Skip to main content

Advertisement

Log in

Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Root traits play a critical role in plant resource-use strategies and ecosystem functioning, but there is great controversy regarding their identity and functionality in different dimensions of belowground functional variation. Here, we explored the level of covariation among a suite of key root traits (i.e. specific root length, root dry matter content, diameter and density) as well as between them and two aboveground traits related with plant function (leaf nutrient concentration and specific leaf area). We also evaluated whether these patterns of trait covariation were consistent at different spatial scales and organisational levels.

Methods

We collected fine root (< 2 mm) samples of 534 individuals (of 80 woody species) along a wide regional range of environmental conditions in southern Spain.

Results

In general, strong correlations among most of the root morphological traits were found, supporting the existence of a ‘root economics spectrum’, as well as between root traits and the aboveground traits. However, root diameter was not completely aligned along this ecological axis, supporting the idea of a multidimensional spectrum of root traits. The main syndrome of root trait covariation was consistent at the different spatial scales and organisational levels. Soil nutrients and water availability were the main drivers of root trait variation.

Conclusions

Our results indicate that root trait variation is primarily aligned along a leading dimension related to resource economics. However, the distinct pattern of root diameter may indicate a multidimensionality of belowground traits that needs to be explored in greater depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SRL:

Specific root length (root length per unit of root dry mass)

SRA:

Specific root area (root area per unit of root dry mass)

RDI:

Root diameter

RDMC:

Root dry matter content (root dry mass per unit of water-saturated fresh mass)

RTD:

Root tissue mass density (root dry mass per root volume)

References

  • Alameda D, Villar R (2012) Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ Exp Bot 79:49–57

    Article  Google Scholar 

  • Antúnez I, Retamosa EC, Villar R (2001) Relative growth rate in phylogenetically related deciduous and evergreen woody species. Oecologia 128:172–180

    Article  PubMed  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Barkaoui K, Roumet C, Volaire F (2016) Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric Ecosyst Environ 231:122–132

    Article  Google Scholar 

  • Bejarano MD, Villar R, Murillo AM, Quero JL (2010) Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Tillage Res 110:108–114

    Article  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant. Neth J Agric Sci 10:399–408

  • Caldwell MM, Richards JH (1986) Competing root systems: morphology and models of absorption. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 251–273

    Google Scholar 

  • Chave J, Coomes D, Jansen S et al (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Chen W, Zeng H, Eissenstat DM, Guo D (2013) Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Glob Ecol Biogeogr 22:846–856

    Article  Google Scholar 

  • Cingolani AM, Cabido M, Gurvich DE, Renison D, Díaz S (2007) Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? J Veg Sci 18:911–920

    Article  Google Scholar 

  • Comas LH, Bouma TJ, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43

    Article  CAS  PubMed  Google Scholar 

  • Cordlandwehr V, Meredith RL, Ozinga WA et al (2013) Do plant traits retrieved from a database accurately predict on-site measurements? J Ecol 101:662–670

    Article  Google Scholar 

  • Cornelissen JHC, Castro Díez P, Hunt R (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J Ecol 84:755–765

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • de la Riva EG, Pérez-Ramos IM, Navarro-Fernández C et al (2016a) Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos 125:354–363

    Article  Google Scholar 

  • de la Riva EG, Tosto A, Pérez-Ramos IM et al (2016b) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199

    Article  Google Scholar 

  • de la Riva EG, Lloret F, Pérez-Ramos IM et al (2017) The importance of functional diversity in the stability of Mediterranean shrubland communities after the impact of extreme climatic events. J Plant Ecol 10:281–293

    Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH et al (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  Google Scholar 

  • Domínguez MT, Aponte C, Pérez-Ramos IM et al (2012) Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357:407–424

    Article  Google Scholar 

  • Eissenstat DM (1991) On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol 118:63–68

    Article  Google Scholar 

  • Eissenstat D (2002) Root structure and function in an ecological context. New Phytol 148:353–354

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Fort F, Jouany C, Cruz P (2013) Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies. J Plant Ecol 6:211–219

    Article  Google Scholar 

  • Fort F, Volaire F, Guilioni L et al (2017) Root traits are related to plant water use among rangeland Mediterranean species. Funct Ecol. https://doi.org/10.1111/1365-2435.12888

  • Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Evidence of the “plant economics spectrum” in a subarctic flora. J Ecol 98:362–373

    Article  Google Scholar 

  • Funk JL, Cornwell WK (2013) Leaf traits within communities: context may affect the mapping of traits to function. Ecology 94:1893–1897

    Article  PubMed  Google Scholar 

  • Garnier E, Cortez J, Billes G et al (2004) Plant functional markers capture ecosystem properties. Ecology 85:2630–2637

    Article  Google Scholar 

  • Genney DR, Alexander IJ, Hartley SE (2002) Soil organic matter distribution and belowground competition between Calluna vulgaris and Nardus stricta. Funct Ecol 16:664–670

    Article  Google Scholar 

  • Gilliham M, Dayod M, Hocking BJ et al (2011) Calcium delivery and storage in plant leaves: exploring the link with water flow. J Exp Bot 62:2233–2250. https://doi.org/10.1093/jxb/err111

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260

    Article  Google Scholar 

  • Heberling JM, Fridley JD (2012) Biogeographic constraints on the world-wide leaf economics spectrum. Glob Ecol Biogeogr 21:1137–1146

    Article  Google Scholar 

  • Hénin S, Gras R, Monnier G (1969) Le profil cultural: l'état physique du sol et ses conséquences agronomiques. Masson, Paris

    Google Scholar 

  • Holdaway RJ, Richardson SJ, Dickie IA et al (2011) Species- and community-level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963

    Article  Google Scholar 

  • Iversen CM, McCormack ML, Powell AS et al (2017) A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. https://doi.org/10.1111/nph.14486

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Kong D, Ma C, Zhang Q et al (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872

    Article  PubMed  Google Scholar 

  • Kramer-Walter KR, Bellingham PJ, Millar TR et al (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1311–1313

    Article  Google Scholar 

  • Laliberté E (2017) Below-ground frontiers in trait-based plant ecology. New Phytol 213:1597–1603

    Article  PubMed  Google Scholar 

  • Laliberté E, Lambers H, Burgess TI, Wright SJ (2015) Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol 206:507–521

    Article  PubMed  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:87–261

    Google Scholar 

  • Lambers H, Shane MW, Cramer MD et al (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Lefcheck JS (2015) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  • Leps J, deBello F, Smilauer P, Dolezal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34:856–863

    Article  Google Scholar 

  • Liu G, Freschet GT, Pan X et al (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol 188:543–553

    Article  PubMed  Google Scholar 

  • McCormack LM, Adams TS, Smithwick EA, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831

    Article  Google Scholar 

  • Mokany K, Roxburgh SH (2010) The importance of spatial scale for trait–abundance relations. Oikos 119:1504–1514

    Article  Google Scholar 

  • Navarro-Fernández CM, Pérez-Ramos IM, de la Riva EG et al (2016) Functional responses of Mediterranean plant communities to soil resource heterogeneity: a mycorrhizal trait-based approach. J Veg Sci 27:1243–1253. https://doi.org/10.1111/jvs.12446

    Article  Google Scholar 

  • Olmo M, Lopez-Iglesias B, Villar R (2014) Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species. Implications for a drier climate. Plant Soil 384:113–129

    Article  CAS  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte JPM et al (2009) global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C et al (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Ostonen I, Truu M, Helmisaari HS et al (2017) Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol 215:977–991

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pekin BK, Wittkuhn RS, Boer MM et al (2011) Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. J Veg Sci 22:1009–1020

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Pérez-Ramos IM, Roumet C, Cruz P et al (2012) Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2015) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3:1–121 http://CRAN.R-project.org/package=nlme

    Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559

    Article  PubMed  Google Scholar 

  • Poorter H, Villar R (1997) Chemical composition of plants: causes and consequences of variation in allocation of C to different plant constituents. In: Bazzaz F, Grace J (eds) Plant resource allocation. Academic Press, New York, NY, USA, pp 39–72

    Chapter  Google Scholar 

  • Prieto I, Roumet C, Cardinael R et al (2015) Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373

    Article  Google Scholar 

  • R Development Core Team. R (2011) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in: http://www.r-project.org. Access in: 31 Jan. 2011

  • Reich PB (2014) The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ et al (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B 277:877–883

    Article  CAS  PubMed  Google Scholar 

  • Renton M, Poorter H (2011) Using log–log scaling slope analysis for determining the contributions to variability in biological variables such as leaf mass per area: why it works, when it works and how it can be extended. New Phytol 190:5–8

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic com- parative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Richards LA (1947) Pressure-membrane apparatus, construction and use. Agric Eng 28:451–454

    Google Scholar 

  • Roumet C, Birouste M, Picon-Cochard C et al (2016) Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–820

    Article  PubMed  Google Scholar 

  • Ruíz-Robleto J, Villar R (2005) Relative growth rate and biomass allocation in ten woody species with different leaf longevity using phyllogenetic independent contrasts (PICs). Plant Biol 7:484–494

    Article  PubMed  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast-growing and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Shipley B, Lechowicz MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535–541

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Sparks DL (1996) Methods of soil analysis, part 3: chemical methods. Soil Science Society of America and American Society of Agronomy, Madison

    Google Scholar 

  • Terradas J (2001) Ecología de la Vegetación. De la Ecofisiología de las Plantas a la Dinámica de Comunidades y Paisajes. Omega, Barcelona

    Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D et al (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508

    Article  CAS  PubMed  Google Scholar 

  • Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017) A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. https://doi.org/10.1111/nph.14571

  • Verdú M, Pausas JG (2013) Syndrome driven diversification in a Mediterranean ecosystem. Evolution 67:1756–1766

    Article  PubMed  Google Scholar 

  • Villar R, Robleto JR, De Jong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643

    Article  CAS  PubMed  Google Scholar 

  • Violle C, Navas ML, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3–an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Weemstra M, Mommer L, Visser EJ et al (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish MEC coordinated project DIVERBOS (CGL2011-30285-C02-01 and C02-02), ECO-MEDIT (CGL2014-53236-R), RESTECO (CGL2014-52858-R), ECOMETAS (CGL2014-53840-REDT), the Life + Biodehesa Project (11/BIO/ES/000726) and European FEDER funds. We thank to Catherine Roumet the comments on this paper. Thanks are due to Emilio Retamosa and Vicky Schwarzer from the Cabo de Gata Natural Park, for field assistance and plant classification, and to the staff of IRNAS’s Analytical Service for chemical analyses of soil and plants. The N and C concentration of the leaves were obtained from the SCAI of University of Cordoba. Dr. David Walker revised the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Villar.

Additional information

Responsible Editor: Catherine Roumet

Electronic supplementary material

ESM 1

(DOC 880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Riva, E.G., Marañón, T., Pérez-Ramos, I.M. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum?. Plant Soil 424, 35–48 (2018). https://doi.org/10.1007/s11104-017-3433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3433-4

Keywords

Navigation