
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:3899–3913
https://doi.org/10.1007/s11227-020-03416-6

1 3

Facilitating the learning process in parallel computing
by using instant messaging

Ángel Manuel Guerrero‑Higueras1 · Lídia Sánchez‑González1 ·
Miguel Ángel Conde‑González1 · Manuel Castejón‑Limas1

Published online: 9 September 2020
© The Author(s) 2020

Abstract
Parallel Programming skills may require a long time to acquire. “Think in parallel”
is a skill that requires time, effort, and experience. In this work, we propose to facili-
tate the students’ learning process in parallel programming by using instant messag-
ing. Our aim was to find out whether students’ interaction through instant messaging
tools is beneficial for the learning process. In order to do so, we asked several stu-
dents of an HPC course of the Master’s degree in Computer Science of the Univer-
sity of León to develop a specific parallel application, each of them using a different
application program interface: OpenMP, MPI, CUDA, or OpenCL. Even though the
used APIs are different, there are common points in the design process. We encour-
aged students to interact with each other by using Gitter, an instant messaging tool
for GitHub users. Our analysis of the communications and results demonstrate that
the direct interaction of students through the Gitter tool has a positive impact on the
learning process.

Keywords High-performance computing · Instant messaging · Parallel programming

 * Ángel Manuel Guerrero-Higueras
 am.guerrero@unileon.es

 Lídia Sánchez-González
 lidia.sanchez@unileon.es

 Miguel Ángel Conde-González
 mcong@unileon.es

 Manuel Castejón-Limas
 manuel.castejon@unileon.es

1 Department of Mechanical, Computer Science, and Aerospace Engineering, University of León,
Campus de Vegazana S/N, 24071 León, Spain

http://orcid.org/0000-0001-8277-0700
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03416-6&domain=pdf

3900 Á. M. Guerrero-Higueras et al.

1 3

1 Introduction

In today’s digitally driven world, advanced technology has become an essential
tool for sciences creating every day even more demands to be satisfied. In order to
deal with many problems of areas such as Meteorology, Climatology, Astrophysics,
Healthcare, Biology, or Artificial Intelligence, High-Performance Computing (HPC)
is required due to the data volume they manage or the execution time they need. For
this reason, the use of a supercomputer that provides such extreme computational
power is mandatory.

Governments and organizations are investing in HPC to leverage and strengthen
infrastructures that provide HPC services. Besides the hardware, the use of all the
capabilities available is a key task for professionals in technology; this is commonly
named as the “think in parallel” skill. Therefore, this competence must be acquired
by future professionals and it is an essential issue to be focused on.

There is an increasing demand for professionals to be aware of the benefits of
HPC so as to handle these problems. Therefore, teaching future professionals
implies acquiring skills related to HPC such as parallel programming or managing
HPC environments. One of the key skills to acquire for the effective use of HPC
facilities is “Think in parallel”.

However, the acquisition’s evaluation of the “think in parallel” skill is not easy
since it requires to obtain enough evidence to determine performance metrics. The
simplest way to be considered might be the evaluation of the final result or the hand-
ins. Nevertheless, a complete evaluation should include all the aspects involved dur-
ing the learning process. For example, Team Work Competence (TWC), a skill also
necessary to succeed during the professional career. Traditionally, this competence
has been performed by giving a task to a group of students who usually split it into
as many pieces as group members and finally they collect the partial solutions to
build a final result. This presents several drawbacks since it is common that students
only learn their tasks and lastly they end working alone. On the contrary, when they
start their careers, they have to collaborate with their colleagues, cooperating with
them to solve problems and achieving the established goals.

This paper evaluates whether teamwork has a positive influence on the learning
process when students using parallel computing skills. The considered degree to be
analyzed is the Master in Computer Science of the University of León, Spain. The
students of the High-Performance Computing subject have been encouraged to work
cooperatively during the development of their practical assignments, interacting
with an Instant Messaging (IM) tool.

IM applications are currently available in all kinds of devices, in particular in
smartphones. Such apps provide a way to communicate synchronously among users
by exchanging text, chatting in a group, sharing media, and talking.

The most popular applications for IM used in October 2019 were: WhatsApp
(around 1600 millions of active users), Facebook messenger (around 1300 mil-
lion), WeChat (around 1133 million), QQ mobile (around 808 million), Snapchat
(around 314 million), and Telegram (around 200 million). These stats are published
in stadista.com based on We are Social and other sources [1].

3901

1 3

Facilitating the learning process in parallel computing by…

Therefore, students use actively IM apps choosing them above other communi-
cation media like email or phone [2, 3]. Surprisingly, students even do not iden-
tify IM as a technology but as a common communication channel [4]. On the
other hand, it is important to point out that IM usage may have a negative impact
on learning [5].

There are many uses of IM apps in learning processes with different strategies;
among others, a significant approach is the use of IM tools to improve communica-
tion among peers and faculty [6–12]. In those contexts, results show that IM apps
make communication easier, yielding an interactivity increase between peers and
facilitating the knowledge share. In addition to this, the sense of presence that users
perceive is higher, fostering collaboration and enabling ubiquity [13, 14]. Neverthe-
less, the main drawback of IM applications is inappropriate to use since if it is not
employed with educational purposes, it becomes a distraction during the learning
process [12, 15].

As a result, if certain educational purposes want to be achieved, it is required cer-
tain monitoring of the use of IM applications during the educational activities. Con-
sidering these assumptions, IM helps the TWC acquisition by students since it pro-
vides an attractive way of communication. With this approach, there are researchers
that employ IM apps to carry out the communication among students in a group [12]
and they also study their interactions [15]. The main drawback of these studies is the
fact that pieces of evidence of the learning process are not considered to estimate
TWC acquisition. On the contrary, in this work, the proposed methodology uses the
learning pieces of evidence to assess the acquisition of such skill.

For all the above, IM can be adopted as a useful way to establish communica-
tion among students working as a group. In this paper, the use of Gitter is described
because students are encouraged to employ it as it is linked with the platforms where
students must store their source code, those are Github and Github Classroom.
In this sense, students use Github as a Version Control System for their practical
assignments and even though Gitter is not one of the most known IM apps, its func-
tionalities are the same as others, so students get easily used to it.

This work outperforms previous research on this field since it proposes to use Git-
ter to simplify student cooperation when they are working on their practical assign-
ments, and later students’ interaction is analyzed in order to assess whether they
have acquired the “think in parallel” skill. To achieve that goal, several experiments
with first-year students that attend to the HPC subject of the Computer Science
Master’s degree at the University of León along different years have been carried
out. In the 2015–2016, and 2019–2020 courses, students had to develop a parallel
application of a real sequential problem. Each student had to choose one Applica-
tion Program Interface (API) among OpenMP, MPI, CUDA, and OpenCL. Despite
the API diversity, a requirement was that students had to justify their strategies with
their mates and lecturers by using Gitter. The obtained results in those courses are
compared with the ones obtained by students of the same subject but in different
courses, specifically 2014–2015, 2016–2017, 2017–2018, and 2018–2019, where
students did not use IM.

This paper is structured as follows: Sect. 2 describes the materials used in the
experiments and the methodology used to evaluate the results; Sect. 3 gathers results

3902 Á. M. Guerrero-Higueras et al.

1 3

that are discussed in Sect. 4. Finally, Sect. 5 poses some conclusions and works in
progress.

2 Materials and methods

A set of experiments was carried out to evaluate the impact of using IM in the learn-
ing process of parallel computing. During the experiments, students of the HPC
subject of the master’s degree in Computer Science of the University of León were
assigned a practical task consisting of developing a parallel application. Next, each
of the elements is described, as well as the methodology and metrics used in the
experiment are presented.

2.1 High‑performance computing

High-performance computing is a subject in the first year of the Master’s Degree in
Computer Science at the University of León (Spain) where students learn the funda-
mentals of supercomputing and parallel programming. The main difficulty students
deal with is the development of parallel algorithms to solve typical problems in
computer science. Students find it hard to think in parallel so a set of basic examples
is introduced to know how the typical parallel programming APIs, such as OpenMP,
MPI, and CUDA can be used.

Later, a more real problem to be solved in parallel is presented to students. For
that purpose, a sequential program is provided, as well as its explanation. Next, stu-
dents apply the knowledge they have acquired during the practical lessons to design
a parallel solution using the studied libraries. The students’ grades in the subject
come exclusively from the evaluation of such practical assignment.

The organization of the subject was designed based on the knowledge acquired
during two Erasmus teaching stays to collaborate with the subject Parallel Com-
puter in the Computer Science degree at the University of Groningen. Not only did
the students work with how APIs allow programmers to execute code in parallel,
but also they had to develop complete parallel programs for different fields such as
image processing or physics.

To carry out the experiments, we have gathered data from 2014–2015, 2015–2016,
2016–2017, 2017–2018, 2018–2019, and 2019–2020 courses. Table 1 shows the num-
ber of students enrolled and the rate of students who failed a course and enrolled again

Table 1 The number of students enrolled and the rate of students who failed a course and enrolled again
the next year in the HPC subject of the Master’s Degree in Computer Science at the University of León
(Spain) from 2014–2015 to 2019–2020

14–15 15–16 16–17 17–18 18–19 19–20

Number of students 13 8 5 14 11 5
Old students rate 0

12

0

8

0

5

0

14

0

11

0

5

Old students % 0 0 0 0 18 0

3903

1 3

Facilitating the learning process in parallel computing by…

the next year in such courses. In such courses, the lecturer was always the same, specifi-
cally Dr. Sánchez-González, who signs this work. Regarding the practical assignment,
described below, was also the same in such courses. So, the only difference between
them is that in 2015–2016, and 2019–2020 courses, students were encouraged to use
IM to collaborate with their mates and lecturers. In addition, in the 2015–2016 course,
the Comprehensive Training Model of the Teamwork Competence (CTMTC) meth-
odology was used to promote the TWC [16]. The usage of this methodology, plus to
encourage teamwork, allows for gathering data that will be later used to measure the
effect of using IM in students’ results.

It is important to point out that the students enrolled in the above courses have a
similar background. They all come from the degree in Computer Science at the Uni-
versity of León. It is a common circumstance at the University of León, most students
of the Master’s degree in Computer Sciences, are enrolled as soon as they finish the
degree in Computer Sciences. This is the case of the ones who attended the HPC sub-
ject in courses from 2014–2015 to 2019–2020. However, even if it was not the case,
all students must have a computer science background to be enrolled at the Master’s
degree in Computer Sciences at the University of León. The requisites for accessing the
Master are regulated according to Appendix 1, section 4.2 of [17]. According to this
regulation, students must come from a degree in Computer Science; and if they do not,
they must attend and pass some formative complements prior to enrolling the Master.

Finally, the rate of students who failed a course and enrolled again the next year is
quite low, as shown in Table 1, so there is not a sign of such students to influence the
performance of their mates.

2.2 Practical assignment

A real problem was presented to the students using a sequential version written in C
adapted from a previously existing Fortran version. The program solves contact prob-
lems between 3D solids by applying the Boundary Element Method. This method is
presented and explained with detail in [18].

In short, two solids mesh in triangular elements and then certain coefficients are
computed for each pair of elements. To do this, a numerical or an analytic integral is
solved depending on whether the pair is formed by the same element or not. Integrals
are computed from one element to the node of another element, which is located at its
barycentre. As these coefficients are independent among elements, its computation is
susceptible to be run on parallel. An algorithm of this problem is shown in Algorithm 1
[19]. Figure 1 shows the workflow of the program.

3904 Á. M. Guerrero-Higueras et al.

1 3

With these values and some other parameters of the problem, a system of equa-
tions Ax = B is computed. Being N the number of elements that comprise both sol-
ids, A is a matrix N by N for the thermal contact problem and a matrix N*3 by N*3
for the elastic or thermoelastic contact problem. B is the independent vector and x
are unknowns. Typical examples of contact problems involve at least 1200 elements
so as to be able to design a proper geometry of the problem. The system of equations
is also potential candidates to run on parallel.

Therefore, giving these details to the students and highlighting the two poten-
tial problems to run in parallel, basically, the students’ task was to speed up the
execution time by using several parallel techniques. Although they had to use
several parallel techniques, they worked as a team so they had to collaborate to
achieve the final result. Consequently, the supervision of all the development

Fig. 1 Scheme of the sequential
program

3905

1 3

Facilitating the learning process in parallel computing by…

process and the decision making was required. For that purpose, in 2015–2016
course, the CTMTC methodology was applied.

Parallel Computing APIs Students were encouraged to use the parallel comput-
ing API they prefer. During the course they learned OpenMP, MPI, and CUDA;
but any other API was allowed, such as OpenCL which some students decided to
use.

• Open Multi-Processing (OpenMP) It supports multi-platform shared memory
multiprocessing programming in C, C++, and Fortran on most platforms such
as Linux, macOS, and Windows. OpenMP includes a set of compiler directives,
library routines and environment variables that influence run-time behavior.

• Message Passing Interface (MPI) It is a portable message-passing standard that
defines the syntax of a core of library routines useful to write portable message-
passing programs in C, C++, and Fortran. There are several implementations of
MPI, many of which are open-source, such as Open MPI. MPI has encouraged
the development of portable and scalable large-scale parallel applications.

• Compute Unified Device Architecture (CUDA) It is a parallel computing plat-
form and API model created by Nvidia [20]. It allows using a CUDA-enabled
graphics processing unit (GPU) for general-purpose processing. The CUDA plat-
form is a software layer that gives direct access to the GPU’s virtual instruc-
tion set and parallel computational elements. The CUDA platform is designed
to work C, C++, and Fortran. This accessibility makes it easier for specialists
in parallel programming to use GPU resources. Also, CUDA supports program-
ming frameworks such as OpenACC and OpenCL.

• Open Computing Language (OpenCL) It is a framework for writing programs
that execute across heterogeneous platforms consisting of central processing
units (CPUs), graphics processing units (GPUs), and some other processors or
hardware accelerators [21]. OpenCL specifies its own programming language
and APIs to control the platform and execute programs. It provides a standard
interface for parallel computing using task- and data-based parallelism.

Supecomputación Castilla y León (SCAyLE) To develop the application students
were granted access to Caléndula, the cluster of SCAyLE. It has several calculation
clusters with different computer technology architectures. Its theoretical peak per-
formance is currently 131.8 Teraflops [22].

Specifically, the cluster they accessed for developing their practical assignment is
composed by 114 servers with the following technical specifications: 2 processors
Intel Xeon E5-2630 v3 (Haswell architecture) with 8 cores @ 2.40 GHz, 32 GB (2
GB/core ratio) of main memory, Two 1-GbE interfaces, and one Infiniband FDR
56Gb/s interface.

CTMTC As mentioned above, in the 2015–2016 course the CTMTC methodol-
ogy was applied to fulfill the practical assignment. It was used as part of a bigger
study to measure teamwork competence acquisition [16]. This study included sev-
eral subjects in addition to HPC. However, the usage of such methodology provided
the data we have used to evaluate the students’ interaction with their mates and lec-
turers through IM.

3906 Á. M. Guerrero-Higueras et al.

1 3

CTMTC explores the group results and how each individual has acquired compe-
tence. The methodology relies on the analysis of learning evidence from data gener-
ated by the use of IT-based learning tools by student teams during project develop-
ment [23].

2.3 Gitter

Gitter is an open-source IM platform for developers and GitHub users. It provides a
chat room system linked to users’ repositories which allows discussing topics related
to the source code. It provides most common IM features such as notifications, inline
media files sharing, viewing, and subscribing chat rooms, but also a set of specific
features for developers such as subscribing changes on files or issues.

Several Gitter chat rooms were created specifically for discussing issues related
to the practical assignment. They were used by students to collaborate among them
and with the lecturers in the design and development of their solutions. Data from
students’ conversations in these rooms were gathered for later analysis.

2.4 Evaluation

A three-step methodology is used to demonstrate our hypothesis. First, a statistical
analysis of the grades is done (Step 1). We start with a normality test of the grades
of each course. Since the number of grades in each course is quite low (5 ≤ n ≤ 14 ,
see Table 1), we think that the non-parametric tests suit better for this problem.
Thus, we use the Kolmogorov–Smirnov test with Lilliefors correction to compute
the normality. Depending on the result of the normality test, a parametric or non-
parametric test for comparison of means or medians is performed for each pair of
courses in order to know among which variables there are statistically meaningful
differences. Since not normal samples are expected and the number of students per
course is different, we complete the Post Hoc comparisons by performing the Mann-
Whitney rank tests.

After analyzing the statistical differences among the courses a qualitative analy-
sis of the data will be done (Step 2). We will compare the final grades obtained by
the students of 2015–2016, and 2019–2020 courses, where IM was used to interact
with their mates and lecturers, with the results of the remaining courses, specifically
with 2014–2015, 2016–2017, 2017–2018, and 2018–2019 courses, where IMA was
not used. This analysis may indicate whether the usage of IM applications may be
helpful for students in order to improve their “Think in parallel” skill. To evaluate
the impact of IM we will consider the following Key Performance Indicators (KPIs):
number of students, number of students who passed the course, number of students
enrolled in the course who do not turn in the practical assignment, number of stu-
dents who fail the course, number of students who get a C grade, number of students
who get a B grade, number of students who get an A grade, number of students who
get an A+ grade.

Finally, an in-depth analysis of the students’ interaction during the 2015–2016
course will be carried out (Step 3). In this course, the students’ interaction data

3907

1 3

Facilitating the learning process in parallel computing by…

through chat rooms were gathered for later analysis of TWC acquisition [16]. We
aim to use this data to demonstrate that this interaction also was helpful to acquire
the “think in parallel” skill. In order to do so, the conversations between students
will be reviewed to extract some KPIs which will result helpful in a better compre-
hension of the effects of using IM in the learning process of parallel computing. The
KPIs that will be considered are the number of messages and words that each stu-
dent wrote in the chat rooms. According to [24], there is a strong positive correlation
between students’ grades and messages. So, in order to evaluate the effect of using
IM on the students’ results, the Pearson Correlation Coefficient (PCC) between the
above KPIs and the grades is computed.

3 Results

Number of students enrolled and the rate of students who failed a course and
enrolled again the next year in the HPC subject of the Master’s Degree in Computer
Science at the University of León (Spain) from 2014–2015 to 2019–2020. The num-
ber of students is quite low ranging between 5 and 14.

Table 2 shows the results of the normality tests for every course grades. As
expected due to the samples’ size, any of them do not follow a normal distribution
since their p values are lower than the significant level (� = 0.05).

Table 3 shows Post Hoc comparisons for each pair of courses. According to the
table, we cannot assert that there are statistically significant differences among the
samples since their p values are lower than the significant level (� = 0.05) except
between 2014–2015 and 2019-2010 courses.

Table 2 p values obtained in
normality tests (� = 0.05)

Course p value

14–15 0.000
15–16 0.000
16–17 0.000
18–19 0.000
19–20 0.000

Table 3 p values obtained by
Mann–Whitney U test

Values in bold denote p values � = 0.05

15–16 16–17 17–18 18–19 19–20

14–15 0.318 0.421 0.490 0.271 0.030
15–16 0.210 0.329 0.204 0.136
16–17 0.335 0.500 0.087
17–18 0.183 0.082
18–19 0.230

3908 Á. M. Guerrero-Higueras et al.

1 3

Table 4 shows the number of students who passed each course, who failed, and
enrolled in the course but did not turn in the assignments. Regarding the students
who passed the course, the table also shows the letter grades’ distribution of each
course.

Table 5 shows some descriptive statistics for the grades of each year, specifi-
cally: minimum, first quartile, mean, median, third quartile, and maximum.

Table 6 shows the Students’ numerical and letter grades in 2015–2016 course.
The table also includes the number of messages and words that each student
wrote in the chat rooms. Figure 2 shows scatter plots of messages versus grades,
and words versus grades. Table 7 shows the PCC of grade versus messages (0.84)
and grades versus words (0.91).

Table 4 Number of students that
being enrolled in the course but
do not turn in the assignments;
that fail the course; that pass the
course; and that get a C, B, A,
and A+ grade

14–15 15–16 16–17 17–18 18–19 19–20

Not turned in 1 0 0 0 0 0
Fail 0 3 0 4 1 0
Pass 12 5 5 10 10 5
C 2 2 2 2 3 0
B 8 0 2 3 3 2
A 2 2 1 6 4 2
A+ 0 1 0 0 0 1

Table 5 Descriptive statistics
for students’ grades

14–15 15–16 16–17 17–18 18–19 19–20

Minimum 5.0 3.0 6.7 0.0 2.0 7.4
1st quartile 7.0 3.3 6.7 2.6 5.9 7.9
Mean 7.4 6.3 7.8 6.2 7.4 8.8
Median 7.5 5.5 7.2 7.9 7.9 9.0
3rd quartile 8.0 9.9 9.1 9.2 9.9 9.7
Maximum 10.0 10.0 9.6 9.6 9.9 9.8

Table 6 Students’ grades in
2015–2016 course

Student id. Numerical
grade

Letter grade Messages Words

1 4 F 0 0
2 3.1 F 9 199
3 10 A 70 4093
4 9.5 A 29 2008
5 10 A+ 56 3732
6 5.5 C 10 421
7 3 F 16 449
8 5.4 C 2 258

3909

1 3

Facilitating the learning process in parallel computing by…

4 Discussion

In order to assert that IM helps students to acquire the “think in parallel” skill, we
need to analyze the above results. Specifically, we have to compare the students’
results in 2015–2016 and 2019–2020 courses, where IM was used to interact with
mates and lecturers, with the results in 2014–2015, 2016–2017, 2017–2018, and
2018–2019 courses, where IM was not used.

Table 1 shows the number of students of each course from 2014–2015 to
2019–2020 (6 courses). The average number of students per course is 9, the maxi-
mum is 14, and the minimum is 5. With such numbers, a non-parametric test to
compute the normality is the best option. The Kolmogorov–Smirnov tests demon-
strate that there are not normal samples as shown in Table 2. Table 3 shows Post
Hoc comparisons between each pair of samples to check whether there are statisti-
cally meaningful differences among them. According to the table, there are not sta-
tistically meaningful differences between most samples, except between 2014–2015
and 2019–2020 courses.

Table 4 shows the number of students who pass the HPC subject each course.
2015–2016 course got the second-highest failure rate. This could be a hint of IM
is not helpful to acquire the “think in parallel” skill. The in-depth analysis of the
2015–2016 course performed below will allow us to test it out. Table 4 also shows
the letter grades obtained each course. It shows that the highest grades correspond
to 2015–2016 and 2019–2020 courses. To intuitively illustrate this, Fig. 3 shows
the grades’ percentage distribution. This figure shows that not only there is a high
percentage of A grades in 2015–2016 and 2019–2020 courses, but also they are the
only courses with A+ grades. Moreover, regarding the students who reached the
highest grades (A and A+), the average ratio is considerably higher in 2015–2016,
and 2019–2020 courses, 40% (As), and 20% (A+s); than the average ratio in the
remaining courses, 34.17% (As), and 0% (A+s). This fact may be an indicator that
IM is helpful to acquire the “think in parallel” skill.

Fig. 2 Scatter plots of messages versus grades (left) and words versus grades (right)

Table 7 PCC between grade and
messages and words

Messages Words

Grade 0.84 0.91

3910 Á. M. Guerrero-Higueras et al.

1 3

Regarding the descriptive statistics in Table 5, the mean and median in
2019–2020 course (8.8, and 9.0), where IM was used, are the highest compared to
the remaining courses. These values may be an indicator that IM helps students to
acquire the “think in parallel” skill. However, if we look out the mean and median
in the 2015–2016 course (6.3, and 5.5) are the lowest compared to the remaining
courses. Again, an in-depth analysis of 2015–2016 course is required to explain such
variations.

Further analysis of the 2015–2016 course was made by applying the CTMTC
methodology. The methodology considers five main aspects: objectives, responsi-
bilities, planning, norms, and execution. A chat room was created for each one.

First, students had to design the goal and objectives of their assignment. As a
result, they had to identify the technologies that were going to use and the code frag-
ments to be run on parallel.

Then, students chose which API they preferred to work with, although they
were aware that they also had to help others. After a debate process in the planning
chat room, they reached an agreement of who was responsible for each approach.
Observing how they made decisions, it was clear who had understood perfectly well
what had been studied during the previous lessons since they were more active giv-
ing arguments and deciding how to face the problem. They also found more chal-
lenging the use of libraries that had not been studied during the previous lessons
such as OpenCL.

Planning was the hardest part since they found it really difficult to estimate the
time of each task according to their messages. Lecturers had to be involved giving
some advice about how much time they should expend designing, developing, and
testing.

In order to properly work as a group, they established a set of rules after debating
them in the norms chat room.

Finally, they commented on all the aspects related to the execution in the execu-
tion chat room. Following their discussions, it was clear to identify who was able to
solve most of the problems, who provided useful solutions, who needed help, etc.

Fig. 3 Grades’ percentage distribution

3911

1 3

Facilitating the learning process in parallel computing by…

Lecturers as observers of the chat were able to give proper orientations to students
right away, supporting some good contributions of some students or refusing those
that were impossible to develop on time.

Table 6 shows detailed data of the 2015–2016 course. In addition to the numeri-
cal and letter grades, we can see the number of messages and words that each stu-
dent wrote in the chat rooms. Figure 2 shows the scatter plot of the number of mes-
sages versus grades, and the number of words versus grades. The figure shows a
strong positive correlation. To compute this correlation, Table 7 shows the PCC of
messages versus grades (0.84) and words versus grades (0.91).

According to Table 6 students 1, 2, and 7 did not pass the course. As mentioned
above, it is a high failure percentage comparing to other courses. Attending to the
number of messages, students with a high grade (A or A+), wrote between 29 and
70 messages. Considering the number of words, they wrote between 2008 and 4093
words. Numbers are quite different for students with a low grade (C), who wrote
between 2 and 10 messages, and between 258 and 421 words. If we look out to
the students who failed the course, the number of messages ranges between 0 and
16, and the number of words ranges between 0 and 449. These numbers allow for
explaining the high failure ration in the 2015–2016 course. This rate has to do with
the fact that students who failed or got a low grade did not interact with their mates
and that this fact was a drawback to them.

5 Conclusions

The “think in parallel” skill is essential for educational institutions and in order to
improve the employability of students. This study describes and evaluates the use
of IM applications to facilitate the learning process of parallel computing in Higher
Education.

The case study suggests that using Gitter has a positive impact on students’
interactions and final grades. Furthermore, students have a positive perception of
the experience, and they feel that it helps them to improve their skills in parallel
computing.

Results in 2015–2016, and 2019–2020 courses, compared to 2014–2015,
2016–2017, 2017–2018, and 2018–2019 courses, demonstrate that using IM to
interact with mates and lecturers has a positive effect on students’ results. Moreover,
results in the 2015–2016 course show that the usage of using IM has a strong posi-
tive correlation with the grades. Students who interacted most using the chat rooms
to collaborate with their mates got the highest results. On the contrary, students who
were not so actives in the chat rooms achieved a low grade or even failed the course.
The reason for that failure, since all students were working collaboratively, has to do
with the fact that students who failed were not able to keep the work pace of their
mates and they quit. However, students that continued working helped and were
helped by their peers, so finally they passed the subject. Gitter conversations make
clear the students that helped most to their mates and solve the most important prob-
lems they had to deal with got the best results. Tracking those instant messages also
makes it possible to realize how students that in other circumstances would not be

3912 Á. M. Guerrero-Higueras et al.

1 3

able to pass the subject, were encouraged by their mates and oriented so as they kept
working achieving the objectives.

Further works have to do with the fact that there are not too much IM interaction
data to work with. Obtaining more data will allow for analyzing such interactions to
understand their effects on academic success. On the other hand, since the sample
size is small, students’ individual motivation may have a high impact on the results,
so its analysis would be desirable.

It would be also interesting to compare interaction using IM, with other interac-
tion methods such as email, forums, etc. This comparison would allow for assert-
ing that IM encourages interaction more than any other kind of interaction between
students.

Besides, if IM usage is going to be encouraged, its scalability should be stud-
ied, since staying offline for some hours can make it very difficult following or even
understanding some conversations.

Acknowledgements This work was in part supported by the European Commission Erasmus+
(2018-1-ES01-KA201-050939) Grant, and by the Spanish Ministry of Science, Innovation, and Universi-
ties RTI (RTI2018-100683-B-I00) Grant.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

 1. Stadista. Most popular global mobile messenger apps as of October 2019, based on number of
monthly active users. https ://www.stati sta.com/stati stics /25874 9/most-popul ar-globa l-mobil e-messe
nger-apps/. Accessed 19 Apr 2020

 2. Carnevale D (2006) Email is for old people. Chron High Educ 53(7):A27
 3. Wang J (2013) What higher educational professionals need to know about today’s students: online

social networks. Turk Online J Educ Technol 12(3):180
 4. Lewis C, Fabos B (2005) Instant messaging, literacies, and social identities. Read Res Q 40(4):470
 5. Jeong W (2007) Instant messaging in on-site and online classes in higher education. Educause Q

30(1):30
 6. Hrastinski S, Edman A, Andersson F, Kawnine T, Soames CA (2014) Informal math coaching by

instant messaging: two case studies of how university students coach k-12 students. Interact Learn
Environ 22(1):84

 7. Lents NH, Cifuentes OE (2010) Increasing student–teacher interactions at an urban commuter cam-
pus through instant messaging and online office hours. Electron J Sci Educ 14:2–13

 8. Smit I, Goede R (2012) Whatsapp with blackberry; can messengers be mxit, a philosophical
approach to evaluate social networking sites. Cape Peninsula University of Technology https ://repos
itory .nwu.ac.za/handl e/10394 /13628 . Accessed 7 Sept 2020

 9. Sweeny SM (2010) Writing for the instant messaging and text messaging generation: using new
literacies to support writing instruction. J Adolesc Adult Lit 54(2):121

 10. Lauricella S, Kay R (2013) Exploring the use of text and instant messaging in higher education
classrooms. Res Learn Technol 21:19061

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://repository.nwu.ac.za/handle/10394/13628
https://repository.nwu.ac.za/handle/10394/13628

3913

1 3

Facilitating the learning process in parallel computing by…

 11. Klein AZ, Junior JCdSF, Barbosa JLV, Baldasso L et al (2018) The educational affordances of
mobile instant messaging (mim): results of whatsapp® used in higher education. Int J Distance
Educ Technol 16(2):51

 12. Bouhnik D, Deshen M, Gan R (2014) Whatsapp goes to school: mobile instant messaging between
teachers and students. J Inf Technol Educ Res 13(1):217

 13. Fox AB, Rosen J, Crawford M (2009) Distractions, distractions: Does instant messaging affect col-
lege students’ performance on a concurrent reading comprehension task? Cyber Psychol Behav
12(1):51

 14. Junco R, Cotten SR (2011) Perceived academic effects of instant messaging use. Comput Educ
56(2):370

 15. Gronseth S, Hebert W (2019) Groupme: investigating use of mobile instant messaging in higher
education courses. TechTrends 63(1):15

 16. Conde MÁ, Rodríguez-Sedano FJ, Sánchez-González L, Fernández-Llamas C, Rodríguez-Lera FJ,
Matellán-Olivera V (2016) In: Proceedings of the Fourth International Conference on Technological
Ecosystems for Enhancing Multiculturality, pp 787–794

 17. BOE-A-2009-12977. Resolución de 8 de junio de 2009, de la Secretaría General de Universidades,
por la que se da publicidad al Acuerdo del Consejo de Universidades, por el que se establecen reco-
mendaciones para la propuesta por las universidades de memorias de solicitud de títulos oficiales en
los ámbitos de la Ingeniería Informática, Ingeniería Técnica Informática e Ingeniería Química. https
://www.boe.es/boe/dias/2009/08/04/pdfs/BOE-A-2009-12977 .pdf. Accessed 21 Apr 2020

 18. Vallepuga-Espinosa J, Sánchez-González L, Ubero-Martínez I, Riego-Del Castillo V (2018) In: The
13th International Conference on Soft Computing Models in Industrial and Environmental Applica-
tions. Springer, pp 544–552

 19. González R, Vallepuga J, Sánchez L (2011) In: XXII Jornadas de Paralelismo, La Laguna, Spain
 20. NVIDIA. CUDA Zone. https ://devel oper.nvidi a.com/cuda-zone. Accessed 31 Jan 2020
 21. K. group. OpenCL overview. https ://www.khron os.org/openc l/. Accessed 31 Jan 2020
 22. Supercomputación Castilla y León (SCAyLE). Sistemas y recursos. https ://www.scayl e.es/solic itar_

una_cuent a_de_usuar io/siste mas-y-recur sos/. Accessed 31 Jan 2020
 23. Lerís D, Fidalgo Á, Sein-Echaluce ML (2014) A comprehensive training model of the teamwork

competence. Int J Learn Intellect Cap 14 11(1):1
 24. Fidalgo-Blanco Á, Sein-Echaluce ML, García-Peñalvo FJ, Conde MÁ (2015) Using learning analyt-

ics to improve teamwork assessment. Comput Hum Behav 47:149

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.boe.es/boe/dias/2009/08/04/pdfs/BOE-A-2009-12977.pdf
https://www.boe.es/boe/dias/2009/08/04/pdfs/BOE-A-2009-12977.pdf
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
https://www.scayle.es/solicitar_una_cuenta_de_usuario/sistemas-y-recursos/
https://www.scayle.es/solicitar_una_cuenta_de_usuario/sistemas-y-recursos/

	Facilitating the learning process in parallel computing by using instant messaging
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 High-performance computing
	2.2 Practical assignment
	2.3 Gitter
	2.4 Evaluation

	3 Results
	4 Discussion
	5 Conclusions
	Acknowledgements
	References

