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Abstract Nanostructured dielectric waveguides are of high interest for biosensing appli-

cations, light emitting devices as well as solar cells. Multiperiodic and aperiodic nanos-

tructures allow for custom-designed spectral properties as well as near-field characteristics

with localized modes. Here, a comparison of experimental results and simulation results

obtained with three different simulation methods is presented. We fabricated and char-

acterized multiperiodic nanostructured dielectric waveguides with two and three com-

pound periods as well as deterministic aperiodic nanostructured waveguides based on

Rudin–Shapiro, Fibonacci, and Thue–Morse binary sequences. The near-field and far-field

properties are computed employing the finite-element method (FEM), the finite-difference

time-domain (FDTD) method as well as a rigorous coupled wave algorithm (RCWA). The

results show that all three methods are suitable for the simulation of the above mentioned

structures. Only small computational differences are obtained in the near fields and

transmission characteristics. For the compound multiperiodic structures the simulations

correctly predict the general shape of the experimental transmission spectra with number

and magnitude of transmission dips. For the aperiodic nanostructures the agreement

between simulations and measurements decreases, which we attribute to imperfect fabri-

cation at smaller feature sizes.
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1 Introduction

Grating waveguides have been studied throughout the last decades and show high potential

for integrated sensing applications (Rosenblatt et al. 1997; Threm et al. 2012). They have

been studied for label-free biosensing (Cunningham et al. 2015; Jahns et al. 2015; Nazi-

rizadeh et al. 2016), to increase the light outcoupling from organic light-emitting diodes

(Kluge et al. 2014) and to improve the efficiency of solar cells (Zeng et al. 2006). Grating

waveguides are planar waveguides with embedded diffractive grating structures. Figure 1

depicts a TiO2 waveguide with aperiodic deterministic nanostructure based on a Thue–

Morse binary sequence. Deterministic aperiodic nanostructures are engineered ordered

nanostructures without periodicity (Dal Negro 2012a, b; Maciá 2012). Compound multi-

periodic gratings and deterministic aperiodic nanostructures offer the opportunity to tailor

the spectral properties and have recently been suggested for refractive index biosensing

(Boriskina et al. 2008a, b; Kluge et al. 2014; Neustock et al. 2016). The grating structure

allows incident light to couple to guided modes by scattering. The guided light can again

couple out due to the nanostructure and thus the modes are called quasi-guided modes

(QGM) or leaky modes. We investigate the case that normally incident light is coupled into

and out of QGM in the waveguide structure as depicted in Fig. 1b. Reemission of the QGM

in the reflection direction leads to characteristic guided-mode resonances (GMR) in the

transmission spectrum, which depend on the angle of incidence, polarization of the light,

refractive index of the material and the geometric properties, such as the nanostructure

sequence, duty cycle and structure depth (Fan and Joannopoulos 2002). In this work we

employ and compare three different simulation methods—finite element method (FEM,

COMSOL Multiphysics� Wave Optics Module by COMSOL Inc.), finite difference time

domain (FDTD, FDTD Solutions by Lumerical Solutions, Inc.) and rigorous coupled wave

analysis (RCWA, in-house implementation)—for simulating the transmission properties of

compound multiperiodic and deterministic aperiodic nanostructures. Five different struc-

tures are examined—two multiperiodic structures (one with a two-compound and one with

a three-compound grating) and three binary deterministic aperiodic sequences with dif-

ferent degrees of disorder (Thue–Morse, Fibonacci and Rudin–Shapiro).

Fig. 1 Simulation model for nanostructured dielectric waveguide, here with a Thue-Morse nanostructure.
a 70 nm high-index, waveguiding TiO2 (n2) layer on top of 60 nm deep structure in AMONIL (n3 = 1.52)
substrate. b Excitation of quasi-guided mode (QGM) with normal-incidence illumination, As and Bs
showing the translation of the binary sequence into a nanostructure
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The binary deterministic aperiodic sequences are obtained by simple mathematical

substitution rules and offer different degrees of disorder in their spatial Fourier spectrum

(Dal Negro and Boriskina 2012a). Compound gratings are obtained by a superposition of

multiple monoperiodic gratings. A logical disjunction operation is performed. Each further

superimposed grating adds peaks corresponding to its period to the spatial Fourier spec-

trum. Thus, compound multiperiodic gratings allow the design of GMRs with arbitrary

wavelengths in the transmission and reflection spectrum. By tuning the duty cycle also the

relative intensities of the GMRs may be tailored (Kluge et al. 2014). Dielectric waveguides

with compound multiperiodic and deterministic aperiodic nanostructures offer a plentitude

of degrees of freedom in the design of transmission and reflection spectra for applications

in the above mentioned areas. For example, the design of integrated sensor chips with more

redundancy by using multiple resonances will help to create more reliable systems. The

ability to simulate and design nanostructures for specific applications is crucial. To help

future designers choose their simulation tools, we here present a comparative study of three

simulation methods and compare the simulation results to experimental results. This work

is structured as follows. We first introduce the structures under investigation in Sect. 2.

Section 3 describes the simulation methods. Also the fabrication process of the samples

and the measurement setup are detailed in this section. In Sect. 4, the simulation and

measurement results are shown. The three simulation methods are compared to each other

and to the measured data.

2 Structures under investigation

Five different structures are under investigation in this work—two multiperiodic and three

aperiodic structures. The details of the different structures are shown in Table 1. The

multiperiodic structures are two basic examples, one disjunction of two and one of three

different monoperiodic gratings, following the approach of Kluge et al. (2014). The

periodicities of 250, 300, and 350 nm were chosen to show distinctive resonances in the

Table 1 Overview of simulated and fabricated nanostructures

Name Type Description Supercell length,
number of
recursions

2-compound Compound multiperiodic,
two periods

K1 = 250 nm, K2 = 300 nm duty
cycles, t1 = 0.3, t2 = 0.4

L = 1500 nm

3-compound Compound multiperiodic,
three periods

K1 = 250, K2 = 300 nm,
K3 = 350 nm, duty cycles: t1 = 0.3,
t2 = 0.3, t3 = 0.3

L = 10,500 nm

Rudin–Shapiro Deterministic aperiodic,
continuous spectrum

Substitution: AA ? AAAB,
AB ? AABA, BA ? BBAB,
BB ? BBBA

L = 12,800 nm,
N = 7

Thue–Morse Deterministic aperiodic,
singular continuous
spectrum

Substitution: A ? AB, B ? BA L = 12,800 nm,
N = 9

Fibonacci Deterministic aperiodic,
pure-point spectrum

Substitution: A ? AB, B ? A L = 11,600 nm,
N = 13
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visible wavelength range, being exemplary for any disjunction of different periodicities.

We expect the two multiperiodic structures to show two and three main resonance features

in the transmission spectrum at normal incidence as follows from Bragg theory (Rosenblatt

et al. 1997):

kres;i ¼ Ki � neff � sin Hð Þ
� �

ð1Þ

here kres;i is the wavelength of the quasi guided mode resonance of the ith grating com-

ponent, with the period Ki. neff is the effective refractive index of the guided mode at

resonance and H is the angle of incidence. For normal incidence, the spectral resonance

position is a function of the grating component Ki and the effective refractive index neff ,

which depends on the material’s refractive index and the geometry of the high-index layer.

All incorporated materials are modeled as non-magnetic, lossless (no complex refractive

index) materials, and the top and bottom layers are assumed to be non-dispersive, with

constant refractive indices n = 1 and n = 1.52 for air and AMONIL, respectively.

The aperiodic structures are binary sequences following simple mathematical substi-

tution rules. The three sequences are based on the Rudin–Shapiro, Thue–Morse and

Fibonacci substitution rules, which are chosen for their different degrees of disorder,

ranging from a pure-point spatial Fourier-spectrum (Fibonacci) to a continuous spatial

Fourier-spectrum (Rudin–Shapiro) (Dal Negro and Boriskina 2012a). The length of the

supercell, which we define as the geometric structure, which includes the binary sequence

once in the aperiodic case and has the length of the least common multiple of all the

periods in the multi-periodic case. It depends on the number of recursions (N) of the

respective substitution rule.

The aperiodic sequences are translated into nanostructures by substitution of each

letter by either a ridge or a groove of 50 nm in the substrate layer (see Fig. 1b).

Figure 2 shows the resulting calculated Fourier coefficients for spatial periodicities

ranging from 150 to 500 nm. The Fourier coefficients may be interpreted as likeliness

to monoperiodic gratings. Following Eq. 1, peaks in the Fourier spectrum will add

GMRs to the transmission and reflection spectrum. The chosen range of periodicities in

Fig. 2 will cover all resonance wavelengths in the visible spectrum. The Rudin–Shapiro

nanostructure has a flat, almost continuous spectrum with regard to the finite length of

the calculated sequence. The Thue–Morse nanostructure has some clusters of higher

Fourier components at 170, 250, and around 300 nm periodicities, being singular

continuous. Finally, the Fibonacci nanostructure shows a single point spectrum having

its peaks around 215 and 345 nm.

The implemented models were designed to embody the fabricated samples, which

consist of a nanostructured substrate on which a high-index layer is sputtered. The

implemented structure has a depth of 60 nm in the substrate and a 70 nm high-index layer

is added on top. The characteristic dispersion relation of TiO2 is used as depicted in Fig. 3

(Devore 1951). The cladding refractive index is set to air (n1 = 1) and the substrate is

assumed to be AMONIL photo resist (n3 = 1.52).

3 Methods

We employ three different simulation methods for the extraction of (frequency-domain)

reflection and transmission, as well as near-field data: Finite element method (FEM),

rigorous coupled wave analysis (RCWA) and finite difference time domain (FDTD)
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method. All three methods solve the Maxwell’s equations, with lateral periodic

boundaries and vertical radiating boundaries. In the case of non-magnetic materials this

is equivalent to the solution of Helmholtz’ (wave) equation. While the former two

methods operate completely in the frequency domain, FDTD is a time-domain

Fig. 2 Fourier spatial spectra of deterministic aperiodic nanostructures with 50 nm feature width, a Rudin–
Shapiro continuous spectrum, b Thue–Morse singular continuous spectrum, c Fibonacci pure-point spectrum
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technique. In time domain, in the case of time-harmonics electromagnetic fields,

Maxwell’s equations are again equivalent to the wave equation, with respect to the

well-known phasor definition (see (Jackson 1998; Taflove and Hagness 2005) for

details). In consequence, all three methods tackle equivalent sets of partial differential

equations, while in FDTD the desired frequency data can be efficiently extracted via

fast Fourier transform (FFT). All three methods implement the structures as periodic

super-cells with lateral Bloch-periodic boundary conditions. For the calculation of the

transmission coefficients, all orders of diffraction are integrated.

The simulation regime is set from 430 to 750 nm with 0.5 nm resolution. This range

covers the part of the visible spectrum, in which the broadband illumination source of the

measurement setup has sufficient power to take reliable spectra. With the structures being

invariant in the in-plane direction of the grating structures, two-dimensional simulations

are carried out. The excitation polarization is chosen for the transverse-electric (TE) case,

having the electric field vector in the plane of the waveguide.

In the following, the method-specific implementations alongside sample fabrication and

the measurement setup are described in further detail.

3.1 FDTD

The FDTD model consists of a two-dimensional (2D) unit cell of supercell width, that

comprises the different grating types implemented as polygons. The gratings are

sandwiched in vertical direction by a cladding layer (870 nm) on top and the substrate

layer (400 nm) at the bottom. To implement the necessary radiating boundary condi-

tions, the cell is sandwiched by 48-layer perfectly matched layers (PML). Horizontally

the cell is sandwiched by periodic (Bloch) boundary conditions, mimicking an infinite

repetition of the supercell. This structure is excited by a normally incident plane wave

with a sine-modulated Gaussian intensity profile. This excitation allows for the

extraction of broadband frequency information from a single time-domain solver run.

For a controllable accuracy, the grating region (±200 nm in vertical direction) is

discretized with square Yee-Cells with a fixed side length. Outside this region, to

increase computation speed, we allow a (vertical) widening of the mesh cells towards

the boundaries. A convergence analysis showed that a unit cell size of 2.5 nm is

sufficiently small to guarantee accurate results. After running the simulation, the desired

frequency-domain information can be obtained by a Fourier transformation with respect

to the desired frequency discretization and bandwidth. In the present showcase, we

performed FDTD runs with an impinging transverse electric (TE) plane wave, com-

prising a wavelength (free-space) range from 430 to 750 nm, discretized in 0.5 nm

steps. The transmission/reflection data are collected by a horizontal line field monitor,

spanning the entire simulation cell width, located between the plane wave source and

the PML, while the local field data are collected via two-dimensional field monitors

surrounding the grating region.

3.2 RCWA

The in-house RCWA implementation is implemented in Matlab� and based on the

algorithms presented in Moharam et al. (1995a, b), suitable for an RCWA imple-

mentation for a geometry with different layers. To model the geometries shown in

Fig. 1, they are divided in three layers. An upper layer modelling the variation between

high index and cladding material, a middle layer consisting only of high-index material
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and a lower layer describing a variation of refractive index between high-index and

substrate material. For each layer, the corresponding Fourier coefficients of the mul-

tiperiodic and aperiodic gratings are calculated analytically with a base frequency of

the inverse length of the supercell. The number of Fourier coefficients for each grating

is determined by a convergence analysis. For the aperiodic gratings and the multi-

periodic grating with 3 superimposed periods, 512 Fourier coefficients are sufficient,

whilst for the multiperiodic grating consisting of 2 periods only 64 Fourier coefficients

are necessary. Generally, the number of required coefficients increases with smaller

feature sizes with respect to supercell length. After implementing the geometry, the

spectrum is calculated for each wavelength individually.

To generate the near-field plot, the solution of the linear system underlying the RCWA

is used to reconstruct the field as a superposition of plane waves, according to the equations

given in (Moharam et al. 1995b) for the derivation of the algorithm.

3.3 FEM model

The COMSOL model features a polygon high-index block with wavelength dependent

refractive index as specified above. The cladding and substrate layers are 700 nm thick,

with additional 300 nm perfectly matched layers (PML) which are backed by second order

scattering layers. A mode excitation is introduced by a port at the upper boundary to the

PML. The transverse electric wave has an amplitude of 1 V/m and travels towards the

nanostructure with its wave vector orthogonal to the plane of the waveguide layer (normal

incident). A triangular, non-uniform mesh is user specified with minimum and maximum

element sizes of 2.5 and 15 nm, which showed good convergence for both transmission

and reflection spectra. A section of the mesh is shown in Fig. 4. The normalized power

flow is integrated 600 nm above and below the high index layer for calculation of trans-

mission and reflection properties. The simulation is solved for the out of plane, transverse

electric (TE) field, at incident wavelengths of 430–750 nm as specified above. The elec-

trical field is exported to Matlab and interpolated on a 1 nm rectangular grid via the

mphinterp() method.

Fig. 4 Triangular mesh of the COMSOL finite element simulation, showing the two-compound
multiperiodic grating structure
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3.4 Fabrication and measurement setup

To fabricate the compound multiperiodic and aperiodic nanostructured dielectric waveg-

uides, first glass substrates are cleaned with acetone and isopropanol in an ultra-sonic bath

for 15 min each and are dehydrated at 160 �C for 10 min. 150 ll adhesion promoter

(Amoprime, AMO GmbH) is spincoated onto the substrate at 3000 rpm for 30 s. After

baking the substrates at 110 �C and cooling them for 2 min each, 150 ll photoresist

(AMONIL, Amo GmbH) is spincoated at 3000 rpm for 30 s. A thin film of about 200 nm is

formed this way, into which the nanostructure is transferred by a nanoimprint process.

AMONIL has the same refractive index as the glass substrate to prevent interference

effects during illumination. A polydimethylsiloxane (PDMS) stamp, which is a replica of a

nickel shim containing the original electron-beam-written nanostructures (60 nm structure

depth, Karlsruhe Nano and Micro Facility), is carefully pressed to the photoresist to

transfer the structure. For fabrication details of the PDMS stamp, see (Jahns et al. 2015).

The photoresist is UV hardened through the PDMS stamp for 80 s. After removing the

stamp, a 70 nm thick titanium dioxide high-index layer is deposited by reactive sputtering,

to form the waveguiding layer.

The fabricated samples are placed into a transmission confocal microscope setup. A

polarization filter is used to excite either transverse electric (TE) or transverse magnetic

(TM) resonances. The transmitted light is coupled to a spectroscope (Shamrock 500i,

Andor) with a CCD camera (Andor). A halogen broadband illumination source is used. To

obtain the transmission coefficients of the samples, the measured spectral data is nor-

malized to the system response of the setup.

4 Results

In this section the simulation results as well as the measured transmission spectra are

presented. The three methods are compared in different scenarios.

4.1 Near field simulations

All three simulation methods are used to calculate near fields of the structures. The

2-compound structure is chosen to be shown here due its shorter supercell length of

1500 nm. The magnitude of the electrical field strength is calculated at the first spectral

resonance (498.5 nm, see Fig. 6) for the length of a single supercell. The calculated near

fields are depicted in Fig. 5. Outlines of the high refractive index layer are plotted in white,

to show the geometrical structure.

All three methods are capable of calculating the electric field of both multiperiodic and

aperiodic structures. The calculated fields only show small differences. The field distri-

bution shows the resonant behavior of the 498.5 nm wavelength with regions of concen-

trated field energy. Due to the distinctive meshing of the methods, disparity plots mainly

reveal interpolation errors.

4.2 Multiperiodic nanostructures

For all five structures, transmission spectra are computed and are compared in the fol-

lowing. First the results of the two multiperiodic structures are presented. Figure 6 shows
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Fig. 5 Computed normalized electric field strengths for the 2-compound grating structure. a FEM,
b RCWA, c FDTD

Fig. 6 Simulated and measured transmission spectra of dielectric waveguides with aperiodic nanostructure
based on a 2-compound and b 3-compound multiperiodic nanostructures. Three different simulation
methods are employed
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the simulated transmission spectra for the 2-compound (left) and 3-compound (right)

nanostructured waveguides. The three simulation methods have very similar results,

showing two major dips at 498.5 and 560 nm. Both the simulated 2-compound and

3-compound transmission spectra predict the general form of the measured data well. The

simulated results are redshifted by about 15 nm compared to the measurement. This

mismatch might be attributed to an imperfect TiO2 layer, having a lower refractive index

than bulk TiO2 as found in the literature (Devore 1951). No experimental dispersion

relation of the sputtered TiO2 is available at the moment. Another reason for the spectral

mismatch might be a lower height of the high index layer as a result of the sputtering

process, which showed to have an accuracy of a few nanometers. The transmission of the

measurement is lower in general, compared to the simulation, which we attribute to

material absorption and additional scattering at the imperfect material boundaries. Even

though the measurement and simulation are not perfectly matched, the results show, that

the general behavior—the resonance position and shape—of multi-periodic nanostructures

can be predicted by all three methods. Knowledge of the exact material parameters seems

to be crucial in absolute prediction of the spectral position and transmission values.

4.3 Aperiodic nanostructures

Figure 7 shows the computed transmission spectra for the Rudin–Shapiro, Thue–Morse,

and the Fibonacci aperiodic nanostructures as specified above. Here, the three simulation

methods are again in good agreement. Only in the case of the Rudin–Shapiro nanostructure

the spectrum of the FDTD simulation shows lower transmission.

The general features of the simulated transmission spectra are contained in the mea-

sured data. The resonance dips of the measurement are much broader than the simulated.

This effect might be caused by the small feature size (50 nm) of the ridges and grooves of

the nanostructure, which is at the lower limit of the current fabrication possibilities. Thus,

the imperfect fabrication lowers the quality of the resonances. Again the transmission

spectrum of the measurement is shifted to the blue regime. In the case of the Rudin–

Shapiro nanostructure, due to the high number of resonances and the imperfection of the

fabrication, an accurate prediction of the transmission spectrum was not possible. Due to

the lack of short range correlations of this deterministic structure with continuous Fourier

spectrum, the analysis of the Rudin–Shapiro sequence has been reported complicated (Dal

Negro and Boriskina 2012a).

4.4 Comparison of simulation methods

While all the methods are suitable for the simulation of transmission spectra and near fields

for light-matter interaction in multiperiodic and aperiodic nanostructured dielectric

waveguides, each method has its own benefits and drawbacks.

For the comparison of the methods, the computational times for three scenarios are

computed on the same computer (dual Intel� Xeon� CPU E5-2637 v3 @ 3.50 GHz,

512 GB of RAM). The first scenario is the computation of the transmission spectrum over

the visible range as shown above (430–750 nm, 641 spectral points). The second scenario

is the electrical field calculation as shown in Fig. 5 for a single wavelength and the

2-compound structure detailed in Table 1. The third scenario is the computation of both

transmission and near-field data for the entire spectrum. The FDTD simulations and the

FEM simulations are natively parallelized. We have parallelized the in-house RCWA code
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with Matlab�’s parallel processing toolbox. For the present comparison, we restricted all

concurrent simulations to 8 workers (CPU cores).

From the simulation times in Table 2 it follows that the RCWA method is best suited

for the calculation of transmission and reflection spectra, as these data are not deduced

from local fields (as it is the case in FEM-based calculations). On the other hand, FEM

turns out to be efficient in calculating single field images, and COMSOL Multiphysics�

offers a broad range of tools for subsequent analysis. The broadband nature of FDTD leads

to the shortest simulation time if one is interested in full spectra alongside field plots for all

involved wavelengths. On the other hand, this nature also leads to significant time draw-

backs, when exercising the first two scenarios, as compared to the frequency domain

methods. For extensive parameter sweeps, in RCWA, less Fourier components may be

used to have an even faster calculation with less details. Concurrently, an approach with

lower spectral and meshing resolution in the COMSOL�’s Wave Optics Module and

FDTD Solutions is thinkable to reach shorter simulation times. The 2-compound structure

under investigation is the smallest structure we investigated in this study. Simulation time

will scale with the number of Fourier coefficients in the RCWA case and with the size of

the supercell (number of mesh elements) in the FEM and FDTD case. Please note that our

Fig. 7 Simulated and measured transmission spectra of dielectric waveguides with aperiodic nanostructure
based on a Rudin–Shapiro, b Thue–Morse, and c Fibonacci sequence. Three different simulation methods
are employed
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in-house implementation has still potential for further runtime optimization (Hench and

Strakoš 2008).

5 Conclusion

In conclusion we computed the transmission coefficients and near field characteristics of

compound multiperiodic and deterministic aperiodic nanostructured dielectric waveguides

with three different simulation methods and compared these to measured data. The three

simulation methods, namely FDTD, FEM and RCWA give close results in both trans-

mission spectra and near fields. In the multiperiodic cases a good prediction of the

experimental transmission spectra is possible. Here, the spectral features are in good

agreement with the measurements. For the aperiodic cases the predictive quality of the

simulations was lower. In the case of the Thue–Morse and Fibonacci nanostructures the

same general features were observed in both simulation and measurement. For the highly

disordered Rudin–Shapiro sequence no prediction was possible. Each simulation method

has its advantages and disadvantages. While all result in similar simulation results, the

proprietary FEM and FDTD software packages allow for a comfortable implementation of

different structures with little algorithmic knowledge. The in-house RCWA implementa-

tion on the other hand offers much faster simulation times.
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Table 2 Comparison of simulation methods for multiperiodic and aperiodic nanostructured dielectric
waveguides

Method Scenario 1:
transmission
spectrum

Scenario 2:
single-
wavelength
field

Scenario
3: full
Spectrum
and field

Pros Cons

Finite Element Method
(FEM, COMSOL
Multiphysics� Wave
Optics Module)

Slowest, all
fields have
to be
calculated,
13 min,
11 s

Fastest, 6 s 13 min,
11 s

Fast single
field profile
calculation;
extensive
toolbox

Proprietary

Finite Difference Time
Domain (FDTD,
FDTD Solutions by
Lumerical Solutions,
Inc.)

1 min 7 s 59 s Fastest,
5 min,
4 s

Fast full-
spectrum
full-field
calculation

Proprietary

Rigorous Coupled
Wave Analysis
(RCWA, in-house
implementation)

Fastest, 18 s 12 s 7 min,
10 s

Fast spectrum
calculation

Non-intuitive
implementation,
no user interface
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Appendix: comparison of different models

In a preliminary investigation, we tried a simplified model of the experimental structure for

easier implementation. Here, we present the FDTD results comparing the behavior of the

two different simulation models depicted in Fig. 8. Model 1 (single layer, SL) implements

the waveguide layer as a single layer of corrugated refractive index. Model 2 (double layer,

DL) on the bottom of Fig. 8 resembles the experimental structures more closely. The first

single-layer (SL) approach models the high-index layer as 100 nm high-index (n2) ridges

embedded in the substrate.

Both SL and DL simulations in this preliminary investigation have non-dispersive

material properties with fixed refractive indices of n1 = 1, n2 = 2.44, n3 = 1.52. Figure 9

shows FDTD simulations of the transmission characteristics of the two models as well as

the measured transmission of the Thue–Morse nanostructured waveguide. The refractive

index of the high-index layer differs from the values used for Fig. 7, which includes

material dispersion. This accounts for the differences in resonance position and shape with

regard to Fig. 9.

The double layer simulations match better the measured data, showing the general

spectral features of the measurement. As a result, the simplification introduced by the

single layer model is not suited for the simulation of the investigated structures.

Fig. 8 Top Simplified model with 100 nm embedded high-index ridges (n2 = 2.44) in AMONIL substrate.
Bottom Model as introduced in Fig. 1
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