Skip to main content
Log in

Quantum chemical calculations of the pK a of C60H2 in DMSO, toluene—DMSO mixture, and water

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Using quantum chemical calculations, the first pK a values of dihydrofullerene C60H2 and test carbon compounds were determined in three solvents. The gas-phase free energies were calculated at the DFT/B3LYP/6-31G(d)//B3LYP/6-311++G(2d,p) level, while the free energies of solvation were found by HF and B3LYP methods combined with the polarizable continuum model (PCM). The PCM parameters for fullerene C60 and its derivatives were obtained from the calibration procedure. The R(C) radii of the solvation cavity of the fullerene C atoms were estimated taking into account the AO hybridization in the non-planar aromatic system of the fullerene C60 and from the calculation data of constant electron density contours. The R(C) values for the C60H anion were derived from consideration of the thermodynamic cycle of pK a changes in DMSO and in a toluene—DMSO system for saccharin and dihydrofullerene. The calculations carried out for test carboxylic acids reflect rather accurately the gas-phase basicities and pK a in water and DMSO. The calculations for solutions demonstrated that C60H2 has much lower pK a than the test aromatic molecules, which is mainly caused by the contribution of the gas-phase basicity. The absolute value of pK a of the dihydrofullerene C60H2 in DMSO obtained in this way is 3.8, while in water, it is ∼5 units higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Fullerenes, Eds H. W. Kroto, J. E. Fischer, D. E. Cox, Pergamon Press, Oxford, UK, 1993.

    Google Scholar 

  2. M. Bühl, A. Hirsch, Chem. Rev., 2001, 101, 1153.

    Article  Google Scholar 

  3. E. Nakamura, H. Isobe, Acc. Chem. Res., 2003, 36, 807.

    Article  CAS  Google Scholar 

  4. P. A. Troshin, R. N. Lubovskaya, Russ. Chem. Rev. (Eng. Transl.), 2008, 77, 323 [Usp. Khim., 2008, 77, 323].

    Article  Google Scholar 

  5. P. A. Troshin, O. A. Troshina, R. N. Lyubovskaya, V. F. Razumov, Funktsional’nye proizvodnye fullerenov: metody sinteza i perspektivy ispol’zovaniya v organicheskoi elektronike i biomeditsine [Functional Derivatives of Fullerenes: Methods of Synthesis and Prospective Applications in Organic Electronics and Biomedicine], Izd. IvGU, Ivanovo, 2nd ed., 2010, 340 pp. (in Russian).

    Google Scholar 

  6. R. S. Ruoff, D. S. Tse, R. Malhotra, D. C. Lorents, J. Phys. Chem., 1993, 97, 3379.

    Article  CAS  Google Scholar 

  7. M. V. Korobov, A. L. Smith, in Fullerenes: Chemistry, Physics, and Technology, Eds K. M. Kadish, R. S. Ruoff, ECS, 2000, p. 53.

  8. C. T. Jafvert, P. P. Kulkarni, Environ. Sci. Technol., 2008, 42, 5945.

    Article  CAS  Google Scholar 

  9. P. J. Fagan, P. J. Krusic, D. H. Evans, S. A. Lerke, E. Johnston, J. Am. Chem. Soc., 1992, 114, 9697.

    Article  CAS  Google Scholar 

  10. M. E. Niyazymbetov, D. H. Evans, S. A. Lerke, P. A. Cahill, C. C. Henderson, J. Phys. Chem., 1994, 98, 13093.

    Article  CAS  Google Scholar 

  11. B. Jousselme, G. Sonmez, F. Wudl, J. Mater. Chem., 2006, 16, 3478.

    Article  CAS  Google Scholar 

  12. S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys., 1981, 55, 117.

    Article  Google Scholar 

  13. V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys., 1997, 107, 3210.

    Article  CAS  Google Scholar 

  14. M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys., 2002, 117, 43.

    Article  CAS  Google Scholar 

  15. W. A. Shapley, G. B. Bacskay, G. G. Warr, J. Phys. Chem. B, 1998, 102, 1938.

    Article  CAS  Google Scholar 

  16. G. Schüürmann, M. Cossi, V. Barone, J. Tomasi, J. Phys. Chem. A, 1998, 102, 6706.

    Article  Google Scholar 

  17. I. A. Topol, G. J. Tawa, R. A. Caldwell, M. A. Eissenstat, S. K. Burt, J. Phys. Chem. A, 2000, 104, 9619.

    Article  CAS  Google Scholar 

  18. M. D. Liptak, G. C. Shields, J. Am. Chem. Soc., 2001, 123, 7314.

    Article  CAS  Google Scholar 

  19. M. D. Liptak, K. C. Gross, P. G. Seybold, S. Feldgus, G. C. Shields, J. Am. Chem. Soc., 2002, 124, 6421.

    Article  CAS  Google Scholar 

  20. J. J. Kliciæ, R. A. Friesner, S.-Y. Liu, W. C. Guida, J. Phys. Chem. A, 2002, 106, 1327.

    Article  Google Scholar 

  21. D. Gao, P. Svoronos, P. K. Wong, D. Maddalena, J. Hwang, H. Walker, J. Phys. Chem. A, 2005, 109, 10776.

    Article  CAS  Google Scholar 

  22. K. Muriowska, N. Sadlej-Sosnowska, J. Phys. Chem. A, 2005, 109, 5590.

    Article  Google Scholar 

  23. J. Ho, M. L. Coote, J. Chem. Theory Comput., 2009, 5, 295.

    Article  CAS  Google Scholar 

  24. A. Trummal, A. Rummel, E. Lippmaa, P. Burk, I. A. Koppel, J. Phys. Chem. A, 2009, 113, 6206.

    Article  CAS  Google Scholar 

  25. J. Ho, M. L. Coote, Theor. Chem. Acc., 2010, 125, 3.

    Article  CAS  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford (CT), 2004.

    Google Scholar 

  27. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  28. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  29. A. P. Scott, L. Radom, J. Phys. Chem., 1996, 100, 16502.

    Article  CAS  Google Scholar 

  30. S. M. Blinder, Advanced Physical Chemistry, The Macmillan Company, Toronto, 1969.

    Google Scholar 

  31. R. A. Pierotti, Chem. Rev., 1976, 76, 717.

    Article  CAS  Google Scholar 

  32. J. Caillet, P. Claverie, B. Pullman, Acta Crystallogr., Sect. B, 1978, 34, 3266.

    Article  Google Scholar 

  33. R. C. Haddon, Science, 1993, 261, 1545.

    Article  CAS  Google Scholar 

  34. R. C. Haddon, Acc. Chem. Res., 1988, 21, 243.

    Article  CAS  Google Scholar 

  35. D. M. Chipman, J. Phys. Chem. A, 2002, 106, 7413.

    Article  CAS  Google Scholar 

  36. T. Yu. Dolinina, V. B. Luzhkov, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 1614 [Izv. Akad. Nauk. Ser. Khim., 2012, 1614].

    Article  Google Scholar 

  37. F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456.

    Article  CAS  Google Scholar 

  38. C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2007, 111, 408.

    Article  CAS  Google Scholar 

  39. P. Wang, A. Anderko, Fluid Phase Equil., 2001, 186, 103.

    Article  CAS  Google Scholar 

  40. C. J. F. Böttcher, Theory of Electric Polarization, v. 1, Elsevier, Amsterdam, 1973, p. 201.

    Google Scholar 

  41. E. Westphal, J. R. Pliego, Jr., J. Chem. Phys., 2005, 123, 074508.

    Article  Google Scholar 

  42. C. Kalidas, G. Hefter, Y. Marcus, Chem. Rev., 2000, 100, 819.

    Article  CAS  Google Scholar 

  43. J. R. Pliego Jr., J. M. Riveros, Phys. Chem. Chem. Phys., 2002, 4, 1622.

    Article  CAS  Google Scholar 

  44. M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, T.R. Tuttle Jr., J. Phys. Chem. A, 1998, 102, 7787.

    Article  CAS  Google Scholar 

  45. NIST Chemistry WebBook, NIST Standard Reference Data-base Number 69, Eds P. J. Linstrom, W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov.

  46. D. H. Ripin, D. A. Evans, pK a table, http://daecr1.harvard.edu/pdf/evans-pKa-table.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Luzhkov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0561–0566, March, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luzhkov, V.B. Quantum chemical calculations of the pK a of C60H2 in DMSO, toluene—DMSO mixture, and water. Russ Chem Bull 63, 561–566 (2014). https://doi.org/10.1007/s11172-014-0473-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0473-2

Key words

Navigation