pose estimation, right: 
after pose estimation)
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objects (perception and location estimation) based on deep learning. The data 
required for neural network learning are constructed through semi-auto labe-
ling and data inflation. The detection results are passed to the tracking system 
to visualize the class of objects and results of the 3D position estimation are 
passed to the user. Of the various neural networks that can recognize objects, 

Fig. 6   Process and result of dense point cloud (a result of dense point cloud in single frame, b process of 
generating dense point cloud)

Table 1   Compare throughput 
and mean average precision 
(mAP) values by neural network

Network model mAP Time (ms)

SSD 28.0 61
Yolov3 28.2 22
Faster R-CNN 29.9 85
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we used the Yolov3 [30] model because its recognition is sufficiently accurate, 
lightweight, and fast in terms of system usage. As Table 1 shows, its object rec-
ognition accuracy object is not significantly different from that of other neural 
networks, yet the execution is very fast.

To reduce the dataset construction time, the initial data are acquired through 
frame segmentation in the image, and several datasets are constructed via data infla-
tion through growing, color change, rotation, synthesis, and partial deletion. For 
each generated image, a data label is assigned. The composition of the data label 
consists of x-and y-coordinates, width, and height. The input of these values must be 
provided by the user. Therefore, to improve data labeling, we developed a semi-auto 
labeling system based on SURF feature point matching. Figure 7 shows the structure 
of the semi-auto labeling system.

The bounding box entered is automatically transformed into a labeling coordinate 
configuration. Subsequently, the process of automatically determining the bounding 
box is repeated until the end by matching the generated source image with the next 
frame image. Learning was conducted using datasets built through data inflation and 
semi-auto labeling on the Yolo neural network. There are three classes of objects 
learned with a batch size of 64 and the number of learnings of 2700. Figure 8 shows 
the accuracy results of detecting objects through a learned neural network.

3.5 � 3D pose estimation

In this study, the proposed method estimates the position of the camera and detects 
the objects simultaneously. Estimating an object using the results discussed in Sects. 
3 and 4 causes the problem of augmenting virtual information inconsistently with 
the object, as shown in Fig. 9. This is because the location estimation information is 

Fig. 7   System of semi-auto labeling
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two dimensional, that is, it is stereoscopic and cannot be expressed according to the 
direction of rotation. Therefore, the ICP algorithm [31] was used to calibrate the 3D 
pose.

The ICP algorithm outputs the difference in position and angle between the two 
models in a matrix through the repeated matching between close points. Because 
of repeated matching between points, the data entered is in point cloud format. It 
uses a point cloud of objects created through a dense point cloud map and model 
reconstruction. Figure 10 shows the results of the point cloud creation with objects 
reconstructed using the Meshroom program.

Because ICP includes both position and rotation information, it can proceed 
immediately without two-dimensional information. However, using ICP alone can 

Fig. 8   Result of object recognition (cooker: 98%, Box: 99%, Refrigerator: 97%)

Fig. 9   Result of pose estimation and augmentation using 2D information
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cause errors in estimating an object’s pose. This is because ICP is performed with 
a point cloud of maps and objects rather than matching the same data. Figure 11 
illustrates the problems that arise when the two-dimensional object detection step is 
omitted while estimating object pose.

The image on the left in Fig. 11 illustrates the performance of the ICP algorithm. 
The real world is represented by the point cloud map data, and the actual object 
location is shown in yellow. The point cloud data in red represent the reconstructed 
objects. The right side of Fig. 11 shows the matching results. Note that there is a 
difference in position as the algorithm is performed with adjacent points. Fig-
ure 12 shows the results of ICP and region limiting in point cloud map data through 

Fig. 10   Result of generating point cloud of objects

Fig. 11   Problems with ICP algorithm application after omitting 2D object detection steps
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two-dimensional location detection. Comparing these results with Fig. 9, we can see 
that the virtual information is augmented to match the real object.

4 � Experimental result

This study proposes a system that enables tracking of cameras inside a real-world 
space and visualizes virtual visual information through recognition and location 
estimation of objects. The system was implemented in the environment described 
in Table 2.

To fulfill real-time requirements, tracking, two-dimensional object detection, 
and three-dimensional pose estimation steps were handled in different threads. 
Figure 13 briefly illustrates the thread-motion structure. The three threads shown 
in Fig. 13 operate simultaneously. The tracking thread was maintained, while the 
overall system was not stationary. Two-dimensional object detection and three-
dimensional pose estimation can result in state changes upon user request.

Fig. 12   Results of 3D pose estimation

Table 2   System environment Contents Environment

CPU Intel Core i7-9700
RAM 32GB
GPU Geforce RTX 2060 super
Language C++
Map generation ORB-SLAM
Object Recognition Yolov3
Pose Calibration Go-ICP



7521

1 3

A study on recognizing multi‑real world object and estimating…

We conducted camera tracking, object recognition, and positioning in a 3 x 3 
m2 area. Based on a spatial map composed of 500,000 dense point clouds, the 
object was found, and its location was estimated to be augmented.

Figure 14 shows the results of the synthesis of the real world and virtual vis-
ual information. The recognition results of each object are displayed with dif-
ferent colors of virtual visual information. Each object can be recognized and 
virtual visual information in different colors can be synthesized into the real 
world. When the three-dimensional bounding box was checked for each result, 
we observed that it accurately surrounded the object according to its rotation 
and position. The direction and position of the teapot indicate that accurate 
tracking is performed even when the camera moves. The result is that mapping 
is performed, and tracking of virtual visual information works normally even in 
localization mode. In addition, virtual visual information can be augmented on 
objects and tracking can be checked, as shown in Fig. 15, which operates nor-
mally even in a large area.

Figure 16 (end of paper) illustrates a comparison of the commercialized SDKs. 
Fig. 16a and b depicts marker-based augmented reality, where tracking stops when a 
marker is invisible. Our research shows that virtual visual information is maintained 
owing to the possibility of spatial tracking. Figure  16c and d illustrates the com-
parison between the results of constructing a map based on SLAM and enhancing 
virtual visual information on two different systems. As objects are added to space, 
traditional SDKs (MAXST SLAMs) are required to construct new maps to perform 
object recognition and position virtual visual information input by users. Because 
the input is performed directly on the development engine, the accurate placement 
is difficult. Our results show that the system performs object recognition and loca-
tion estimation even when an object is added from the same map data. In addition, 
when creating maps with MAXST, there were difficulties in normal tracking behav-
ior owing to the lack of environmental factors with characteristics.

The proposed system can synthesize virtual visual information at the exact object 
location in real time and perform normal tracking according to the camera location 
in the real world. However, owing to high dependence on visual information, it is 

Fig. 13   Structure of thread operation
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Fig. 14   Result of augmented visual information based on various objects (a cooker, b refrigerator, c box. 
As the 3D bounding box can be confirmed for each result, it accurately surrounds the object according to 
its rotation and position. Note that the direction and position of the kettle are accurately tracked and aug-
mented even when the camera moves. The system operates normally even in localization mode)
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difficult to operate properly with many objects or occlusions. In particular, ICPs that 
operate on point-cloud data are heavily affected. The ICP is responsible for correct-
ing the virtual visual information to be synthesized with respect to the object loca-
tion. Therefore, it is difficult to synthesize objects in the correct position if they are 
obscured or attached to other objects. Figure 17 shows the results of location estima-
tion failure due to occlusion.

5 � Conclusion

In this study, we propose a system that enables camera tracking in the real world 
and visualizes virtual visual information through object recognition estimation. 
Our system could augment a space through camera tracking, two-dimensional 
object recognition, and three-dimensional pose estimation based on RGB-D 
camera information, while recognizing three-dimensional positional information 
and objects. A SLAM-based camera tracking technology was used because the 
two coordinates need to be shared for the interaction between reality and vir-
tual space. The minimum unit of control in the space is the object. However, it 
is impossible to recognize and estimate the location of objects if a spatial map 
is created based on SLAM. This issue was resolved using deep learning-based 
object recognition. Finally, the ICP algorithm augments the virtual visual infor-
mation to match the position and rotation direction of the real object.

The contributions of our study are as follows: First, a given space can be scanned 
using simple camera equipment without special equipment. Usually, to reconstruct a 

Fig. 15   Result of tracking in a large area (Note that the enhancement is maintained in a large room rather 
than a limited space. If an object is already augmented and tracked, tracking will continue even if the 
middle is interrupted by partitions or stairs)



7524	 T. Lee et al.

1 3

three-dimensional space, special equipment or specialized tools must be used. How-
ever, in our study, a three-dimensional space was configured by photographing video 
images using a simple RGB-D camera. Second, object recognition can be performed 
using the created point cloud. Based on the point cloud data collected from the video 
image, not only space but also objects existing in it can be reconstructed. Moreover, 
objects can be recognized in a short time. Third, it is possible to determine the 3D 
poses of the localized objects and detect the state in which they are placed. This 
helps to augment other virtual objects.

The proposed system can become the underlying technology that enables real-
time interaction between the real world and objects present in virtual space. It is 
expected that AR will be available through convergence with Internet of Things 
(IoT) if problems arising from location estimation or occlusion of dynamic 
objects, which exist as complementary points to our research, are resolved. AR 
technology enables users to control and manage objects through virtual visual 
information in the real world. It is expected to provide users with a sense of 
immersion and realism as an operational method through an intuitive interface. 
Sensory-related benefits and advances in tracking technology can increase the 
likelihood of application in other fields, such as artificial intelligence, health-
care, education, gaming, military, and entertainment. As a simple example, it is 

Fig. 16   Comparison with other sdk (a, b comparison of object augmentation according to camera con-
version—the Vuforia SDK does not become an augmented-blue box if the camera rotates and the marker 
is not recognized. Our work, on the other hand, maintains an augmented-white box because it is spatial 
marker-based and therefore augmented on object-based basis without markers. c, d comparison of aug-
mentation based on map configuration If an object is added to the same space, a new map must be con-
structed and repositioned, but our results do not need to be)

▸
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expected that datasets that are necessary when learning 3D objects in artificial 
intelligence can be established using AR tracking technology.
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