Skip to main content
Log in

A theoretical investigation on the kinetics and reactivity of the gas-phase reactions of ethyl chlorodifluoroacetate with OH radical and Cl atom at 298 K

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism, kinetics, and thermochemistry of the gas-phase reactions of CF2ClC(O)OCH2CH3,ethyl chlorodifluoroacetate (ECDFA) with the OH radical and Cl atom are investigated. Geometry optimization and frequency calculations have been performed at the MPWB1K/6-31+G(d,p) level of theory and energetic information is refined by using G2(MP2) theory. Transition states are searched on the potential energy surface of reaction channels and each of the transition states is characterized by the presence of only one imaginary frequency. Connections of the transition states between designated local minima are confirmed by intrinsic reaction coordinate calculation. Theoretically calculated rate constants at 298 K using the Canonical Transition State Theory are found to be in good agreement with the experimentally measured ones. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CF2ClC(O)OCH2CH3, CF2ClC(O)OCH2CH2, and CF3C(O)OCHCH3 are also reported for the first time. The hydrogen abstraction occurs mainly from –CH2 group. The T1 diagnostic calculation suggests that the multi-reference character is not an issue for such systems. The estimated atmospheric life time of ECDFA is expected to be around 24 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tsai WT (2005) J Hazard Mater 119:69–78

    Article  CAS  Google Scholar 

  2. Sekiya A, Misaki S (2000) J Fluor Chem 101:215–221

    Article  CAS  Google Scholar 

  3. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  4. Oyaro N, Sellevag SR, Nielsen C (2005) J Phys Chem A 109:337–346

    Article  CAS  Google Scholar 

  5. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215–223

    Article  CAS  Google Scholar 

  6. Dalmasso PR, Nieto JD, Taccone RA, Teruel MA, Lane SI (2006) J Phys Org Chem 19:771–775

    Article  CAS  Google Scholar 

  7. Singh HJ, Mishra BK (2010) J Mol Model 16:1473–1480

    Article  CAS  Google Scholar 

  8. Singh HJ, Mishra BK (2011) J Mol Model 17:415–422

    Article  CAS  Google Scholar 

  9. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  10. Chen L, Kutsuna S, Tokuhashi K, Sekiya A (2004) Chem Phys Lett 400:563–568

    Article  CAS  Google Scholar 

  11. Singh HJ, Mishra BK, Rao PK (2010) Bull Korean Chem Soc 31:3718–3722

    Article  CAS  Google Scholar 

  12. Blanco MB, Barnes I, Teruel MA (2010) J Phys Org Chem 23:950–954

    Article  CAS  Google Scholar 

  13. Ninomiya Y, Kawasaki M, Guschin A, Molina LT, Molina MJ, Wallington TJ (2000) Environ Sci Technol 34(14):2973–2978

    Article  CAS  Google Scholar 

  14. Dalmasso PR, Taccone RA, Nieto JD, Teruel MA, Lane SI (2006) Atmos Environ 40:7298–7303

    Article  CAS  Google Scholar 

  15. Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR (1996) J Geophys Res 101:4331–4340

    Article  CAS  Google Scholar 

  16. Andersen MPS, Nielsen OJ, Wallington TJ, Hurley MD, DeMoore GW (2005) J Phys Chem A 109:3926–3934

    Article  CAS  Google Scholar 

  17. Mellouki A, Bras GL, Sidebottom H (2003) Chem Rev 103:5077–5096

    Article  CAS  Google Scholar 

  18. Blanco MB, Teruel MA (2007) Chem Phys Lett 441:1–6

    Article  CAS  Google Scholar 

  19. Blanco MB, Teruel MA (2007) Atmos Environ 41(34):7330–7338

    Article  CAS  Google Scholar 

  20. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2008) Chem Phys Lett 453:18–23

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford

  22. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  23. Chakrabatty AK, Mishra BK, Bhattacharjee D, Deka RC (2013) Mol Phys 111:860–867

    Article  Google Scholar 

  24. Mishra BK, Chakrabatty AK, Deka RC (2013) J Mol Model 19:2189–2195

    Article  CAS  Google Scholar 

  25. Mishra BK, Chakrabatty AK, Bhattacharjee D, Deka RC (2013) Struct Chem (in press). doi:10.1007/s11224-013-0203-7

  26. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  27. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293–1298

    Article  CAS  Google Scholar 

  28. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theor Comput 6:2872–2887

    Article  CAS  Google Scholar 

  29. Rienstra-Kiracofe JC, Allen WD, Schaefer HF III (2000) J PhysChem A 104:9823–9840

    CAS  Google Scholar 

  30. Lee TJ, Taylor PR (1989) Int J Quant Chem Quant Chem Symp S23:199–207

    Google Scholar 

  31. Kuchitsu K (1998) Structure of free polyatomic molecules basic data, vol 1. Springer, Berlin, p 58

    Book  Google Scholar 

  32. Zhurko G, Zhurko D (2011) ChemCraft Program Academic, version 1.6

  33. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  34. Lide DR (2008–2009) CRC handbook of chemistry and physics, 89th edn. CRC Press, New York

    Google Scholar 

  35. Good DA, Fransisco JS (1998) J Phys Chem A 102:7143–7148

    Article  CAS  Google Scholar 

  36. Chase MW Jr (1998) JANAF Thermochemical tables, 3th edn. J Phys Chem Ref Data Monogr 9:1–1951

    Google Scholar 

  37. Manion JA (2002) J Phys Chem Ref Data 31:123–172

    Article  CAS  Google Scholar 

  38. Wiberg KB, Crocker LS, Morgan KM (1991) J Am Chem Soc 113:3447–3450

    Article  CAS  Google Scholar 

  39. Pilcher G, Pell AS, Coleman D (1964) J Trans Faraday Soc 60:499–505

    Article  CAS  Google Scholar 

  40. Csontos J, Rolok Z, Das S, Kallay M (2010) J Phys Chem A 114:13093–13103

    Article  CAS  Google Scholar 

  41. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  42. Wigner EP (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

  43. Truhlar DG, Chuang YY (2000) J Chem Phys 112:1221–1228

    Article  Google Scholar 

  44. Mao WX, Long ZW, Wang YB, Long CY, Qin SJ (2013) Struct Chem 24:383–392

    Article  CAS  Google Scholar 

  45. Andersen VF, Berhanu TA, Nilsson EJK, Jørgensen S, Nielsen OJ, Wallington TJ, Johnson MS (2011) J Phys Chem A 115:8906–8919

    Article  CAS  Google Scholar 

  46. Jørgensen S, Andersen VF, Nilsson EJK, Nielsen OJ, Berhanu TA, Johnson MS (2010) Chem Phys Lett 490:116–122

    Article  Google Scholar 

  47. Singh HJ, Mishra BK, Gour NK (2010) Theor Chem Acc 125:57–64

    Article  CAS  Google Scholar 

  48. Singh HJ, Mishra BK, Gour NK (2009) Bull Korean Chem Soc 30:2973–2978

    Article  CAS  Google Scholar 

  49. Chandra AK, Uchimaru T (2000) J Phys Chem A 104:8535–8539

    Article  CAS  Google Scholar 

  50. Papadimitriou VC, Kambanis KG, Lazarou YG, Papagiannakopoulos P (2004) J Phys Chem A 108:2666–2674

    Article  CAS  Google Scholar 

  51. Kurylo MJ, Orkin VL (2003) Chem Rev 103:5049–5076

    Article  CAS  Google Scholar 

  52. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Nature 394:353–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Science and Technology, New Delhi for financial support. BKM thanks University Grants Commission, New Delhi for providing post doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Deka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B.K., Chakrabartty, A.K. & Deka, R.C. A theoretical investigation on the kinetics and reactivity of the gas-phase reactions of ethyl chlorodifluoroacetate with OH radical and Cl atom at 298 K. Struct Chem 25, 463–470 (2014). https://doi.org/10.1007/s11224-013-0312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0312-3

Keywords

Navigation