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ABSTRACT
Introduction The organic cation transporter 3 (OCT3,
SLC22A3) is ubiquitously expressed and interacts with a wide
array of compounds including endogenous molecules, envi-
ronmental toxins and prescription drugs. Understudied as a
determinant of pharmacokinetics and pharmacodynamics,
OCT3 has the potential to be a major determinant of drug
absorption and disposition and to be a target for drug-drug
interactions (DDIs).
Goal The goal of the current study was to identify prescrip-
tion drug inhibitors of OCT3.
Methods We screened a compound library consisting of
2556 prescription drugs, bioactive molecules, and natural
products using a high throughput assay in HEK-293 cells
stably expressing OCT3.
Results We identified 210 compounds that at 20 μM inhibit
50% or more of OCT3-mediated uptake of 4-Di-1-ASP
(2 μM). Of these, nine were predicted to inhibit the transport-
er at clinically relevant unbound plasma concentrations. A
Structure-Activity Relationship (SAR) model included

molecular descriptors that could discriminate between inhib-
itors and non-inhibitors of OCT3 and was used to identify
additional OCT3 inhibitors. Proteomics of human brain
microvessels (BMVs) indicated that OCT3 is the highest
expressed OCT in the human blood-brain barrier (BBB).
Conclusions This study represents the largest screen to iden-
tify prescription drug inhibitors of OCT3. Several are suffi-
ciently potent to inhibit the transporter at therapeutic un-
bound plasma levels, potentially leading to DDIs or off-
target pharmacologic effects.

KEY WORDS Solute carrier superfamily . extraneuronal
monoamine transporter . EMT

INTRODUCTION

The organic cation transporter 3 (OCT3), also known as extra-
neuronal monoamine transporter (EMT), is a member of the
OCT subfamily of the SLC22 family of transporter proteins.
Like its paralogs OCT1 and OCT2, OCT3 interacts with a
wide array of endogenous and exogenous small organic cations,
including vitamins, neurotransmitters, environmental chemicals
and prescription drugs (1–3). However, unlike OCT1 and
OCT2, which are predominantly expressed in the liver and
kidney, respectively, OCT3 displays a more ubiquitous expres-
sion profile (4). Widely expressed in many tissues including pla-
centa, heart, lung, liver, intestine, prostate, skeletal muscle, and
brain and diverse substrates, OCT3 is involved in many pleio-
tropic effects. Notably, impaired function in OCT3 has been
shown to have effects on cellular metabolism, energy produc-
tion, cardiac function, and neuropsychiatric traits (5).

Human genetic studies have revealed important roles of
OCT3 in metabolic and cardiac effects. For example, OCT3
genetic variants have been found to be associated, at genome-
wide levels of significance, with interindividual differences in
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metabolic rates (6). Further, loss of the transporter in mouse
adipocytes results in increased body temperature, thermogen-
esis, and lipid breakdown, as well as effects on mitochondrial
biogenesis (6). Human genetic studies also reveal roles of
OCT3 in cardiac pathologies including coronary artery dis-
ease, myocardial infarction, and ischemic stroke (7–10). In ad-
dition, OCT3 has been linked to various neuropsychiatric phe-
notypes (11). For example, low expression levels of OCT3 in
the central nervous system (CNS) of mice are associated with
behavioral changes reminiscent of reduced depression (12).
Deficiency in the serotonin (5-HT) transporter, SERT, linked
to mood disorders and depression, has been shown to be com-
pensated for by increased OCT3 levels in the brains of mice
(13). OCT3 also has a role in dopaminergic neurodegenera-
tion related to exposure to the cationic neurotoxins, N-
methylpyridinium (MPP+) and paraquat, which are substrates
of the transporter (14, 15). In humans, mutations inOCT3 have
been linked to childrenwith obsessive compulsive disorder (16).

Though its paralogs OCT1 andOCT2 have been shown to
be major determinants of the pharmacokinetics and pharma-
codynamics of many drugs (17–24), OCT3 remains highly
understudied with only a limited number of studies examining
its role in drug absorption and disposition and as a potential
target for drug-drug interactions (DDIs). In one study inOct3−/
− mice, the pharmacokinetics of the anti-diabetic drug metfor-
min was shown to be significantly modulated by the deletion of
the transporter, consistent with an important role of the trans-
porter in the absorption and disposition of metformin in mice
(25). Metformin pharmacodynamics were also altered in the
knockout mice, reflecting changes in its accumulation in vari-
ous tissues such as skeletal muscle and adipose tissue. In addi-
tion tometformin, other prescription drugs across various ther-
apeutic classes are substrates of the transporter (26). These
include the bronchodilator, fenoterol, the anti-migraine med-
ication, sumatriptan, the antiviral drug, lamuvidine, and the
muscle relaxant, trospium, suggesting that the transporter may
play a role in the pharmacokinetics of many drugs.

During drug development, regulatory authorities suggest
screening new drugs against about ten drug transporters that
are major determinants of pharmacokinetics and targets for
DDIs. OCT2 is one of these transporters and more recently
screening new drugs against OCT1 has been suggested (26, 27).
Similarly, some have suggested screening new drugs as inhib-
itors of OCT3 because of its potential role in drug disposition
and response (26). Though OCT1 and OCT2 have been stud-
ied extensively and we have previously conducted prescription
drug library screens of both transporters (24, 28, 29), to date, no
study has systematically identified inhibitors of OCT3.

The goal of the current study was to screen a prescription
drug library to identify inhibitors of OCT3. In particular, we
were interested in identifying drugs that may interact with
OCT3 at clinically relevant concentrations. We developed
an in vitro high throughput screen (HTS) using the fluorescent

substrate, 4-Di-1-ASP (ASP+) in a cell line stably expressing
OCT3. Our HTS identified 210 inhibitors of OCT3 out of
the 2556 structurally diverse prescription drugs, natural prod-
ucts, and bioactive molecules screened. Most of inhibitors
identified were previously not known to inhibit OCT3.
Twenty-three of the 210 inhibitors were potent inhibitors
and could potentially cause clinically relevant DDIs based
on their predicted IC50 and reported plasma CMAX values.
Using the data from the screen, a predictive structure-activity
relationship (SAR) model was developed to discriminate
inhibitors from non-inhibitors of OCT3. Finally, our proteo-
mic studies suggested that of the OCT paralogs, OCT3 is the
most abundantly expressed in the human blood-brain barrier
(BBB), consistent with a role in CNS drug disposition.

MATERIALS AND METHODS

Chemicals

The MicroSource Spectrum compound library (Gaylordsville,
CT) was obtained through the Small Molecular Discovery
Center at the University of California, San Francisco (San
Francisco, CA). 4-Di-1-ASP, termedASP+, was purchased from
Molecular Probes (Grand Island, NY). All other chemicals were
purchased from Sigma-Aldrich (St. Louis, MO). All cell culture
media and supplements were purchased fromLife Technologies
(Carlsbad, CA) except fetal bovine serum, which was purchased
from GE Healthcare Life Sciences (South Logan, UT).

Cell Culture

In previous studies from our laboratory human embryonic
kidney (HEK-293) cell line stably overexpressing OCT3 was
established and functionally validated using known inhibitors
and non-inhibitors of OCT3 (30, 31). The cells were main-
tained in Dulbecco’s Modified Eagle’s Medium (DMEM
H-21) supplemented with 75 μg/ml of hygromycin B, penicil-
lin (100 U/ml), streptomycin (100 mg/ml), and 10% fetal bo-
vine serum in a humidified atmosphere with 5%CO2 at 37°C.

In Vitro Uptake Studies

HEK-293 cells overexpressing OCT3 were seeded in black,
clear bottom poly-D-lysine coated 96-well plates (Greiner Bio-
One, Monroe, NC) and allowed to grow for 48 h until ap-
proximately 90% confluency. For uptake kinetics study, cells
were incubated with Hanks’ balanced salt solution (HBSS,
ThermoFisher, Waltham, MA) containing serial dilution of
ASP+ for 2 min at 37°C. At the end of experiments, the media
was aspirated and the cells were washed twice with ice-cold
HBSS containing 50 μM corticosterone, as an inhibitor of
OCT3 to avoid efflux of the accumulated substrate. The Km
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and Vmax were calculated by fitting a Michaelis-Menten rela-
tionship to the data. For time course study, cells were incubat-
ed with HBSS containing 2 μM ASP+ at 37°C. At various
time points, the experiment was stopped as previously de-
scribed. For IC50 determination, cells were incubated with
HBSS containing 2 μM ASP+ or 1 μM metformin with
0.5 μCi/ml [14C]metformin, and serial dilution of inhibitors
for 2 min at 37°C. Inhibition data were fitted with nonlinear
regression with variable slope, and IC50 values were deter-
mined through a standard sigmoidal curve fit with variable
slope in GraphPad Prism. The signal of ASP+ was measured
using an Analyst AD plate reader (Molecular Devices,
Sunnyvale, CA) with excitation and emission filters tuned at
485 and 585 nm wavelength, respectively. All statistical anal-
ysis and curve fitting were done using GraphPad Prism ver-
sion 6 software (La Jolla, CA).

High Throughput Screening

The high throughput screen was performed at the Small
Molecule Discovery Center at the University of California,
San Francisco. HEK-293 cells overexpressing OCT3 were
seeded in black, clear bottom poly-D-lysine coated 96-well
plates (Greiner Bio-One, Monroe, NC) and allowed to grow
for 48 h until approximately 90% confluency. Cells were in-
cubated with HBSS containing 2 μMASP+ and 20 μMof test
compounds at ambient temperature for approximately 2 min.
At the end of the experiment, media were aspirated and cells
were washed twice with HBSS containing 50 μM corticoste-
rone. Nonspecific transport was determined in wells on each
assay plate using 100 μM corticosterone as OCT3 inhibitor.
The screen was carried out with a Biomek FXp liquid handler
(Beckman Coulter, Brea, CA). Fluorescence was measured as
previously described. Predicted IC50 values were calculated
using the following equation. IC50 for compounds that inhibit
80% or more at 20 μM were estimated to be 5 μM.

Predicted IC50 ¼ 100%
Percent Activity Inhibited

−1
� �

* 20 μM

Molecular Descriptor Generation

The molecular descriptor generation was performed as previ-
ously described (28). Three-dimensional molecular structures
were generated from SMILES representations using Corina,
version 3.0 (Molecular Networks, Erlangen, Germany), keep-
ing the lowest energy conformation of a maximum of 100
alternative ring conformations, and were used as input for
molecular descriptor calculation with DragonX, version 1.4
(Talete, Milan, Italy), ADMETPredictor, version 5.0
(SimulationsPlus, Lancaster, CA), and MAREA, version
3.02 (32). After removal of replicate molecular descriptors

and descriptors having zero variance, the remaining descrip-
tors were used as the starting point for structure-activity model
development.

Structure-Activity Modeling

The structure-activity modeling was generated as previously
described (28). Partial least-squares discriminant analysis
(PLS-DA) was used to develop computational models that
differentiate between OCT3 inhibitors and noninhibitors
based on differences in molecular descriptor values. A
double-loop cross-validation (CV) procedure was used to pro-
vide an unbiased estimate of the prediction accuracy: model
optimization was performed in a ten-fold inner CV loop, es-
timating model improvement based on the withheld data, and
the prediction accuracy of the optimized models were estimat-
ed from the withheld data in the outer CV loop. Through this
double-loop procedure, model optimization and predictivity
assessments were both based on data not used to train the
model. In the inner CV loop, variable selection was per-
formed in two phases: first, the descriptors with lowest abso-
lute PLS weight were iteratively removed until only the 25
most important ones remained; second, the same procedure
was repeated, but descriptors were kept in the model if remov-
al resulted in an inferior model. The entire double-loop pro-
cedure was repeated 100 times for different random partition-
ing of the data set to enable calculation of confidence intervals
of prediction accuracy estimates and model parameters. A
skew-normal density function was fitted to the PLS prediction
scores obtained from retrospective application of the final
model to the HTS dataset, in order to transform the raw
PLS scores to a probability of belonging to the inhibitor or
the noninhibitor class. The resulting class probability function
was then applied in prospective predictions of registered drugs
in the DrugBank database (www.drugbank.ca).

Human Brain Tissue Samples

Five healthy human post-mortem frozen brain cortical tissue
samples (donors aged >16 years old) were obtained from the
National Institutes of Health NeuroBioBank at the University
of Maryland, Baltimore, MD. Tissues were stored at −80°C
until day of microvessel isolation.

Isolation of Human Brain Microvessels

Brain microvessels (BMVs) were isolated following a previous-
ly described protocol (33), with some modifications. All steps
were carried out on ice or at 4°C starting with <1 g of brain
cortical tissue. Samples were thawed and homogenized in
HBSS containing protease inhibitors (cOmplete protease in-
hibitor cocktail, Sigma-Aldrich, St. Louis, MO) with 20 up-
and-down strokes in a Potter-Elvehjem glass homogenizer.
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The homogenate was centrifuged at 1200 g for 10min at 4°C,
and the supernatant discarded. The resulting pellet enriched
with BMVs was resuspended in a 17.5% dextran-70/HBSS
solution and centrifuged at 4300 g for 15 min at 4°C in a
swinging bucket rotor. The supernatant containing a myelin-
rich layer was aspirated and the pellet resuspended in HBSS
with 1% Bovine Serum Albumin (BSA). This solution was
passed through a 40 μm nylon mesh filter and the BMVs
captured on the filter were washed with 35 ml of 1% BSA/
HBSS buffer. BMVs were immediately collected off the filter
with 1% BSA/HBSS and centrifuged at 3000 g for 5 min at
4°C. The supernatant was aspirated and the resulting BMV
pellet was frozen and stored at −80°C until further analysis.

Global Proteomics Using Liquid Chromatography
Tandem Mass Spectrometry

Proteomics analysis was performed to quantify the expression
of OCT1, OCT2 and OCT3 in BMVs. BMV samples were
lysed with a 100 mM Tris-HCl buffer (pH 7.8) containing
50 mM dithiothreitol and 2% sodium dodecyl sulfate and
heated for 5 min at 95°C. The samples where sonicated with
a Branson-rod-typesonicator and centrifuged at 14000 g for
10 min. The protein concentration was measured with
tryptophan fluorescence assay (34) and 100 μg protein was
taken for multi-enzyme digestion filter-aided sample prepara-
tion (MED-FASP)(35), where proteins were consecutively
digested with LysC and trypsin. The digests were concentrat-
ed using a GeneVac EX-2plus and injected using an Ultimate
3000 RSLCnano system and separated on an easy spray C18
reversed phase column (50 cm, ID 75 μm) for 145 min on a
water/acetonitrile gradient containing 0.1% formic acid. The
eluted peptides were analyzed with a Top15 method (full MS
followed by ddMS2 scans) on a Orbitrap Q Exactive HFmass
spectrometer (ThermoFisher, Waltham, MA). The data were
analyzed on MaxQuant version 1.6.10.43 with the complete
human proteome extracted from UniProt (September 2020).
The false discovery rate was set as 0.01 and match-between-
runs was enabled. For the quantification of protein abun-
dance, the total protein approach (TPA) was used (36) for
proteins with razor+unique peptides of three and higher.
The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the
PRIDE (37) partner repository.

RESULTS

HTS Identified Novel OCT3 Inhibitors

A HTS assay was developed using the fluorescent probe,
ASP+, in HEK cells overexpressing OCT3 as a measurement
of transporter activity (24, 28). OCT3 transported ASP+ in a

time-dependent manner and the uptake was linear until 5 min
(Fig. 1A). The Km of OCT3-mediated ASP+ uptake was
33.3 μM (95% CI = 30.5 to 36.1 μM, Fig. 1B). Thus, an
incubation time of 2 min was used to measure the initial rate
of ASP+ uptake and an ASP+ concentration of 2 μMwas used
to minimize the effect of substrate concentration on the IC50

values (38). In our HTS assay, an inhibitor was defined as any
compound that inhibited 50% or more of the ASP+ uptake at
20 μM. Of the 2556 compounds in the Spectrum library, we
identified 210 (8.2%) OCT3 inhibitors (Fig. 1C). The average
Z-prime of the HTS was 0.73, indicating an excellent HTS
assay (39). Most inhibitors identified were previously not
known to interact with OCT3. Based on estimated IC50s,
obtained from single-concentration inhibition percentages by
assuming a classical sigmoidal concentration-response with a
Hill slope of 1, and estimated maximum unbound plasma
concentrations, CU,MAX, we also predicted that 9 of the 210
inhibitors could potentially cause DDIs (40)(Table I). When
we considered total maximum plasma concentrations instead,
a total of 23 compounds were identified to potentially inhibit
OCT3 (Table I). Further inhibition studies for many of the 23
compounds were conducted to validate the screen, and the
results reaffirm the predicted IC50(Figs. 2, 3, and Table SI).

The 210 inhibitors identified in the screen were grouped
into pharmacological classes (Fig. 1D). Similar to inhibitors of
OCT1, steroids, antihistamines, and α-adrenergic receptor
antagonists were more likely to inhibit OCT3 (24). In addi-
tion, we identified OCT3 inhibitors in other classes as well,
including β-adrenergic receptor agonists/antagonists,
sodium/calcium channel blockers, 5-HT receptor agonists/
antagonists, and dopamine receptor agonists/antagonists.
However, tricyclic antidepressants (TCAs), which are inhibi-
tors of OCT1 and OCT2 (24, 28), were not enriched in our
HTS. In fact, none of the eight TCAs tested inhibited OCT3
mediated ASP+ uptake at 20 μM by 50% or more.

Selected compounds previously not known to inhibit
OCT3 (telmisartan, amiloride, guanabenz, papaverine, trazo-
done and chlorhexidine) were validated by determining their
IC50 in inhibition studies (Fig. 2). All six compounds had IC50

values below 20 μM when tested against OCT3 mediated
ASP+ uptake. Interestingly, when the same six compounds
were tested as inhibitors of OCT3-mediated [14C]metformin
uptake, the IC50 values were generally lower than those of
ASP+ uptake (Fig. 3). For example, the IC50 values against
ASP+ uptake for telmisartan and amiloride were determined
to be 12.0 μM (95% CI = 10.8 to 13.4) and 14.5 μM (95%
CI = 12.9 to 16.4), respectively (Fig. 2A, B). When tested
against OCT3 mediated [14C]metformin uptake, the IC50

values for telmisartan and amiloride were determined to be
3.9 μM (95% CI = 2.4 to 6.2) and 3.0 μM, respectively (Fig.
3A, B). Of note, substrate concentrations of both ASP+ and
metformin were well below their Km values (see Materials and
Methods), so the IC50 values obtained are equivalent to their
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Fig. 1 HTS of a 2556 compound library that included prescription drugs and bioactive molecules identified 210 OCT3 inhibitors. (A)Time-dependent ASP+

uptake in HEK cells overexpressingOCT3 (▲) or empty vector (■), and OCT3-specific ASP+ uptake (●). The uptake was linear for the first 5 min. (B) ASP+ initial
uptake (at 2 min) increases with concentration in HEK-293 cells stably expressing OCT3. ASP+ uptake studies were conducted in HEK cells overexpressing
OCT3 (▲) or empty vector (■). Cells were incubated with increasing concentrations of ASP+ for 2 min. The Km of OCT3 mediated ASP+ uptake was
determined to be 33.3 μM (95% CI = 30.5 to 36.1 μM). The uptake kinetic parameters were calculated using the difference in ASP+ accumulation between
cells overexpressing OCT3 and empty vector cells (●). Data represent mean and 95% confidence intervals, n = 3 per data point. (C) 210 inhibitors capable of
inhibiting OCT3 activity by 50% or more at 20 μMwere identified among 2556 drugs, natural products, and bioactives. (D) The proportions of the 210 OCT3
inhibitors grouped into drug classes
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Ki values. The result suggests that the kinetics of inhibition of
OCT3-mediated uptake may be substrate-dependent.

Structure-Activity Relationship, SAR, Modeling

Next, we generated a SAR model capable of discriminating
OCT3 inhibitors from noninhibitors. The 2556 compounds
were first classified as inhibitors or noninhibitors of OCT3
based on their ability to inhibit >50% of ASP+ uptake at
20 μM. Molecular descriptors were generated for each com-
pound and were used to develop the model. Using PLS pro-
jection, we were able to identify descriptors that could classify
inhibitors and noninhibitors. After optimization through an
iterative variable procedure (i.e. descriptors with low influence
on the model were removed in a step-wise manner, removing
smaller and smaller chunks as the selection progressed), we
arrived at a set of important descriptors used in the final model
(Fig. 4A). As expected, cationic compounds were more likely
to interact with OCT3. Inhibitors are also more likely to be
larger (topological diameter), spherical (asphericity), and with

less freely rotatable bounds. Lastly, a double-loop cross-vali-
dation procedure was used to evaluate the SAR model, since
this gives an unbiased estimate of external model predictivity
(Table II). The final SAR model had an average accuracy of
0.76, and an average precision of 0.58. The receiver operating
characteristic (ROC) curve (Fig. 4B), a graphical representa-
tion of the performance of a model, showed an area under the
curve (AUC) of 0.77, indicating a good binary classifier SAR
model.

Virtual Screening by SAR Model of a Drug Library

In this study, we screened a large compound library, the
Spectrum library, for OCT3 inhibitors. While the library con-
tains 2556 compounds, only 60% of the compounds are drugs
and the rest are bioactives and natural products. In order to
identify additional OCT3 inhibitors among registered drugs,
we applied our SAR model against 2643 registered drugs in
the DrugBank database to predict OCT3 inhibitors in silico.
Using the SARmodel, each drug in the database was assigned

Table I Prescription drugs that are
predicted to inhibit OCT3 at clini-
cally relevant plasma concentrations

Compound Inhibition
(%)

Predicted IC50

(μM)*
CMAX(μM)
†

Protein
binding

CMAX/
IC50

Unbound CMAX/
IC50

Compounds with unbound CMAX/ IC50 >0.1

azlocillin 66.9 9.9 17.3 30% 1.75 1.23

aztreonam 87.1 5 585 56% 117 51.5

famotidine 66.9 9.9 308 10% 31.1 28.0

flufenamic acid 60.6 13.0 24.2 90% 1.9 0.19

meropenem 65 10.8 256 2% 23.8 23.3

propafenone 74 7.0 7.9 85% 1.13 0.17

quinine 90.6 5 10.7 69% 2.15 0.67

trazodone 94.5 5 7.6 90% 1.53 0.15

trimethoprim 59.3 13.7 5.9 44% 0.43 0.24

Compounds with total CMAX/ IC50 >0.1

cilostazol 93.8 5 2.1 95% 0.42

emetine 82.7 5 0.6 90% 0.12

exemestane 94.5 5 1.4 90% 0.28

glimepiride 87.7 5 1.2 99% 0.24

imatinib 72.2 7.7 1.2 95% 0.16

ketoconazole 93.4 5 1.9 91% 0.38

lansoprazole 87.2 5 2.9 97% 0.59

leflunomide 50.5 19.6 233 99.3% 11.9

omeprazole 64.1 11.2 4.2 95% 0.38

prednisolone 67.5 9.6 2.9 70% 0.30

rabeprazole 87.3 5 1.3 96% 0.26

spironolactone 82.8 5 1.1 93% 0.22

telmisartan 81.6 5 2.8 99.5% 0.56

valdecoxib 53.6 17.3 2.2 98% 0.13

*Predicted IC50 is calculated based on a single data point reflecting the percent inhibition of OCT3 at the screening
concentration of the inhibitor (Materials and Methods)

† CMAX values were obtained from http://www.micromedexsolutions.com/
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a probability value of interacting with OCT3 (Fig. 4C).
Enrichment of known OCT3 inhibitors were 13-fold, 7-fold

and 6-fold within the top 1, 5 and 10% of the predictions
among registered drugs (Fig. SI), with known OCT3

Fig. 2 Determination of potency of selected inhibitors of OCT3 against OCT3-mediated ASP+ uptake. The concentration of ASP+ used in the potency
determination was 2 μM.OCT3 inhibitors identified by HTS were validated by determining their IC50 values in inhibition studies. (A) The IC50 of telmisartan was
determined to be 12.0 μM 95% CI = 10.8 to 13.4). (B) The IC50 of amiloride was determined to be 14.5 μM (95% CI = 12.9 to 16.4). (C) The IC50 of
guanabenz was determined to be 3.2 μM (95% CI = 3.0 to 3.6). (D) The IC50 of papaverine was determined to be 4.1 μM (95% CI = 3.7 to 4.4). (E) The
IC50 of trazodone was determined to be 5.2 μM (95%CI = 4.6 to 5.8). (F) The IC50 of chlorhexidine was determined to be 3.7 μM (95%CI = 3.3 to 4.1).
Data represent mean and 95% confidence intervals, n = 3 per data point
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inhibitors such as the tyrosine kinase inhibitors imatinib and
erlotinib recovered in the top 0.1 and 6% of the hit list, re-
spectively. Importantly, enrichment factors in databases like

the registered drug collection used here are likely underesti-
mated, assuming that the actual fraction of OCT3-inhibiting
compounds reflect the hit rate in our screening of the

Fig. 3 Determination of inhibition potency of selected compounds against OCT3-mediated [14C]metformin uptake. The concentration of metformin used in the
potency determinations was 1 μM. (A) The IC50 of telmisartan was determined to be 3.9 μM (95%CI = 2.4 to 6.2). (B) The IC50 of amiloride was determined
to be 3.0 μM (95% CI = 2.1 to 4.4). (C) The IC50 of guanabenz was determined to be 1.1 μM (95% CI = 0.7 to 1.6). (D) The IC50 of papaverine was
determined to be 1.2 μM (95% CI = 0.7 to 2.0). (E) The IC50 of trazodone was determined to be 2.5 μM (95% CI = 2.0 to 3.4). (F) The IC50 of
chlorhexidine was determined to be 0.4 μM (95% CI = 0.2 to 0.7). Data represent mean and 95% confidence intervals, n = 3 per data point
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Spectrum library (8.2%). Using 75% as the cutoff inhibition
probability, 6.4% of the 2643 compounds were predicted to

interact with OCT3; many of these drugs were novel OCT3
inhibitors and were not included in Spectrum library. Selected

Fig. 4 SAR model and virtual screening against the DrugBank database of registered small-molecule drugs. (A) Important molecular descriptors used to classify
OCT3 inhibitors and noninhibitors. Bar shows the mean PLS regression coefficients from cross-validated models. Descriptors with positive coefficient have higher
values in inhibitors, and descriptors with negative values have higher values in noninhibitors. (B) ROC curves for 100 retrospective cross-validation runs. Average
ROC curve is shown in solid black line. The AUC for the final SAR model was determined to be 0.77. (C) Inhibition probability result from the virtual screen
against registered drugs. Percentage ranges (larger font) indicate predicted probabilities of belonging to the inhibitor class. Numbers in parentheses indicate the
fraction of all predictions falling into a particular probability range

1607Pharm Res (2022) 39:1599–1613



compounds were validated by determining their IC50 in inhi-
bition studies. From the in silico model, carvedilol, doxazosin,
and risperidone had probabilities of 86%, 93%, and 82%,
respectively, of inhibiting OCT3. Experimental studies con-
firmed the predictions, and the IC50 values of the three com-
pounds were determined to be 19.7 μM, 5.6 μM, and 1.9 μM,
respectively (Fig. 5A, B, C). In contrast, desipramine had a
probability of 55% of inhibiting OCT3, below the cutoff val-
ue, and did not inhibit 50% or more OCT3 activity at 20 μM
(Fig. 5D).

Proteomic and Transcriptomic Expression Levels
of OCTs in Human Brain Microvessels (BMVs)

OCT3 is a transporter with pleiotropic effects including
important neuropsychiatric effects. It is not known wheth-
er OCT3 or its paralogs, OCT1 or OCT2, are expressed
in the BBB and play a role in the entry of drugs and other
compounds into the CNS. Accordingly, we performed
proteomic analysis on adult human BMVs to measure
the levels of OCT1, OCT2 and OCT3 at the BBB. We
have previously reported that the mRNA level of OCT3
was higher than OCT1 and OCT2 in BMVs isolated from
2 healthy adult donors (41) (Fig. 6A). Consistent with the
transcriptomic data, OCT3 was the most highly expressed
OCT (0.155 ± 0.056 fmol/μg total protein) in the BBB in
our proteomic study, as OCT1 and OCT2 proteins were
not detected (Fig. 6B). We also detected other transporters
previously reported in the human BBB, such as SLC7A5
and SLCO2B1, which were measured at 2.03 ± 0.573
and 0.227 ± 0.081 fmol/μg total protein, respectively.
These data suggest that OCT3 may indeed be an impor-
tant transporter for entry of many basic drugs into the
CNS.

DISCUSSION

OCT3 is a transporter ubiquitously expressed in many tissues
including tissues of pharmacological interest such as the brain,
liver, kidney, and intestine. Animal experiments with Oct3
knockout mice and genetic associations studies of polymorphisms
in OCT3 have revealed that the transporter is associated with a
range of effects including effects on the CNS (42), cardiovascular
disease (9, 10, 43), and cancer (44). Further, studies suggest that
the transporter may have an important role in the pharmacoki-
netics of many drugs; however, its role in pharmacokinetics and
DDIs has been poorly characterized. The goals of this study were
to conduct a HTS of a prescription drug library to identify
OCT3 inhibitors and to develop a predictive SAR model capa-
ble of distinguishing between inhibitors and noninhibitors of
OCT3. Our key findings are: (a) OCT3 is highly druggable;
about 10% of the compounds screened are inhibitors of the
transporter; (b) several drugs are capable of inhibiting OCT3 at
clinically relevant unbound concentrations; (c) an SAR model
was developed to predict OCT3 inhibitors; and (d) proteomic
studies reveal that OCT3 is the most highly expressed OCT in
the human BBB. Each of these findings is discussed below.

OCT3 Is Highly Druggable

Our HTS of a large compound library consisting of 2556 pre-
scription drugs, bioactive, and natural products, identified 210
inhibitors that inhibit 50% or more of OCT3-mediated uptake
at 20 μM (Fig. 1C). In recent studies, approximately 25 tyrosine
kinase inhibitors have been screened for inhibition of OCT3
(45, 46); however, our study is the first large-scale inhibitor screen
against OCT3. Most of the inhibitors identified were novel, i.e.,
not previously known to interact with OCT3. Certain drug clas-
ses were more likely to contain inhibitors of OCT3 including
steroids and adrenoreceptor agonists and antagonists (Fig. 1D).

Table II Statistics of the derived
SAR model for inhibitors of OCT3 Internal (confidence interval) External (confidence interval)

n components 4.4 ± 0.1 1–11
n variables 45.5 ± 0.6 10–73

AUC 0.82 ± 0.0008 0.75–0.86 0.77 ± 0.0008 0.75–0.79

MCC 0.32 ± 0.0011 0.23–0.40 0.25 ± 0.0015 0.21–0.28

Accuracy 0.78 ± 0.0008 0.72–0.83 0.76 ± 0.0008 0.74–0.78

Balanced accuracy 0.75 ± 0.0007 0.68–0.80 0.70 ± 0.0011 0.67–0.72

Informedness 0.50 ± 0.0014 0.36–0.61 0.40 ± 0.0023 0.33–0.45

TPR* precision 0.23 ± 0.0008 0.18–0.29 0.20 ± 0.0008 0.18–0.22

TNR* precision 0.97 ± 0.0001 0.95–0.98 0.96 ± 0.0002 0.95–0.96

TPR* recall 0.72 ± 0.0010 0.59–0.81 0.62 ± 0.0023 0.56–0.68

TNR* recall 0.78 ± 0.0008 0.73–0.84 0.77 ± 0.0008 0.75–0.80

Average precision 0.60 ± 0.0001 0.18–0.98 0.58 ± 0.0003 0.18–0.96

Average recall 0.75 ± 0.0001 0.59–0.84 0.70 ± 0.0013 0.56–0.80

*True positive rate (TPR); true negative rate (TNR)
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Drugs in several of the classes have also been found to inhibit
OCT1 and OCT2 (28, 29, 47). Surprisingly, TCAs, many of
which are well-established inhibitors of OCT1 andOCT2, were
not included among the classes of drugs that are enriched for
inhibitors of OCT3. Notably, none of the TCAs tested were
inhibitors ofOCT3.This observationmay be explained by struc-
tural differences in the substrate binding pocket among the
OCTs. While OCT1 and OCT2 share a higher degree of ho-
mology including many residues predicted to be important in
substrate binding, OCT3 differs significantly in both its homolo-
gy and key residues (26). To date, high resolution crystal struc-
tures of OCTs are not available.

Several Drugs Are Capable of Inhibiting OCT3 at
Clinically Relevant Unbound Concentrations

Based on the predicted IC50 values, we identified nine drugs
with unbound plasma concentrations greater than 0.1 times

their IC50 values after therapeutic doses, and an additional 14
drugs that had total plasma concentrations greater than 0.1
times their IC50 values (Table I). These data suggest that the
nine compounds interact with OCT3 at clinically relevant
unbound concentrations and as such, have the potential to
cause clinical DDIs with metformin or other substrates of
OCT3 including fenoterol, sumatriptan, lamuvidine and
trospium. Multiple human genetic studies have replicated
associations of polymorphisms in SLC22A3 with coronary
artery diseases (9, 10, 43) including recent studies in knockout
mice (46). Notably, five of the nine drugs predicted to interact
with OCT3 at clinically relevant unbound concentrations
have warnings and precautions related to cardiovascular
side-effects (e.g. cardiac arrhythmia) (Table I, Table SII).
These five FDA approved drugs are aztreonam, propafenone,
quinine, trazodone, and trimethoprim. Though speculative, it
is possible that inhibition of OCT3 may lead to some of these
side effects. Clearly, further research is needed. Of note is that

Fig. 5 In vitro validation of OCT3 inhibitors identified through use of the SARmodel. ASP+ (2 uM) was used as substrate. (A) SARmodel predicted carvedilol has
an 86% probability of inhibiting OCT3. The IC50 was determined to be 19.7 μM (95% CI = 17.5 to 22.2). (B) SAR model predicted doxazosin has a 93%
probability of inhibiting OCT3. The IC50 was determined to be 5.6 μM (95% CI = 5.0 to 6.2). (C) SAR model predicted risperidone has an 82% probability of
inhibiting OCT3. The IC50 was determined to be 1.9 μM (95% CI = 1.7 to 2.1). (D) SAR model predicted desipramine has a 55% probability of inhibiting
OCT3 (below 75% cutoff). The IC50 was determined to be 177 μM (95% CI = 148.6 to 211.0). Data represent mean ± SD, n = 6 per data point
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the compounds identified in this study as potential clinically
relevant inhibitors of OCT3 (Table I) did not overlap with the
clinically relevant inhibitors identified in a prescription drug
library screen of OCT2 (disopyramide, dipyridamole, imipra-
mine, tacrine, orphenadrine, ondansetron, and cimetidine)
(28). However, trimethoprim has been shown previously to
be an inhibitor of OCTs and MATEs and to reduce the renal
secretion of zidovudine (which may involve OCT2) though
the mechanism is not clear (29, 48). Thus, it may be possible
to use one of the inhibitors (e.g. meropenam and aztreonam)
as an isoform specific inhibitor in in vivo studies to examine
the role of OCT3 in drug absorption, disposition and
response.

An SAR Model Was Developed to Predict OCT3
Inhibitors

In light of the inclusion of transporters in the FDA draft guid-
ance on drug interactions, increasingly, the requirements to
identify transporter inhibitors and substrates will be expand-
ed. Predictive models for both substrates and inhibitors are
needed to inform in vitro studies carried out during drug
discovery and development to assess DDI liabilities. Here,
we developed an SAR model using data generated by our
HTS. The predictive SAR model is capable of identifying
OCT3 inhibitors and noninhibitors (Fig. 4). A virtual screen
using the SAR model against current registered drugs showed
that our SAR model was able to accurately identify known
inhibitors (Fig. SI) and predict novel OCT3 inhibitors (Figs. 4
and 5). Until recently, it was often assumed that transporter
inhibitors interact with the protein in a competitive manner
only. Studies now suggest that the inhibition can occur by
other mechanisms as well (competitive inhibition, non-

competitive inhibition, mixed inhibition) (49). This is especial-
ly true for polyspecific transporters, where multiple substrate
binding sites may exist. The International Transporter
Consortium recently acknowledged that our lack of under-
standing of the inhibition mechanism is a limiting factor in
transporter studies (50). However, our HTS and SAR model
would not be able to identify or predict the mechanism of
inhibition.

Though no high resolution structures are available for any
mammalian OCT, or for that matter, for any human SLC22
transporter, a prokaryotic homolog of the SLC family protein,
LeuT, has been used to generate comparative models of hu-
man SLC transporters (51–53). However, its low sequence
similarity to OCTs casts doubt on comparative models gen-
erated based on LeuT structure. New technology, such as the
cryo-transmission electron microscopy, is promising in solving
membrane transporter structures and has been successfully
used to study the interactions between human SLCs and sub-
strates or inhibitors in their binding sites (54, 55). Future stud-
ies are needed to explore these options to generate structure-
based model for polyspecific transporters. In addition to ex-
tended profiling of alternative ligand binding mechanisms,
using multiple substrates and/or substrate concentrations,
such structural models can provide important insight into
binding modes and substrate-selective inhibition mechanisms.

Proteomic Studies Reveal that OCT3 is theMost Highly
Expressed OCT in the Human BBB

Our proteomic analysis detected OCT3 protein expression in
BMVs isolated from the insular cortex while expression of
other OCTs were not detected. Proteomics studies of human
BBB have reported conflicting results regarding the expression

Fig. 6 Transcriptomic and
proteomic expression levels of
OCTs in human brain microvessels
(BMVs). (A) mRNA level of OCT1,
OCT2 and OCT3 relative to the
mean of three housekeeping genes:
GAPDH, β-actin, and β2
microglobulin. Data from n = 2
(Plot generated from data from
Geier et al., 2013). (B) Protein
expression abundance of OCTs in
BMVs. The abundance of OCT3
was 0.155 ± 0.056 fmol/μg total
protein, OCT1 and OCT2 were
not detectable in our proteomic
study. Data represent mean ±
SEM, n = 5
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levels of OCT proteins. OCT3 was under the limit of quan-
tification in studies by Uchida et al. and Shawahna et al.,
however, OCT3 was the highest expressed OCT in a study
by Al-Majdoub et al. (56–58). Our results are in agreement
with those of Al-Majdoub et al. Differences among studies
may be due to different sample preparation methods as well
as different methods used in the proteomics studies, e.g., tar-
geted versus global proteomics (59). The use of different brain
regions for sample preparation may also explain some of the
differences in reported values. Our results are potentially rel-
evant to clinical DDIs in the BBB. For example, the nine
OCT3 inhibitors may potentially inhibit OCT3 in the BBB
(or elsewhere) at clinically relevant unbound concentrations.
Hypothetically, these compounds may reduce the brain pen-
etration of other drugs that rely on OCT3 to enter the CNS.
Further, several of the nine compounds (e.g. aztreonam,
famotidine, meropenem and trimethoprim) have neurological
side effects (Table SII), which though speculative, may reflect
inhibition ofOCT3 in the brain (60). However, as noted, none
of the TCAs were good inhibitors of OCT3, suggesting that
inhibition of OCT3 may not be a mechanism for either the
effects or side-effects associated with TCAs. Future studies are
needed to explore the pharmacological impact of OCT3
inhibitors.

CONCLUSION

In conclusion, we developed and conducted a HTS
against a large compound library to identify OCT3 inhib-
itors. Our results suggest that the transporter interacts
with many prescription drugs, most of which were not
previously known to interact with OCT3. Several of the
drugs can potentially inhibit OCT3 at clinically relevant
drug concentrations. Further we determined that OCT3
is the most highly expressed OCT at the human BBB
which suggests that the transporter may be involved in
the entry of a diverse array of substrates into the CNS.
Further studies need to be conducted to determine wheth-
er the clinically relevant inhibitors identified in this study
may perpetrate off-target effects mediated by OCT3 or
DDIs with OCT3 substrates. We hope that this study,
which included proteomic studies of OCT3 in the human
BBB, as well as new ligands for this transporter has added
to the body of work of Professor Emerita Margareta
Hammarlund-Udenaes who is a pioneer in BBB research
in the pharmaceutical sciences (61–63), and to the con-
cepts and methodologies in improving treatment of neu-
rological diseases (64). Future research is needed to un-
derstand the role of organic cation transporters in the
pharmacokinetics and pharmacodynamics of drugs in the
brain.
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