Skip to main content

Advertisement

Log in

Design and optimization of thin film polarizer at the wavelength of 1540 nm using differential evolution algorithm

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a thin film polarizer at the wavelength of 1540 nm in infrared region was designed and optimized using differential evolution method. It is shown how the algorithm’s parameters can change the output result to obtain the best consequence of optimization. This polarizer consists of a few pairs of high and low refractive index dielectric materials, titanium dioxide and silicon dioxide, respectively, with \(BK_{7}\) glass substrate and the angle of incident light was supposed 56° that is the Brewster angle for \(BK_{7}\) glass. Our final optimized polarizer has 91.20 and 0.336% transmittance for P and S polarization, respectively, and a 271 ratio of \(\frac{{T_{P} }}{{T_{S} }}\) which has high significance for this polarizer. It consists of eight pairs of layers with low and high refractive index materials and 3369.1 nm physical thickness which is used to separate S and P polarized light for Q-switching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abed, A.N., Gaffar, A., Rashid, H.G., Gahdban, A.Q.: Modeling and optimum design band pass filter for mid IR region. J. Baghdad Sci. 11, 1459–1466 (2014)

    Google Scholar 

  • Back, T., Schutz, M.: Evolution strategies for mix-integer optimization of optical multilayer systems. In: Fogel, D.B., Atmar, W. (eds.) Proceeding 4th annual conference Evolutionary Programming, pp. 33–51. San Diago, CA (1995)

  • Baedi, J., Arabshahi, H., Gordi Armaki, M., Hosseini, E.: Optical design of multilayer filter by using PSO algorithm. Res. J. Appl. Sci. Eng. Technol. 2, 56–59 (2010)

    Google Scholar 

  • Dobrowolski, J.A.: Optical properties of films and coatings. In: Bass, M. (ed.) Handbook of Optics, 2nd edn, pp. 2824–2831. McGraw-Hill, New York (1995)

    Google Scholar 

  • Dobrowolski, J.A., Waldorf, A.: High-performance thin film polarizer for the UV and visible spectral regions. Appl. Opt. 20, 111–116 (1981)

    Article  ADS  Google Scholar 

  • Gavrilov, N.I., Pashinin, P.P., Prokhorov, A.M., Prilyuk, O.M., Sergeev, S.N., Serov, R.V., Furman, S.A., Yanovskii, V.P., Vvedenskii, V.D.: High-optical-strength thin-film interference polarizers for high-power lasers. Sov. J. Quantum Electron. 13, 1272–1273 (1983)

    Article  ADS  Google Scholar 

  • Greiner, H.: Robust optical coating design with evolutionary strategies. Appl. Opt. 35, 5477–5482 (1996)

    Article  ADS  Google Scholar 

  • Kaiser, N., Pulker, H.K.: Optical Interference Coatings. Springer, Berlin (2003)

    Book  Google Scholar 

  • Lie, L., Dobrowolski, J.A.: Computation speeds of different optical thin films synthesis methods. Appl. Opt. 31, 3790–3799 (1992)

    Article  ADS  Google Scholar 

  • Macleod, H.A.: Thin Film Optical Filters, 4th edn. CRC Press, NewYork (2010)

    Google Scholar 

  • Perla, S.R., Azzam, R.M.A.: Wide-angle, high-extinction-ratio, infrared polarizing beam splitters using frustrated total internal reflection by an embedded centrosymmetric multilayer. Appl. Opt. 46, 4604–4612 (2007)

    Article  ADS  Google Scholar 

  • Sahraee, M., Fallah, H.R., Moradi, B., Zabolian, H., Haji Mahmoodzade, M.: Design and fabrication of thin-film polarizer at wavelength of 1540 nm and investigation of its laser-induced damage threshold. Eur. Phys. J. Plus 129, 277–288 (2014)

    Article  Google Scholar 

  • Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Thelen, A.: Design of Optical Interference Coatings. McGraw-Hill, New York (1989)

    Google Scholar 

  • Tikhonravov, A.V.: Some theoretical aspects of thin film optics and their applications. Appl. Opt. 32, 5417–5426 (1993)

    Article  ADS  Google Scholar 

  • Tikhonravov, A.V., Trubetskov, M.K.: Modern design tools and a new paradigm in optical coating design. Appl. Opt. 51, 7319–7332 (2012)

    Article  ADS  Google Scholar 

  • Tilma, B.W., Jiao, Y., van Veldhoven, P.J., Smalbrugge, B., Ambrosius, H.P.M.M., Thijs, P.T., Leijtens, X.J.M., Nötzel, R., Smit, M.K., Bente, E.A.J.M.: InP-based monolithically integrated tunable wavelength filters in the 1.6–1.8 μm wavelength region for tunable laser purposes. J. Lightwave Technol. 29, 2818–2830 (2011)

    Article  ADS  Google Scholar 

  • Willy, R.: Practical Design and Production of Optical Thin Films, 2nd edn. Dekker Inc., New York (2002)

    Book  Google Scholar 

  • Willey, R.: Practical Design of Optical Thin Films, 4th edn. Willey, Charlevoix (2014)

    Google Scholar 

  • Yang, J.M., Kao, C.Y.: Efficient evolutionary algorithm for the thin-film synthesis of inhomogeneous optical coatings. Appl. Opt. 40, 3256–3267 (2001a)

    Article  ADS  Google Scholar 

  • Yang, J.M., Kao, C.Y.: An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incinence. J. Lightwave Technol. 19, 559–570 (2001b)

    Article  ADS  Google Scholar 

  • Yang, J., Wang, L., Wu, X., Cheng, T., Jiang, H.: High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues. Opt. Express 22, 15686–15696 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Ghasemi, M. Design and optimization of thin film polarizer at the wavelength of 1540 nm using differential evolution algorithm. Opt Quant Electron 50, 192 (2018). https://doi.org/10.1007/s11082-018-1453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1453-9

Keywords

Navigation