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Abstract

Internet of things (IoTs) is an integration of heterogeneous physical devices which
are interconnected and communicated over the physical Internet. The design of
secure, lightweight and an effective authentication protocol is required, because the
information is transmitted among the remote user and numerous sensing devices
over the IoT network. Recently, two-factor authentication (TFA) scheme is devel-
oped for providing the security among the IoT devices. But, the performances of
the IoT network are affected due to the less memory storage and restricted resource
of the IoT. In this paper, the integration of data inverting encoding scheme (DIES)
and substitution-box-based inverter is proposed for providing the security using the
random values of one-time alias identity, challenge, server nonce and device nonce.
Here, the linearity of produced random values is decreased for each clock cycle
based on the switching characteristics of the selection line in DIES. Moreover, the
linear feedback shift register is used in the adaptive physically unclonable function
(APUF) for generating the random response value. The APUF-DIES-IoT architec-
ture is analyzed in terms of lookup table, flip flops, slices, frequency and delay. This
APUF-DIES-IoT architecture is analyzed for different security and authentication
performances. Two existing methods are considered to evaluate the APUF-DIES-
IoT architecture such as TFA-PUF-IoT and TFA-APUF-IoT. The APUF-DIES-IoT
architecture uses 36 flip flops at Virtex 6; it is less when compared to the TFA-PUF-
IoT and TFA-APUF-IoT.
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1 Introduction

Internet of things (IoT) contains huge amount of devices that interconnected over
the public Internet [1, 2]. IoT denotes the network of devices, machines, objects
and other physical system that has the capacities of computing, embedded sens-
ing and communication. This device supports the systems to sense and transmit
the real-time data with the physical world [3, 4]. The high intelligent facility pro-
vided by the IoT improves the human’s daily lives. Examples of the IoT appli-
cations include smart industries, smart home, smart transportation, smart health
care and smart cities [5, 6]. The design process and miniaturizing processing
techniques are used to improve the IoT. Hence, an improved design process and
communication protocol result in high energy storage capacity, high data rate and
significant computing capacity [7, 8]. The information exchange between the IoT
devices is affected due to the theft, privacy violation and cyber-attacks. In order
to overcome the aforementioned issues, the cryptography techniques are accom-
plished to enable the secure communication [9, 10]. Generally, the architecture of
complex software/ hardware is used to create the random number sequences for
delivering the public and private keys. Next, the public and private keys are used
to accomplish the security in IoT applications [11, 12].

Some of the examples used to provide the security in IoT are proxy-based key
agreement protocol [13], malware detection mechanism [14], lightweight block
cipher [15], lightweight elliptic curve cryptography [16], PHOTON hash function
[17] and so on. Key management is considered as an important constraint in 10T,
because of the huge amount of devices and restricted resources in the network.
In key management, the frequent generation of modern keys is difficult during
key generation phase. Moreover, the frequent generation of modern keys causes
higher energy consumption and reduces the device lifetime [18]. Therefore, the
development of security is difficult in the resource-constrained hardware plat-
forms such as radio frequency Identification and sensors. The resource constraints
of the IoT device are complex cryptographic functions, area and energy that cause
a large overhead for IoT devices. For example, the advanced encryption stand-
ard (AES) is not appropriate for resource-constrained applications, because of its
deficiency in area and energy/power [19]. Subsequently, the physically unclon-
able function (PUF) circuit is developed as capable hardware security technique
for low-overhead security applications, since the working principle of PUF is
mainly based on the variation effects of nano-scale device-level process [20].
Moreover, the data is protected using the data flipping in Bose—Chaudhuri—-Hoc-
quenghem codes [21]. This flip method is also used to prevent the information
loss in the super-resolution technology [22]. The main motivation of this work is
to improve the security of the IoT device while minimizing the hardware utiliza-
tion of the APUF-DIES-IoT architecture.

The major contributions of the paper are given as follows:

e The DIES using SBI is used to generate the random values of the AID, chal-
lenge, server nonce and device nonce that are used to improve the security for
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the device to server communications. An automatic generation of AID, chal-
lenge, server nonce and device nonce is used to decrease the hardware utiliza-
tion.

e Moreover, the aforementioned 4 values are generated with high randomness for
each clock cycle using an appropriate switching between the selection lines.

e Next, the APUF is used to generate response value with higher randomness
using LFSR. Accordingly, the TFA and security characteristics are analyzed
to evaluate the performances of the APUF-DIES-IoT architecture.

e The APUF-DIES-IoT architecture considers different IoT devices in each
clock cycle to accomplish the security over the system. Hence, there is no pos-
sibility of acquiring the same response value from the APUF, because each
IoT has the different ID and challenge values which are used to obtain the dif-
ferent responses from the APUF

The overall organization of the paper is given as follows: Sect. 2 provides the
literature survey about the recent techniques about the security mechanisms in the
IoT. The problems found from the existing research and solutions for the prob-
lems are stated in Sect. 3. Section 4 provides the detailed description about the
APUF-DIES-IoT architecture. The results and discussion of the APUF-DIES-IoT
architecture are described in Sect. 5. Finally, the conclusion is made in Sect. 6.

2 Related works

The literature survey about the existing techniques related to the PUF and secu-
rity mechanisms used in the IoT is given in Table 1.

3 Problem statement

The problems found from the literature survey and solutions for the problems are
described in this section.

In lightweight mutual authentication protocol [24], the authentication latency
is less, only when the PUF is processed with lesser message size. For an effec-
tive IoT system, the delay between the data transmission is should be less for
achieving the faster data transmission. An addition of system components leads to
make the IoT system susceptible with security threats [22]. Additionally, the code
generated by the TFA-PUF is identical to the all clock cycles. Hence, these code
values are easily predicted by the hackers [28]. The manual incorporation of chal-
lenge values leads to increase in the hardware utilization that affects the delay and
operating frequency. Moreover, the generation of AID, challenge, device nonce
and server nonce is same for all iteration. So, it is easy to predict by the hackers
during the IoT communication.
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3.1 Solution

The random generation of AID, challenge, device nonce and server nonce at each
clock cycle using the selection line switching property of DIES using SBI effectively
improves the security against the unauthorized users. Here, the SBM uses the substi-
tution-box (S-box) operation to generate the 8-bit seed value for the DIES by using
the substitution process. An automatic generation of AID, challenge, device nonce and
server nonce using DIES helps to minimize the number of logical elements during the
implementation. Hence, the less amount of hardware utilization increases the speed of
the APUF-DIES-IoT architecture that minimizes the delay and increases the operating
frequency.

4 APUF-DIES-loT architecture

In APUF-DIES-IoT architecture, the DIES using SBI is used to generate the random
values of AID, challenge, device nonce and server nonce at each clock cycle that
increases the security against the hackers. Moreover, the APUF is used to generate the
random response values using the LFSR. The overall process of the APUF-DIES-IoT
architecture is divided into two phases such as setup phase and authentication phase.
The process of the setup phase and authentication phase are described in the following
section.

4.1 Setup phase

The I0T device produces the identify number (ID) and request during the setup phase
as well as the ID and request are connected to the server. Figure 1 shows the operation
of the setup phase. More specifically, the green and blue color blocks in Fig. 1 repre-
sent the IoT device and server. The values received from the IoT devices are kept in the
server and the challenge value is created using the ID. Next, the generated challenge
values are associated with the same IoT device. Here, the value of challenge is used to
form the response value by using the APUF.

The response values, i.e., R1, R2, ..Rn are kept in the server that are used to generate
the synchronization key (SK), master key (MK), fake identity (FI) and one-time alias
identity (AID). Subsequently, the generated values of SK, MK, FI and AID are kept
in the IoT devices to accomplish the security. The same process of setup process of
APUF-DIES-IoT architecture is carried out for all the IoT devices. This setup phase is
two-factor authentication, because the SK, MK, FI and AID are generated only when
receiving the request from the devices. This process is performed for every IoT devices
which improves the security. Additionally, the pairs of fake identity and synchroniza-
tion keys are generated by the server as shown in Eq. (1).

(FD, SK) = {(fid. k). (fidy. ky). ..... (fid,. k) } M
where the fake identity is represented as fid,, fid,, ..., fid,, synchronization key is
represented as &k, k,, ... , k, and the n specifies the number of IoT devices.

@ Springer
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Fig. 1 Process of setup phase Request

(Req1,ID)

Generate challenge using
DIES (c1,c2...cn)

Generate response using
APUF (R1,R2..Rn)

Generate AID, MK,
FI, and SK

4.2 Authentication phase

The accessing authorization is precisely provided to the IoT devices, when the
device and server nonce is matched during the authentication phase. Figure 2
shows the authentication phase of the APUF-DIES-IoT architecture. Similar to
the setup phase, the green and blue color blocks represent the IoT device and
server.

In authentication phase, the AID is verified by the random number request
and the request message (M1) is transmitted to the served for accomplishing the
communication, since the request message M1 is stored in the device and it is
expressed in Eq. (2).

Fig.2 Flowchart of the authentication phase
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M1 : {AID,N}} )

where N = N, @ K- The random number created during the communication is
represented N, and secret key is represented as K ;.

The response value, challenge and master key are stored, when the AID is
matched in the authentication phase. Otherwise, the generated request is dis-
carded over the IoT device. Subsequently, the hash key response and server
nonce (NS) are generated using the server. The server creates the response mes-
sage (M2) as shown in Eq. (3).

M2 : {C,N*,V,} 3

where the challenge value is represented as C; N =K, @®N; and
Vo = h(Ny||Ky||N). h specifies the one-way hash function. Then, the M3 is gener-
ated using IoT device when the response is matched during the interaction and this
M3 is expressed in Eq. (4).

M3 : {R:, .V, hd"} )

new’

where Rf =k@®R, R, =RPUF, (Cp)> Crew = h(Ci||K}), hd* = h(K||k||hd),
hd = h(K,|IN,) ® hd*,k = FERec(R, hd).R = RPUF,, (C) and V, = h(N,|[k||R%,, ||hd").
The FE.Gen specifies the helper data generation algorithm, R’ specifies the APUF
output, id is the helper data, k is key element and V| specifies the key hash response.

The Fuzzy Extractor recovery module is used to address the noise caused
in the operation of PUF. The PUF generates the random number at each clock
cycle which is compared with key hash response value. Therefore, the IoT
device receives the authorization from the server, when the server nonce and
device nonce exist in the key hash function. Once the Device 1 is authenticated,
the next IoT device (Device 2) performs the same authentication operation. The
authentication phase process is performed for each and every IoT devices which
APUF values are updated in setup phase itself.

4.3 Adaptive PUF

The APUF is designed using LFSR that is identical to the shift register with feed-
back. The LFSR is mainly used because of its lesser gate computation, lesser com-
putation cost and better statistical properties. The conventional LFSR provides the
same random value after certain clock period that affects the security of the IoT
system. The reason for using LFSR is to design the APUF to provide the random
response value. However, the LFSR provides the same random value after certain
clock period. But, the APUF-DIES-IoT architecture considers different IoT devices
in each clock cycle to accomplish the security over the system. Hence, there is no
possibility of acquiring the same response value from the APUF, because each IoT
has the different ID and challenge values which are used to obtain the different
responses from the APUF. In the LFSR, the flip flop output is given as feedback
to the input of the XOR gate and then the output of the XOR gate is given as input
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for the 1% flip flop. In the shift register, the initial value is saved that is referred as
seed value. This LFSR is used to generate the random sequence of the bits and the
feedback output is given to the XOR gate, since the XOR gate is used to improve
the confusion property of LFSR. Specifically, the difference between the response
values is high by using this XOR gate. Moreover, this LFSR has the capability for
generating the possible stats at the period of N = 2n — 1, where n is the amount of
registers. The possible states from the LFSR also exclude all zero state.

In general, the IoT device creates the challenge value and it is given to the server
for obtaining the authorization. The conventional PUF module generates the same
response for all the clock cycles. Hence, the identical value of responses has the
possibility to predict by the unauthorized user. But the APUF used in the proposed
method generates the different response values for each and every clock cycle. Equa-
tion (5) specifies the challenge input values given to the LFSR. Next, the response
output from the LFSR is specified in Eq. (6).

challenge(C) = {c[7], c[6], c[5], c[4], c[3], c[2], c[1], c[0] } 5)

Response(R) = {r[7], r[6], r[5], r[4], r[3], r[2], r[1], r[O]} 6)

where the values of ¢[0] — ¢[7] and 7[0] — #[7] represent the challenge values and
response values, respectively.
The generation of response for IoT devices is expressed as follows:

always @ (posedgeclk)
if(rst)
Response(R) = Challenge(C)
Else

Response(R) = {r[0]Ar[3],7[7 : 1]}

In this APUF, the generation of response is performed at the positive edge of the
clock signal. Next, the response is generated from the challenge value, when the clock
signal becomes positive edge. Therefore, the variation in the bit pair using APUF at
each clock cycle creates the difficulty for response value prediction by unauthorized
users. Further, the APUF is used to achieve the secure communication between the
devices based on the frequent change of bit position pair.

4.4 Data inverting encoding scheme

In this proposed method, DIES is developed to improve security of lightweight cryp-
tography. The developed DIES uses the confusion property similar to the S-box that
processes the 8-bit input data to provide the 8-bit data in output. The size of input and
output in DIES are identical, but it provides the different values in output. The input
and output of the encoder module are represented as 8 bit, respectively. This DIES
increases the randomness in AID, challenge, device nonce and server nonce by inde-
pendently controlling the odd and even bits of multiplier and multiplicand, the Odd
Invert and Even Invert bit, respectively. This will reduce linearity in random data by
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comparing the switching activity for the four possible cases of the Full, No, Odd and
Even Invert lines (00, 01, 10, 11) and then choosing the value with the smallest switch-
ing activity to reduce computational cost. In particular, the input toggling sequences
01 —10 and 10—01 are resulting in 4 times more switching events. The two-phase
switching sequence is introduced in order to reduce total power consumption. Encoder
module is designed which encodes random number generator based on number of
zeroes and ones sequences or its run length. It defines the data to be inverted based on
zeroes and ones. It consists of internal modules such as shift register, even counter, odd
counter, comparator and inverter shown in Fig. 3 and over all data flipping architecture
is shown in Fig. 4.

For the instance, the calculation of AID using DIES is described as follows.

At first, 8-bit input seed value (in) is obtained from the S-box-based inverter and
then this 8 bit in value is given as input to the ones calculation for calculating the ones,
zeroes, odd and even values of input. In ones calculation process, the counter is zero
during reset as well as the counter is incremented by 1 when the counter is less than 9.
Consider the values of ones, zeroes, odd and even values are 0000. Subsequently, the
ones, zeroes, odd and even values are calculated for each bit of seed value (i.e., totally
8 bits).

The calculation of ones, zeroes, odd and even values for Oth bit, when Oth bit is equal
to 1 and O is expressed in Eqgs. (7) and (8).

ones = ones + 1

ZEroes = Zeroes

even = even + 1 @
odd = odd
If the Oth bit is equal to 1, the output is 1010. Otherwise it is equal to 0100.
ones = ones
zeroes = zeroes + 1
(@)

even = even
odd = odd

Similarly, the calculation of the ones, zeroes, odd and even values for the remaining
7 bits is performed and it is concatenated at the end of ones calculation. Accordingly,
the 4-bit values of ones, zeroes, odd and even values are given as input for comparator
to obtain the 2 bits of selection line values (Table 2).

Further, the input seed value is modified based on the selection line value that is
used to increase the randomness between the AID values generated in each clock cycle.
The calculation of AID for the selection line of 00, 01, 10 and 11 is given in Egs. (9),
(10), (11) and (12), respectively.

AID = {~in} 9)

AID = {in[7], ~ in[6], in[5], ~ in[4], in[3], ~ in[2], in[1], ~ in[0]} (10)
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Even counter

Input data Shift register Comparator Controller
' ‘ !
Odd counter Encoded Output

Fig. 3 Encoder module

| AID l | Challenge l | Device nonce

| | | |

¥

’ 4x256 Memory array |

v

‘ Encoder module |

v
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Fig.4 Architecture of DIES

Table 2 Calculation selection

line Condition Selection line
Ones > zeroes 00
Ones = zeroes and Even> =odd 01
Ones =zeroes and Even < odd 10
Even> odd 01
Odd > even 10

AID = {~ in[7], in[6], ~ in[5], in[4], ~ in[3], in[2], ~ in[1], in[0]} (11)

AID =~ out (12)

Similarly, the challenge, device nonce and server nonce are calculated by using the
aforementioned process of DIES. The generated AID, challenge, device nonce and
server nonce are used to establish the secure communications between the device
and server communication.
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Fig.5 Architecture of the S-box-based inverter

Table 3 S-box operation T1 0 1 23 4567 89 ABCDEF

S[r1] ¢ 5 6 B9 0 A D3 EF S8 4 7 1 2

4.5 S-box-based Inverter

In this SBI, an 8-bit seed value is generated for improving the randomness of the
AID, challenge, device nonce and server nonce from the DIES. The combination of
DIES and SBI is used to generate the unpredictable keys that helps to improve the
security among the device to server communication. Figure 5 shows the architecture
of the SBI.

Initially, a 8-bit random is considered as an input for this SBI which is repre-
sented as D. Meanwhile, the input 8-bit value is transformed by using the inverter
that is represented as D’. The 8-bit random value D is stored in the Register 1 and it
is truncated into 2 four bits as shown in Eq. (13).

T1=D[7 : 4]

T2 =DJ[3 : 0] (13)

Next, these truncated data’s 7’1 and 72 are given to the S-box (substitution-box) that
performs the substitution process as shown in Table 3. The S-box generates s S1 and
S2 for the truncated data of 71 and T2, respectively.

After completing the S-box process, the data of S1 and S2 are given to the adder
for generating the 4-bit value, i.e., outl. On the other hand, a 4-bit value of out2 is
generated for the D’. Further, both the outl and out2 are concatenated together that
generates the 8-bit value (in) as shown in Eq. (14). Here, the out2 value is taken as
MSB and out1 value is taken as LSB for the 8-bit in value.
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in = {out2[7 : 4], outl[3 : 0]} (14)

The designed SBI uses the 8-bit input to provide the 8-bit output value, so the
developed SBI is 8-bit design. The generated in value is utilized in the DIES to
generate the unpredictable AID, challenge, device nonce and server nonce for each
clock cycle and for each plain text. This kind of generation for AID, challenge,
device nonce and server nonce creates the difficulty to the hackers which are trying
to identify the key values. Therefore, the confidentiality of the data transferred from
the device to the server is improved using this APUF-DIES-IoT architecture.

5 Simulation setup

The APUF-DIES-IoT architecture is designed and implemented in the Xilinx 14.4
software that is operated with the 4 GB RAM with 500 GB hard disk system. The
logical elements used in the authentication and setup phase are designed by using
the Verilog language. The hardware utilization of the APUF-DIES-IoT architecture
is analyzed by using the Xilinx 14.4 software. Further, the verification of the authen-
tication phase and setup mode is obtained using the Modelsim 10.5 software.

5.1 Results and discussion

At first, the setup phase is established to each IoT device and this setup phase is
mainly processed using control signals. The clock, enable and reset are enabled as
control signals for these devices. The enable and rest signals are varied according
to the amount of devices connected to the server. In this phase, totally 100 ns is
required to process the single cycle. The 100 ns is separated as 50 ns and 50 ns
for the positive and negative clock edge. Moreover, the rising edge and 1 are used
to define the edge type and logical value, respectively. The phase control signal of
this setup phase is represented as 0. For the remaining control signals, the value is
denoted as 1 for operating the setup with acceptable losses.

The setup phase is given to the main block, once the input block is set in the
APUF-DIES-IoT architecture. The device generates the ID of the device and request
to the server, when the input value is applied into the main block. The challenge
value is generated for the devices according to the request. Subsequently, the gen-
erated challenge value is processed on the server and this server generated the
response for the respective devices. Here, the process of response generation in the
server is done by two devices such as PUF and adaptive PUF. The input given to
the module is considered as the control signals and challenge values. The conven-
tional PUF generates only the standard response due to its standard challenge value.
Hence, there is no variation in the generated response value which is easily hacked
by the unauthorized users to process the preserved data. On the other hand, the
APUF generates the response values with higher randomness based on its feedback
process and random bit pair consideration during APUF XOR operation.
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Fig.7 Simulation waveform of the DIES operation

The IoT devices get the random number that is helpful in authentication phase,
once the response is generated in the server. In this APUF-DIES-IoT architecture,
the challenge, AID, device nonce and server nonce are generated by using the com-
bination of DIES and SBI. The independent control over the odd and even bits of
multiplier and multiplicand, the Odd Invert and Even Invert bit is used to increase
the randomness of the challenge, AID, device nonce and server nonce. The switch-
ing activity between the selection line is used to minimize the linearity between the
values. Next, the simulation waveform of the overall process of DIES using SBI is
shown in Fig. 6.

The control signals of Fig. 6 are clk and rst as well as the 8-bit input is termed as.

in[7 : O]. From the input given of DIES (11010000), the ones, zeroes, even and
odd are calculated to obtain the random AID, challenge, device nonce and server
nonce. The values of ones, zeroes, even and odd are 0001, 0000, 0001 and 0000,
respectively. Subsequently, the selection line is selected by using the values of
ones, zeroes, even and odd. Further, the output obtained from the DIES method is
10000101, i.e., 108. The analysis of the input and output using DIES operation is
shown in Fig. 7.

After completing the setup phase, all the IoT device registers their own ID num-
bers in server and receive an adequate response from the server. Server nonce and
device nonce are given as input to the IoT devices. Each IoT device verifies the
values of the device and server nonce to verify whether these values exist in the
received server and device nonce are not. Subsequently, the new key hash response
and helper data are generated by separating the server nonce using IoT device.
Accordingly, the generated values are given as input to server to get the authentica-
tion. The device nonce and server nonce are presented in the key hash response of
the server. Finally, the server provides the authentication for the IoT devices, when
the IoT device nonce is exist in the key hash function. The hardware utilization
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and security analysis of the APUF-DIES-IoT architecture is given in the following
section.

5.2 FPGA results and analysis

The hardware utilization of the APUF-DIES-IoT architecture is analyzed with
two existing architecture such as TFA-RPUF-IoT architecture and TFA-PUF-IoT
architecture [28]. These architectures are designed using Verilog language and the
hardware utilization for the aforementioned architectures is given in Table 4. The
graphical illustration of the hardware utilization comparison for APUF-DIES-IoT
developed in Spartan 6 is shown in Fig. 8. Meanwhile, the comparison of the APUF
and conventional PUF [28] is given in Table 5. Next, the graphical illustration of the
hardware utilization comparison for PUF and APUF module in Spartan 6 is shown
developed in Fig. 9.

From Table 4 and Fig. 7, it is known that the proposed APUF-DIES-IoT archi-
tecture achieves better performance when compared to both the TFA-RPUF-IoT and
TFA-PUF-IoT [28]. For example, the LUT, slices and flip flops of APUF-DIES-
IoT in Spartan 6 FPGA are 10, 10 and 35, respectively, which are less than the
TFA-RPUF-IoT and TFA-PUF-IoT [28]. Moreover, the higher frequency of the
APUF-DIES-IoT architecture, i.e., 533.67 at MHz shows that it has higher oper-
ating speed than the remaining architectures. The hardware utilization of the
APUF-DIES-IoT architecture is improved due to its automatic generation of AID,
challenge, device nonce and server nonce. Next, Table 5 and Fig. 8 show the anal-
ysis of hardware utilization for both the PUF and APUF. The APUF used in the
APUF-DIES-IoT architecture utilizes less amount of hardware resources than the
conventional PUF architecture [28]. However, the hardware utilization of the Virtex
6 is higher than the Spartan 6, because of requires high amount of logical elements
to create the design. Further, Table 6 shows that the DIES uses 5 slices, 7 LUT, 7
flip flops during implementation in Virtex 6 device. Here, the automatic generation
of the AID, challenge, server nonce and device nonce is used to reduce the logical
elements of the APUF-DIES-IoT architecture than the conventional PUF architec-
ture [28].

Tables 7 and 8 show the analysis of the TFA and security performances for
the APUF-DIES-IoT architecture along with two existing architecture such as
TFA-RPUF-IoT and TFA-PUF-IoT [28]. Tables 7 and 8 show the comparison of
APUF-DIES-IoT architecture with existing researches [25-28] and TFA-RPUF-
IoT to analyze the authentication and security features. The clock synchroniza-
tion, secure algorithm, device security and attacks are evaluated during TFA and
the outputs (i.e., Yes or No) are tabulated in the respective portions. Next, the
safety against the attacks, two-factor secrecy, mutual authentication and PUF
model are analyzed in the security analysis. For both the analysis, the random
response for each clock is evaluated for PUF-IoT [28] and APUF-DIES-IoT. The
TFA-RPUF-IoT and APUF-DIES-IoT architectures are provided better perfor-
mances than the existing researches [25-28] because the TFA-RPUF-IoT and
APUF-DIES-IoT generate the random input data even when the input remains
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Table 5 Analysis of hardware utilization for conventional PUF and APUF

Target Device Speedand ~ Module Slice LUT Flip flop Frequency  Delay (ns)
family package (MHz)
Spartan 6 XC6SLX9 — 3 and PUF 4 8 663.46 1.507
CSG324
APUF 3 8 696.45 1.436
Virtex 6 XC6VCXT75T —2and PUF 3 8 1225.41 0.816
FF484
APUF 6 8 1243.54 0.804
50
45
40
35
w 30
525
S 20
14
15 11 99 10
10
. Inn s
0

Slice

LUT
Logical element

Flip flop

B TFA-PUF-loT [28] ETFA-RPUF-loT = APUF-DIES-loT

Fig. 9 Hardware utilization comparison of PUF and APUF for Spartan 6

Fig. 8 Hardware utilization 12 10
comparison of APUF-DIES-IoT 10
for Spartan 6 3 8 8 8
-
3 6
o 4
C 4 3
: Hn
0
Slice LT Flip flop
Logical elements
m PUF m APUF
Ta.b.le 6, Analysis of hardware Parameters Spartan 6 Virtex 6
utilization for DIES used in the
APUF-DIES-IoT architecture Slice 5 5
LUT 10 7
Flip flop 10 7
Frequency (MHz) 713.73 1301.73
Delay (ns) 1.2136 0.762
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Table 8 Analysis of security performances for different security architectures of IoT

Comparison matrices Aman [24] TFA-PUF-  TFA-RPUF-IoT APUF-
IoT [28] DIES-
IoT
Mutual authentication Yes Yes Yes Yes
Two-factor secrecy No Yes Yes Yes
Privacy of the IoT devices No Yes Yes Yes
Consideration of noise in the PUF No Yes Yes Yes
Protection against physical attacks Yes Yes Yes Yes
Random response for every clock cycle No No Yes Yes

same for all clock cycle. The code generated by all clock cycles is same in the
TFA-PUF [28]. Therefore, the code generated by the TFA-PUF can easily predict
by the hackers [28]. However, the random values such as AID, challenge, device
nonce and server nonce generated by the DIES are used to improve the security
against the hackers. The APUF-DIES-IoT architecture also obtains lesser hard-
ware utilization than the TFA-RPUF-IoT. Therefore, the APUF-DIES-IoT archi-
tecture is referred as better when compared to the existing security mechanisms
developed in the IoT.

5.3 Security analysis

The different security analysis is evaluated for this APUF-DIES-IoT architecture.
The APUF-DIES-IoT architecture has higher confidentiality than the existing TFA-
PUF-IoT architecture [28] and TFA-RPUF-IoT architecture.

5.3.1 Session Key agreement

The IoT device and server share the same session key, once the mutual authenti-
cation is completed in the IoT. Here, the side channel attack affects the transmis-
sion line during the data transmission. If the side channel attack occurred in the
APUF-DIES-IoT architecture, the secret key agreement is not encrypted based
on the session key corruption. The server doesn’t give the authentication for the
IoT devices, even when the secret key is changed in the IoT. Hence, the proposed
APUF-DIES-IoT architecture has the capacity to provide the session key agreement.

6 Conclusion
In this paper, the combination of DIES and SBI is introduced to provide the ran-

dom values of AID, challenge, server nonce and device nonce for accomplishing the
secure communication. The security is additionally improved based on the random
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seed value generated by using the SBI. The selection line switching property helps to
increase the randomness of AID, challenge, server nonce and device nonce between
all clock cycles. Additionally, the LFSR is used in the APUF to generate the ran-
dom response for every clock cycle. The combination of APUF and DIES effectively
improves the security in the IoT system. Hence, the communication between the IoT
devices to the server is secured by using the proposed APUF-DIES-IoT architecture.
Moreover, the automatic generation of the AID, challenge, server nonce and device
nonce is used to minimize the logical elements used in the APUF-DIES-IoT archi-
tecture. Accordingly, the delay and operating frequency of the APUF-DIES-IoT
architecture are improved during the server to device communication. From the per-
formance analysis, it is known that the proposed APUF-DIES-IoT architecture has
better performance than the conventional architectures such as TFA-PUF-IoT and
TFA-RPUF-IOT. The proposed APUF-DIES-IoT architecture designed in the Virtex
6 uses 36 flip flops; it is less when compared to the conventional TFA-PUF-IoT and
TFA-RPUF-IoT architectures. In the future, different optimized architectures will be
implemented to reduce the hardware utilization and improve the security.
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