Skip to main content
Log in

The fluorescence yield of the trimeric fucoxanthin–chlorophyll–protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The fluorescence yield of isolated fucoxanthin chlorophyll proteins, serving as light harvesting proteins in diatoms, was compared to the amount of diatoxanthin bound. Diatoxanthin was earlier shown to be involved in the xanthophyll cycle in diatoms as a functional analogue of zeaxanthin in higher plants. By growing cells under different light conditions, the amount of diatoxanthin in both the trimeric FCPa as well as the oligomeric FCPb of the diatom Cyclotella meneghiniana was increased. In the trimeric FCPa, the fluorescence yield decreased with increasing diatoxanthin content, whereas in the oligomeric FCPb fluorescence was generally lower, albeit constant. No pH dependence of fluorescence yield could be demonstrated except for artificially aggregated FCPa. Thus, diatoxanthin is able to quench fluorescence in FCPa, but the yield is also influenced by pH when the protein becomes aggregated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DDM:

ß-Dodecyl maltoside

Dd:

Diadinoxanthin

Dt:

Diatoxanthin

FCP:

Fucoxanthin chlorophyll protein

FP:

Free pigment

HL:

High light

HPLC:

High pressure liquid chromatography

LHC:

Light harvesting complex

LL:

Low light

NPQ:

Non-photochemical quenching

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Schnitzler Parker M, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45:13046–13053

    Article  PubMed  CAS  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: the 18 kDa and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    Article  PubMed  Google Scholar 

  • Eppard M, Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260:335–345

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209

    Article  CAS  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2006) Influence of ascorbate and pH on the activity of the diatom xanthophyll cycle-enzyme diadinoxanthin de-epoxidase. Physiol Plant 126:205–211

    Article  CAS  Google Scholar 

  • Gruszecki WI, Strzalka K (1991) Does the xanthophyll cycle take part in the regulation of fluidity of the thylakoids membrane? Biochim Biophys Acta 1060:310–314

    Article  CAS  Google Scholar 

  • Guglielmi G, Lavaud J, Rousseau B, Etienne A-L, Houmard J, Ruban AV (2005) The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. FEBS J 272:4339–4348

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrometric equations for determing chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    CAS  Google Scholar 

  • Lavaud J, Kroth PG (2006) In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant and Cell Physiol 47:1010–1016

    Article  CAS  Google Scholar 

  • Lavaud J, Rousseau B, van Gorkum HJ, Etienne AL (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planctonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Lavaud J, Rousseau B, Etienne AL (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42:5802–5808

    Article  PubMed  CAS  Google Scholar 

  • Papagiannakis E, van Stokkum I, Fey H, Büchel C, van Grondelle R (2005) Spectroscopic characterisation of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth Res 86:241–250

    Article  PubMed  CAS  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic lightharvesting. Nature 436:134–137

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne A-L (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae, a putative consequence of secondary endosymbiosis. Protist 157:91–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support for this work by Marie Curie Training and Research Network (Intro2, MRTN-CT-2003-505069) of the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Büchel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gundermann, K., Büchel, C. The fluorescence yield of the trimeric fucoxanthin–chlorophyll–protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95, 229–235 (2008). https://doi.org/10.1007/s11120-007-9262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9262-1

Keywords

Navigation