Skip to main content

Advertisement

Log in

Biocrust carbon isotope signature was depleted under a C3 forb compared to interspace

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Plants and biological soil crusts (biocrusts) are the key producers in drylands, but biocrusts seldom show net CO2 uptake. I hypothesized that biocrusts could augment CO2 fixation by incorporating plant-derived carbon.

Methods

I collected biocrusts located at the base of Gutierrezia sarothrae (C3 forb), Bouteloua gracilis (C4 grass), and from bare interspaces between plants, and from a mesocosm experiment with live B. gracilis or dead B. gracilis roots. To trace carbon sources, I determined 13C values of the biocrust community, isolated cyanobacteria and lichen, and plant leaves because the photosynthetic pathway distinguishes the tissue 13C values.

Results

Biocrust communities and washed cyanobacteria and cyanolichen in G. sarothrae microsites were depleted by ~2‰ relative to other locations. Biocrust δ13C did not differ between the interspace and live or dead B. gracilis.

Conclusions

Potential mechanisms for the trend in biocrust δ13C adjacent to C3 plants include differences in microsite conditions, biocrust communities, use of respired CO2 in the soil matrix for photosynthesis, or mixotrophic use of plant photosynthates. Further investigation of this observation may improve understanding of the degree to which the activities of dryland primary producers are coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahlstrom A, Raupach MR, Schurgers G, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Pulter B, Sitch S, Stocker BD, Viovy N, Wang YP, Wiltshire A, Zaehle S, Zeng N (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–899

    Article  PubMed  CAS  Google Scholar 

  • Amundson ARG, Chadwick OA, Sowers JM (1989) A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert. Oecologia 80:395–400

    Article  PubMed  CAS  Google Scholar 

  • Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54:345–358

    Article  Google Scholar 

  • Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci 107:4618–4622

    Article  PubMed  Google Scholar 

  • Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol Plant 84:606–615

    Article  CAS  Google Scholar 

  • Bai E, Boutton TW, Liu F, Archer SI (2012) Spatial patterns of soil d13C reveal grassland-to-woodland successional processes. Org Geochem 42:1512–1518

    Article  CAS  Google Scholar 

  • Beck A, Mayr C (2012) Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont-photobiont interactions. Ecol Evol 2:3132–3144

    Article  PubMed  PubMed Central  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah. USA Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J, Budel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin/Heidelberg

    Google Scholar 

  • Benner R, Fogel M, Sprague EK, Hodson RE (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708–710

    Article  CAS  Google Scholar 

  • Berdugo M, Soliveres S, Maestre FT (2014) Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17:1242–1256

    Article  CAS  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Article  Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40

    Article  PubMed  CAS  Google Scholar 

  • Bowling DR, Grote EE, Belnap J (2011) Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado plateau, United States. J Geophys Res 116:1–17

    Google Scholar 

  • Brandt LA, King JY, Hobbie SE, Milchunas DG, Sinsabaugh RL (2010) The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13:765–781

    Article  CAS  Google Scholar 

  • Breecker DO, Sharp ZD, McFadden LD (2009) Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico. USA Bull Geol Soc Am 121:630–640

    Article  CAS  Google Scholar 

  • Breecker DO, Bergel S, Nadel M, Tremblay MM, Osuna-Orozco R, Larson TE, Sharp ZD (2015) Minor stable carbon isotope fractionation between respired carbon dioxide and bulk osil organic matter during laboratory incubation of topsoil. Biogeochem 123:83–90

    Article  CAS  Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschutz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489

    Article  CAS  Google Scholar 

  • Cable JM, Huxman TE (2004) Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141:317–324

    Article  PubMed  Google Scholar 

  • Connin SL, Feng X, Virginia RA (2001) Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biol Biochem 33:41–51

    Article  CAS  Google Scholar 

  • Cuna S, Balas G, Hauer E (2007) Effects of natural environmental factors on delta13C of lichens. Isot Environ Health Stud 43:95–104

    Article  CAS  Google Scholar 

  • Darby BJ, Neher DA (2012) Stable isotope composition of microfauna supports the occurrence of biologically fixed nitrogen from cyanobacteria in desert soil food webs. J Arid Environ 85:76–78

    Article  Google Scholar 

  • Darrouzet-Nardi A, Reed SC, Grote EE, Belnap J (2015) Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils. Biogeochemistry 126:363–378

    Article  CAS  Google Scholar 

  • de Guevara ML, Lázaro R, Quero JL, Ochoa V, Gozalo B, Berdugo M, Uclés O, Escolar C, Maestre FT (2014) Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. Biodivers Conserv 23:1787–1807

    Article  Google Scholar 

  • Dumig A, Rumpel C, Dignac MF, Kogel-Knabner I (2013) The role of lignin for the delta13C signature in C4 grassland and C3 forest soils. Soil Biol Biochem 57:1–13

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Fernandez I, Mahieu N, Cadisch G (2003) Carbon isotopic fractionation during decomposition of plant materials of different quality. Glob Biogeochem Cycles 17:1075

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    Article  PubMed  CAS  Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    Article  CAS  Google Scholar 

  • Gustavs L, Schumann R, Karsten U, Lorenz M (2016) Mixotrophy in the terrestrial green alga Apatococcus lobatus Trebouxiophyceae. Chlorophyta J Phycol 52:311–314

    Article  PubMed  CAS  Google Scholar 

  • Harris D, Horwáth WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856

    Article  CAS  Google Scholar 

  • Hinga KR, Arthur MA, Pilson MEQ, Whitaker D (1994) Carbon isotope fractionation by marine phytoplankton in culture: the effects of CO2 concentration, pH, temperature, and species. Glob Biochem Cycles 8:91–102

    Article  CAS  Google Scholar 

  • Hobbie EA, Werner RA (2004) Bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385

    Article  CAS  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268

    Article  PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bonisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernandez-Mendez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kuhn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusia J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Muller SC, Nadrowski K, Naeem S, Niinemets U, Nollert S, Nuske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordonez J, Overbeck G, Ozinga WA, Patino S, Paula S, Pausas JG, Penuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY - a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  PubMed Central  Google Scholar 

  • Keeling R F, Piper S C, Bollenbacher A F, and Walker S J 2010 Monthly atmospheric 13C/12C isotopic ratios for 11 SIO stations. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn, U.S.A.

  • Kieft TL, White CS, Loftin SR, Aguilar R, Craig JA, Skaar DA (1998) Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone. Ecology 79:671–683

    Google Scholar 

  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milchunas DG, Lee CA, Laurenroth WK, Coffin DP (1992) A comparison of 14C, 86Rb, and total excavation for determination of root distributions of individual plants. Plant Soil 144:125–132

    Article  CAS  Google Scholar 

  • Moore D I (2016) Meteorology Data from the Sevilleta National Wildlife Refuge, New Mexico 1988- present Dataset. http://sev.lternet.edu/content/meteorology-data-sevilleta-national-wildlife-refuge-new-mexico-1988-present. Accessed 15 May 2016

  • Mun HT, Whitford WG (1998) Changes in mass and chemistry of plant roots during long-term decomposition on a Chihuahuan Desert watershed. Biol Fertil Soils 26:16–22

    Article  CAS  Google Scholar 

  • Murphy KL, Klopatek JM, Klopatec CC (1998) The effects of litter quality and climate on decomposition along an elevational gradient. Ecol Appl 8:1061–1071

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Article  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partioning using stable isotopes: coping with too much variation. PLoS One 5:e9672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Prǎvǎlie R (2016) Drylands extent and environmental issues: a global approach. Earth-Science Rev 161:259–278

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond Ser B Biol Sci 363:2641–2650

    Article  CAS  Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187

    Article  Google Scholar 

  • Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Chang Biol 13:426–436

    Article  Google Scholar 

  • Steven B, Gallegos-Graves LV, Yeager C, Belnap J, Kuske CA (2014) Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils. Soil Biol Biochem 69:302–312

    Article  CAS  Google Scholar 

  • Tiunov AV (2007) Stable isotopes of carbon and nitrogen in soil ecological studies. Biol Bull 34:395–407

    Article  CAS  Google Scholar 

  • Vuorio K, Meili M, Sarvala J (2006) Taxon-specific variation in the stable isotopic signatures d13C and d15N of lake phytoplankton. Freshw Biol 51:807–822

    Article  CAS  Google Scholar 

  • Wada E, Ohki K, Yoshikawa S, Parker PL, Van Baalen C, Matsumoto GI, Aita MN, Saino T (2012) Ecological aspects of carbon and nitrogen isotope ratios of cyanobacteria. Plankt Benthos Res 7:135–145

    Article  Google Scholar 

  • Wang C, Liu D, Luo W, Fang Y, Wang X, Lü X, Jiang Y, Hang X, Bai E (2016) Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in Northern China. J Plant Ecol 9:1–10

  • Wedin DA, Tieszen LL, Dewey B, Pastor J (1995) Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76:1383–1392

    Article  Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42:1372–1384

    Article  CAS  Google Scholar 

  • Western Regional Climate Center (2015) Local Climate Data Summaries. http://www.wrcc.dri.edu/summary/saf.nm.html. Accessed 31 Dec 2015

  • Wilske B, Burgheimer J, Karnieli A, Zaady E, Andreae MO, Yakir D, Kesselmeier J (2008) The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. Biogeosciences 5:1411–1423

    Article  CAS  Google Scholar 

  • Yang W, Magid J, Christensen S, Ronn R, Ambus P, Ekelund F (2014) Biological 12C-13C fractionation increases with increasing community-complexity in soil microcosms. Soil Biol Biochem 69:197–201

    Article  CAS  Google Scholar 

  • Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc Flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133

    Article  CAS  Google Scholar 

  • Zelikova TJ, Housman DC, Grote EE, Neher DA, Belnap J (2012) Warming and increased precipitation frequency on the Colorado plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–282

    Article  CAS  Google Scholar 

  • Zhou T, Yu R, Li H, Wang B (2008) Ocean forcing to changes in global monsoon precipitation over the recent half-century. J Clim 21:3833–3852

    Article  Google Scholar 

Download references

Acknowledgements

Jenn Rudgers, Bob Sinsabaugh, Lee Taylor, Matt Bowker, and four anonymous reviewers provided valuable manuscript feedback. This project originated as a project funded by Zack Sharp’s Stable Isotope Biogeochemistry course and I received feedback from Dr. Sharp and the other students in the course. Viorel Atudorei and Laura Burkemper provided assistance with sample preparation and processing. The Sevilleta Long Term Ecological Research site (NSF DEB #1440478) and Sevilleta Field Station provided logistic support for sampling. I thank my dad, Creighton Robinson, for letting me sample on his property. Manuscript was prepared with support from NSF DEB DDIG#1557135 and NSF DEB #1557135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Dettweiler-Robinson.

Additional information

Responsible Editor: Matthew A. Bowker.

Electronic supplementary material

ESM 1

(DOCX 81.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dettweiler-Robinson, E. Biocrust carbon isotope signature was depleted under a C3 forb compared to interspace. Plant Soil 429, 101–111 (2018). https://doi.org/10.1007/s11104-017-3558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3558-5

Keywords

Navigation