Skip to main content
Log in

Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Drought stress (DS) is amongst one of the abiotic factors affecting plant growth by limiting productivity of crops by inhibiting photosynthesis. Damage due to DS and its protection by Arbuscular Mycorrhizal fungi (AMF) was studied on photosynthetic apparatus of wheat (Triticum aestivum) plants in pot experiments. DS was maintained by limiting irrigation to the drought stressed (DS) and AMF + DS plants. Relative Water content (RWC) was measured for leaf as well as soil to ensure drought conditions. DS plants had minimum RWC for both leaf and soil. AMF plants showed increased RWC both for leaf and soil indicating that AMF hyphae penetrated deep into the soil and provided moisture to the plants. In Chl a fluorescence induction curve (OJIP), a declined J–I and I–P phase was observed in DS plants. Efficacy of primary photochemistry declined in DS plants as result of DS, while AMF plants showed maximum photochemistry. DS leads to declined quantum efficiency of PSI and PSII in DS plants while it was restored in AMF + DS plants. Electron transport (ETRI and ETRII) decreased while quantum yield of non-photochemical quenching Y(NPQ) increased as a result of drought stress. CEF around PSI increased in DS-stressed plants. Efficient PSI complexes decreased in DS plants while in case of AMF plants PSI complexes were able to perform PSI photochemistry significantly. Thus, it is concluded that drought stress-induced damage to the structure and function of PSII and PSI was alleviated by AMF colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular Mycorrhiza fungi

DS:

Drought stress

LEF:

Linear electron flow

Pm:

Maximal change in P700 signal

PSI:

Photosystem I

PSII:

Photosystem II

RWC:

Relative water content

Y(I):

Quantum yield of PSI

Y(II):

Quantum yield of PSII

Y(NA):

Quantum yield of non-photochemical energy dissipation due to acceptor-side limitation

Y(ND):

Quantum yield of non-photochemical energy dissipation due to donor-side limitation

Y(NO):

Yield of non-regulated energy dissipation.

Y(NPQ):

Yield of regulated energy dissipation

References

  • Abdel-Salam E, Alatar A, El-Sheikh MA (2017) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2017.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Toler HD, Moore JL, Cho K, Saxton AM (2007) Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J Plant Physiol 164:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Biermann BJ, Lindermann RQ (1981) Quantifying vesicular-arbuscular mycorrhizae: proposed method towards standardization. New Phytol 87:63–67

    Article  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166

    Article  CAS  PubMed  Google Scholar 

  • Ceppi MG, Oukarroum A, Cicek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Yang G, Sheng Y, Li P, Qiu H, Zhou X, Huang L, Chao Z (2017) Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Front Plant Sci 8:931

    Article  PubMed  PubMed Central  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochim Biophys Acta 1767:272–280

    Article  CAS  PubMed  Google Scholar 

  • Eichelmann H, Laisk A (2000) Cooperation of photosystems II and I in leaves as analysed by simultaneous measurements of chlorophyll fluorescence and transmittance at 800 nm. Plant Cell Physiol 41:138–147

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Lizarazo JC, Moreno-Fonseca LP (2016) Mechanisms for tolerance to water-deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agrono Colomb 34:179–189

    Article  Google Scholar 

  • Haneef I, Faizan S, Perveen R, Kausar S (2013) Role of arbuscular mycorrhizal fungi on growth and photosynthetic pigments in (Coriandrum sativum L.) grown under cadmium stress. World J Agric Sci 9:245–250

    Google Scholar 

  • Huan L, Xie X, Zheng Z, Sun F, Wu S, Li M, Gao S, Gu W, Wang G (2014) Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga. Plant Cell Physiol 55:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Zhang SB, Cao KF (2010) Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. Plant Cell Physiol 51:1922–1928

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Zou Z, He c, He Z, Zhang Z, Li J (2011) Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 339:391–399

    Article  CAS  Google Scholar 

  • Huang W, Yang YJ, Hu H, Zhang SB (2015) Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves. Front Plant Sci 6:923

    PubMed  PubMed Central  Google Scholar 

  • Huang YM, Zou YN, Wu QS (2017) Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci Rep 7:42335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AG, Hendrickson L, Krol M, Selstam E, Oquist G, Hurry V, Huner NPA (2006) Digalactosyl-Diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to Photosystem I acceptor-side limitations. Plant Cell Physiol 47:1146–1157

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, Losciale P, Mishra VK, Misra AN, Nebauer SG, Pancaldi S, Penella C, Pollastrini M, Suresh MK, Tambussi E, Yanniccari M, Zivcak M, Cetner MD, Samborska IA, Stirbet A, Olsovska K, Kunderlikova K, Shelonzek H, Rusinowski S, Baba W (2017) Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res 132:13–66

    Article  CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem-I quantum yield via P700+ absorbance changes at 830 nm. Planta 192:261–268

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Kramer DM, Avenson TJ, Kanazawa A, Cruz JA, Ivanov B, Edwards GE (2004) The relationship between photosynthetic electron transfer and its regulation. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 251–278

    Chapter  Google Scholar 

  • Maboko MM (2013) Effect of arbuscular mycorrhiza and temperature control on plant growth, yield, and mineral content of tomato plants grown hydroponically. HortScience 48:1470–1477

    Article  CAS  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Sharma MP, Jajoo A (2018) Improved photosynthetic efficacy of maize (Zea mays) plants with Arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B 180:149–154

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence. Plant Cell Physiol 46:629–737

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X (2016) Regulation of plant growth, photosynthesis, antioxidation and osmosis by an Arbuscular mycorrhizal fungus in Watermelon seedlings under well-watered and drought conditions. Front Plant Sci 7:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Pebriansyah A, Karti PDMH, Permana AT (2012) Effect of drought stress and addition of Arbuscula mycorrhizal fungi (AMF) on growth and productivity of tropical grasses (Chloris gayana, Paspalum dilatatum, and Paspalum notatum). Pastura 2:41–48

    Google Scholar 

  • Percival GC, Hendersons A (2003) An assessment of the freezing tolerance of urban trees using chlorophyll fluorescence. J Hortic Sci Biotechnol 78:254–260

    Article  Google Scholar 

  • Pfündel E, Klughammer C, Ulrich S (2008) Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes 1:21–24

    Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Rapparini F, Llusia J, Pen J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NP, Simmonds J (2011) Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Plant Cell Physiol 52:1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Sharma MP, Singh S, Sharma SK, Ramesh A, Bhatia VS (2016) Co-inoculation of resident AM Fungi and soybean rhizobia enhanced nodulation, yield, soil biological parameters and saved Fertilizer inputs in vertisols under microcosm and field conditions. Soybean Res 14:39–53

    CAS  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2012) Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ 38:1699–1712

    Article  PubMed  Google Scholar 

  • Tomar RS, Jajoo A (2015) Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes. Ecotoxicol Environ Saf 122:31–36

    Article  CAS  PubMed  Google Scholar 

  • Tomar RS, Jajoo A (2017) PSI becomes more tolerant to fluoranthene through the initiation of cyclic electron flow. Funct Plant Biol 44:978–984

    Article  CAS  PubMed  Google Scholar 

  • Tu W, Li Y, Liu W, Wu L, Xie X, Zhang Y, Wilhelm C, Yang C (2016) Spring ephemerals adapt to extremely high light conditions via an unusual stabilization of Photosystem II. Front Plant Sci 6:1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Wang P, Liu JH, Xia RX, Wu QS, Wang MY, Dong T (2011) Arbuscular mycorrhizal development, glomalin-related soil protein (GRSP) content, andrhizospheric phosphatase activitiy in citrus orchards under different types of soil management. J Plant Nutr Soil Sci 174:65–72

    Article  CAS  Google Scholar 

  • Wężowicz K, Rozpądek P, Turnau K (2017) Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. Mycorrhiza 27:499–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Levy Y, Zou YN (2009) Arbuscular mycorrhizae and water relations in citrus. In: Tennant P, Benkeblia N (eds) Citrus II. Tree and forstry science biotechnology 3(Special Issue):105–112

  • Wu QS, Srivastava AK, Zou YN (2013) AMF- induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87

    Article  CAS  Google Scholar 

  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 33:612–625

    Article  CAS  Google Scholar 

  • Zhu J, Tremblay N, Liang Y (2012a) Comparing SPAD and at LEAF values for chlorophyll assessment in crop species. Can J Soil Sci 92:645 – 648

    Article  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012b) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58:186–191

    Article  CAS  Google Scholar 

  • Zhu XQ, Wang CY, Chen H, Tang M (2014) Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 52:247–252

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Kalaji HM, Shao HB, Olsovska K, Brestic M (2014a) Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photochem Photobiol B 137:107–115

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Olsovska K, Slamka P, Galambosova J, Rataj V, Shao HB, Brestic M (2014b) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influencedby nitrogen deficiency. Plant Soil Environ 60:210–215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SM acknowledges University Grants Commission, (UGC), India for awarding Post Doctoral Fellowship for Women (PDFWM-2014-15-GEMAD-23945). We would like to acknowledge Dr. S.V. Sai Prasad (Director, ICAR-IARI, Regional station, Indore) for providing wheat seeds and Dr. M.P. Sharma (PI, ICAR-IISR, Indore) for his kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Jajoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, S., Tomar, R.S. & Jajoo, A. Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynth Res 139, 227–238 (2019). https://doi.org/10.1007/s11120-018-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0538-4

Keywords

Navigation