Skip to main content

Advertisement

Log in

Photovoltaic cells technology: principles and recent developments

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Solar energy is one of the renewable energy resources that can be changed to the electrical energy with photovoltaic cells. This article accomplishes a comprehensive review on the emersion, underlying principles, types and performance improvements of these cells. Although there are some different categorizations about the solar cells, but in general, all of them can be divided to crystalline silicon solar cells, thin film technology, III–V multijunction cells, dye-sensitized solar cells, polymer solar cells and quantum structured solar cells. Thin film technology is investigated in two non-crystalline silicon solar cells and chalcogenide cells. We present a complete categorization of solar cells and discuss the recent developments of different types of solar cells. Indeed, this paper covers almost all of the development processes of solar cells from their emersion in 1939 up to now. Also, due to substantial effects of the light trapping techniques on the improvements of the solar cells, a comprehensive study has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron D., Barkhouse R., Gunawan O., Gokmen T., Todorovand T.K., Mitzi D.B.: Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt. Res. Appl. 20, 6–11 (2012)

    Article  Google Scholar 

  • Adachi M., Murata Y., Takao J., Jiu J., Sakamoto M., Wang F.: Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943–14950 (2004)

    Article  Google Scholar 

  • Ahn B.T., Yun J.H., Cha E.S., Park K.C.: Understanding the junction degradation mechanism in CdS/CdTe solar cells using a Cd-deficient CdTe layer. Curr. Appl. Phys. 12, 174–178 (2012)

    Article  ADS  Google Scholar 

  • Aiken D.J.: High performance anti-reflection coatings for broadband multi-junction solar cells. Sol. Energy Mater. Sol. Cells 64, 393–404 (2000)

    Article  Google Scholar 

  • Alferov Z.I., Andreev V.M., Kagan M.B., Protasov I.I., Trofim V.G.: Solar energy converters based on p-n AlxGal-xAs-GaAs heterojunctions. Sov. Phys. Semicond. 4, 2047–2048 (1971)

    Google Scholar 

  • Alivisatos A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  Google Scholar 

  • Amano C., Ando K., Yamaguchi M.: The effect of oxygen on the properties of AlGaAs solar cells grown by molecular beam epitaxy. J. Appl. Phys. 63, 2853–2856 (1988)

    Article  ADS  Google Scholar 

  • Andre C.L., Carlin J.A., Boeckl J.J., Wilt D.M., Smith M.A., Pitera A.J., Lee M.L., Fitzgerald E.A., Ringel S.A.: Investigations of high-performance GaAs solar cells grown on Ge−Si1-xGex—Si substrates. IEEE Trans. Electron Devices 52, 1055–1060 (2005)

    Article  ADS  Google Scholar 

  • Aramoto T., Kumazawa S., Higuchi H., Arita T., Shibutani S., Nishio T., Nakajima J., Tsuji M., Hanafusa A., Hibino T., Omura K., Ohyama H., Murozono M.: 16.0% efficient thin-film CdS/CdTe solar cells. Jpn. J. Appl. Phys. Part 1 (Regular Papers, Short Notes & Review Papers) 36, 6304–6305 (1997)

    Google Scholar 

  • Asgari A., Khalili Kh.: Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell. Sol. Energy Mater. Sol. Cells 95, 3124–3129 (2011)

    Article  Google Scholar 

  • Atwater H.A., Polman A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  • Avrutin V., Izyumskaya N., Morkoç H.: Semiconductor solar cells: recent progress in terrestrial applications. Superlattices Microstruct. 49, 337–364 (2011)

    Article  ADS  Google Scholar 

  • Aziz W.J., Ramizy A., Ibrahim K., Hassan Z., Oma K.: The effect of anti-reflection coating of porous silicon on solar cells efficiency. Optik 122, 1462–1465 (2011)

    Article  ADS  Google Scholar 

  • Basol, B.M., Kapur, V.K., Halani, A.: In: Proceedings of the 22nd IEEE PVSC 893 (1991)

  • Becquerel A.E.: Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. C. R. Acad. Sci. 9, 145–148 (1839)

    Google Scholar 

  • Bhattacharya P.: Semiconductor Optoelectronic Devices, 2nd edn. Prentice Hall, London (1996)

    Google Scholar 

  • Bonnet, D., Rabenhorst, H.: In: Conference Rec. 9th IEEE Photovoltaic Specialist Conference, pp. 129–132, New York (1972)

  • Born M., Wolf E.: Principles of Optics, Chap. 1. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Cabarrocas P.R.I.: Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films. J. Non Cryst. Sol. 31, 266–269 (2000)

    Google Scholar 

  • Cai W., Gong X., Cao Y.: Polymer solar cells: recent development and possible routes for improvement in the performance. Sol. Energy Mater. Sol. Cells 94, 114–127 (2010)

    Article  Google Scholar 

  • Cai, X., Zeng, S., Li, X., Zhang, J., Lin, S., Lin, A., Zhang, B.: Effect of light intensity and temperature on the performance of GaN-based p-i-n solar cells. In: Proceedings of the 2011 International Conference on Electrical and Control Engineering (ICECE), pp. 1535–1537 (2011)

  • Campbell, P., Wenham, S.R., Green, M.A.: Light trapping and reflection control with tilted pyramids and grooves. In: Proceedings of the Twentieth IEEE Photovoltaic Specialists Conference, pp. 713–716 (1988)

  • Campoy-Quiles M., Ferenczi T., Agostinelli T., Etchegoin P.G., Kim Y., Anthopoulos T.D., Stavrinou P.N., Bradley D.D.C., Nelson J.: Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat. Mater. 7, 158–164 (2008)

    Article  ADS  Google Scholar 

  • Carlson D.E., Wronski C.R.: Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976)

    Article  ADS  Google Scholar 

  • Chapin D.M., Fuller C.S., Pearson G.L.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)

    Article  ADS  Google Scholar 

  • Chattopadhyay S., Huang Y.F., Jen Y.J., Granguly A., Chen K.H., Chen L.C.: Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R-Rep. 69, 1–3 (2010)

    Article  Google Scholar 

  • Chen, C.Y., Wang, M., Li, J.Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C.H., Decoppet, J.D., Tsai, J.H., Gratzel, C., Wu, C. G., Zakeeruddin, S.M., Gratzel, M.: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano. 3, 3103–3109 (2009)

    Google Scholar 

  • Chiu M.Y., Jeng U.S., Su C.H., Liang K.S., Wer K.H.: Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells. Adv. Mater. 20, 2573–2578 (2008)

    Article  Google Scholar 

  • Cho, J.S., Baek, S., Park, S.H., Park, J.H., Yoo, J., Yoon, K. H.: Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells. Sol. Energy Mater. Sol. Cells (2012). doi:10.1016/j.solmat.2012.03.031

  • Chopra K.L., Das S.R.: Thin Film Solar Cells. Plenum Press, New York (1983)

    Google Scholar 

  • Cotter J.E., Guo J.H., Cousins P.J., Abbott M.D., Chen F.W., Fisher K.C.: P-Type versus n-type silicon wafers: prospects for high-efficiency commercial silicon solar cells. IEEE Trans. Electron Devices 53, 1893–1901 (2006)

    Article  ADS  Google Scholar 

  • Cuevas, A., Basore, P., Giroult-Matlakowski, G., Dubois, C.: Surface recombination velocity and energy bandgap narrowing of highly doped N-type silicon. In: Proceedings of the 13th European Conference Photovoltaic Solar Energy Conversion, pp. 337–342 (1995)

  • Cuevas, A., Matlakowski, G.G., Basore, P.A., Dubois, C., King, R. R.: Extraction of the surface recombination velocity of passivated phosphorus-doped silicon emitters. In: Proceedings of the 24th IEEE Photovoltaic Specialists Conference, pp. 1446–1449 (1994)

  • Cuevas, A., Stuckings, M., Lay, J., Petravic, M.: Applications of the quasi-steady-state photoconductance technique. In: Proceedings opf the 14th European Conference Photovoltaic Solar Energy Conversion, pp. 2416–2419 (1997)

  • Dabbousi B.O., Bawendi M.G., Onitsuka O., Rubner M.F.: Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995)

    Article  ADS  Google Scholar 

  • Dimroth F.: High-efficiency solar cells from III-V compound semiconductors. Phys. Stat. Sol. (c) 3, 373–379 (2006)

    Article  Google Scholar 

  • Donne A.L., Acciarri M., Gori G., Colletto R., Campesato R., Binetti S.: Optical and electrical characterization of AlGaInP solar cells. Sol. Energy Mater. Sol. Cells 94, 2002–2006 (2010)

    Article  Google Scholar 

  • Epstein L.I.: Design of optical filters. J. Opt. Soc. Am. 42, 806–810 (1952)

    Article  ADS  Google Scholar 

  • Ernits K., Bremaud D., Buecheler S., Hibberd C.J., Kaelin M., Khrypunov G., Mueller U., Mellikov E., Tiwari A.N.: Characterization of ultrasonically sprayed Inx S y buffer layers for Cu(In,Ga)Se2 solar cells. Thin Solid Films 515, 6051–6054 (2007)

    Article  ADS  Google Scholar 

  • Fan, J.C.C., Tsaur, B.Y., Palm, B.J.: Optimum design of high efficiency tandem solar cells. In: Proceedings of the 16th IEEE Photovoltaic Specialists Conference, pp. 692–701 (1982)

  • Feng N.N., Michel J., Zeng L., Liu J., Hong C.Y., Kimerling L.C., Duan X.: Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Devices 54, 1926–1933 (2007)

    Article  ADS  Google Scholar 

  • Feng Z.C., Lin H.C., Zhao J., Yang T.R., Ferguson I.: Surface and optical properties of AlGaInP films grown on GaAs by metal organic chemical vapor deposition. Thin Solid Films 498, 167–173 (2006)

    Article  ADS  Google Scholar 

  • Flores I.C., Neide Freitas J., Longo C., De Paoli M.A., Winnischofer H., Nogueira A.F.: Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. J. Photochem. Photobiol. A Chem. 189, 153–160 (2007)

    Article  Google Scholar 

  • Flückiger, R., Meier, J., Shah, A.: In: Proceedings of the 23rd IEEE PVSC, p. 839, Louisville, KY (1993)

  • Fonash S.J.: Solar Cell Device Physics, Chap. 7: Dye-sensitized Solar Cells, pp. 295–309. Elsevier, London (2010)

    Google Scholar 

  • Fornari R.: Optimal growth conditions and main features of GaAs single crystals for solar cell technology: a review. Sol. Energy Mater. 11, 361–379 (1985)

    Article  ADS  Google Scholar 

  • Friedman D.J.: Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr. Opin. Solid State Mater. Sci. 14, 131–138 (2010)

    Article  ADS  Google Scholar 

  • Gall S., Becker C., Conrad E., Dogan P., Fenske F., Gorka B., Lee K.Y., Rau B., Ruske F., Rech B.: Polycrystalline silicon thin-film solar cells on glass. Sol. Energy Mater. Sol. Cells 93, 1004–1008 (2009)

    Article  Google Scholar 

  • Gangopadhyay U., Kim K., Mangalaraj D., Yi J.: Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 230, 364–370 (2004)

    Article  ADS  Google Scholar 

  • Gilot, J.: Polymer Tandem Solar Cells. PhD Thesis, Eindhoven University of Technology (2010)

  • Gorji N.E.: A theoretical approach on the strain-induced dislocation effects in the quantum dot solar cells. Sol. Energy 86, 935–940 (2012)

    Article  Google Scholar 

  • Gorji N.E., Movla H., Sohrabi F., Hosseinpour A., Rezaei M., Babaei H.: The effects of recombination lifetime on efficiency and J–V characteristics of InxGa1-xN/GaN quantum dot intermediate band solar cell. Phys. E 42, 2353–2357 (2010)

    Article  Google Scholar 

  • Gorji N.E., Zandi M.H., Houshmand M., Abrari M., Abaei B.: Concentration effects on the efficiency, thickness and J–V characteristics of the intermediate band solar cells. Phys. E 43, 989–993 (2011)

    Article  Google Scholar 

  • Gorji, N.E., Zandi, M.H., Houshmand, M., Shokri, M.: Transition and recombination rates in intermediate band solar cells. Sci. Iran. Trans. D Comput. Sci. Electr. Eng. (2012). doi:10.1016/j.scient.2012.02.005

  • Green, M.A.: Clean electricity from photovoltaics. In: Archer, M.D., Hill, R. (eds.) chapter 4: Crystalline Silicon Solar Cells, Imperial College Press, United Kingdom (2001)

  • Green M.A.: Silicon Solar Cells. Advanced Principles and Practice, Chap. 6, Centre for Photovoltaic Devices and Systems. University of New South Wales, Sydney (1995)

    Google Scholar 

  • Green M.A.: Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. Semicond. Sci. Technol. 8, 1–12 (1993)

    Article  ADS  Google Scholar 

  • Green M.A., Blakers A.W., Shi J., Keller E.M., Wenham S.R.: 19.1% efficient silicon solar cell. Appl. Phys. Lett. 44, 1163–1164 (1984)

    Article  ADS  Google Scholar 

  • Greenham N.C., Poeng X., Alivisatos A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996)

    Article  ADS  Google Scholar 

  • Greenham, N.C., Peng, X., Alivisatos, A.P.: In: McConnell, R. (ed.) Future Generation Photovoltaic Technologies: First NREL Conference. American Institute of Physics, p. 295 (1997)

  • Gudovskikh A.S., Kleider J.P., Kalyuzhnyy N.A., Lantratov V.M., Mintairov S.A.: Band structure at heterojunction interfaces of GaInP solar cells. Sol. Energy Mater. Sol. Cells 94, 1953–1958 (2010)

    Article  Google Scholar 

  • Guha S., Narasimhan K.L., Pietruszko S.M.: On light-induced effect in amorphous hydrogenated silicon. J. Appl. Phys. 52, 859–861 (1981)

    Article  ADS  Google Scholar 

  • Guha S., Yang J., Williamson D.L., Lubianiker Y., Cohen J.D., Mahan A.H.: Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl. Phys. Lett. 74, 1860–1862 (1999)

    Article  ADS  Google Scholar 

  • Guter W., Bett A.W.: I–V characterization of tunnel diodes and multijunction solar cells. IEEE Trans. Electron Devices 53, 2216–2222 (2006)

    Article  ADS  Google Scholar 

  • Guter W., Schone J., Philipps S.P., Steiner M., Siefer G., Wekkeli A., Welser E., Oliva E., Bett A.W., Dimroth F.: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504–223506 (2009)

    Article  ADS  Google Scholar 

  • Guyot-Sionnest P., Shim M., Matranga C., Hines M.: Intraband relaxation in CdSe quantum dots. Phys. Rev. B 60, R2181–R2184 (1999)

    Article  ADS  Google Scholar 

  • Halme J.: Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Tests. Helsinki University of Technology, Espoo (2002)

    Google Scholar 

  • Hansel H., Zettl H., Krausch G., Kisselev R., Thelakkat M., Schmidt H.-W.: Optical and electronic contributions in double-heterojunction organic thin-film solar cells. Adv. Mater. 15, 2056–2060 (2003)

    Article  Google Scholar 

  • Harrison P.: Quantum Wells Wires and Dots. Wiley, New York (2000)

    Google Scholar 

  • Hashimoto Y., Kohara N., Negami T., Nishitani N., Wada T.: Chemical bath deposition of Cds buffer layer for GIGS solar cells. Sol. Energy Mater. Sol. Cells 50, 71–77 (1998)

    Article  Google Scholar 

  • Hermann A.M.: Polycrystalline thin-film solar cells—a review. Sol. Energy Mater. Sol. Cells 55, 75–81 (1998)

    Article  Google Scholar 

  • Hoppe H., Sariciftci N.S.: Polymer solar cells. Adv. Polym. Sci. 214, 1–86 (2008)

    Google Scholar 

  • Hou J., Chen H.Y., Zhang S., Li G., Yang Y.: Synthesis, characterization and photovoltaic properties of a low bandgap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole. J. Am. Chem. Soc. 130, 16144–16145 (2008)

    Article  Google Scholar 

  • Hovel, H.J., Woodall, J.M.: In: Conference Rec. 10th IEEE Photovoltaic Specialists Conference, p. 25 (1973)

  • Hoyer P., Kronenkamp R.: Photoconduction in porous TiO2 sensitized by PbS quantum dots. Appl. Phys. Lett. 66, 349–351 (1995)

    Article  ADS  Google Scholar 

  • Huang R., Ghandhi S.K., Borrego J.M.: Modeling of a GaAs-Ge monolithic tandem solar cell. Sol. Energy Mater. 13, 469–479 (1986)

    Article  Google Scholar 

  • Huynh W.U., Peng X., Alivisatos P.: CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices. Adv. Mater. 11, 923–927 (1999)

    Article  Google Scholar 

  • Irannejad A., Janghorban K., Tan O.K., Huang H., Lim C.K., Tan P.Y., Fang X., Chua C.S., Maleksaeedi S., Hejazi S.M.H., Shahjamali M.M., Ghaffari M.: Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO−TiO2 core–shell nanorod electrodes. Electrochimica Acta 58, 19–24 (2011)

    Article  Google Scholar 

  • Jabbari, V., Hamadanian, M., Gravand, A.: Dependence of energy conversion efficiency of dye-sensitized solar cells on the annealing temperature of TiO2 nanoparticles. Mater. Sci. Semicond. Process. (2012). doi:10.1016/j.mssp.2011.12.004

  • Jackson P., Hariskos D., Lotter E., Paetel S., Wuerz R., Menner R., Wischmann W., Powalla M.: New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  • Jianmin H., Yiyong W., Jingdong X., Dezhuang Y., Zhongwei Z.: Degradation behaviors of electrical properties of GaInP/GaAs/Ge solar cells under < 200keV proton irradiation. Sol. Energy Mater. Sol. Cells 92, 1652–1656 (2008)

    Article  Google Scholar 

  • Jung S.-M., Kim Y.-H., Kim S.-I., Yoo S.-I.: Design and fabrication of multi-layer antireflection coating for III-V solar cell. Curr. Appl. Phys. 11, 538–541 (2011)

    Article  ADS  Google Scholar 

  • Kamei T., Wada T.: ygen impurity doping into ultrapure hydrogenated microcrystalline Si films. J. Appl. Phys. 96, 2087–2090 (2004)

    Article  ADS  Google Scholar 

  • Kang J., You J., Kang C., Pak J.J., Kim D.: Investigation of Cu metallization for Si solar cells. Sol. Energy Mater. Sol. Cells 74, 91–96 (2002)

    Article  Google Scholar 

  • Keppner, H., Kroll, U., Torres, P., Meier, J., Fischer, D., Goetz, M., Tscharner, R., Shah, A.: Scope of VHF plasma deposition for thin-film silicon solar cells. In: Proceedings of the 25th IEEE Photovoltaics Specialist Conference, pp. 669–672, Washington, DC (1996)

  • Kessler F., Rudmann D.: Technological aspects of flexible CIGS solar cells and modules. Sol. Energy 77, 685–695 (2004)

    Article  Google Scholar 

  • Kim J.Y., Lee K., Coates N.E., Moses D., Nguyen T.Q., Dante M., Heeger A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  ADS  Google Scholar 

  • King, R.R., Boca, A., Hong, W., Liu, X.Q., Bhusari, D., Larrabee, D., Edmondson, K., Law, D., Fetzer, C.M., Mesropian, S., Karam, N.: Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells. In: 24th European Photovoltaic Solar Energy Conference (EU PVSEC), pp. 21–25, Hamburg, Germany (2009)

  • Klimov V.I., Mikhailovsky A.A., McBranch D.W., Leatherdale C.A., Bawendi M.G.: Mechanisms for intraband energy relaxation in semiconductor quantum dots: the role of electron-hole interactions. Phys. Rev. B Condens. Matter Mater. Phys. 61, R13349–R13352 (2000)

    Article  ADS  Google Scholar 

  • Koo H.J., Park J., Yoo B., Yoo K., Kim K., Park N.G.: Size-dependent scattering efficiency in dye-sensitized solar cell. Inorg. Chim. Acta 361, 677–683 (2008)

    Article  Google Scholar 

  • Kosarian, A., Jelodarian, P.: Numerical evaluation and characterization of single junction solar cell based on thin-film a-Si:H/a-SiGe: H hetero-structure. In: 19th Iranian Conference on Electrical Engineering (ICEE), Tehran (2011)

  • Kosyachenko L.A., Grushko E.V., Mathew X.: Quantitative assessment of optical losses in thin-film CdS/CdTe solar cells. Sol. Energy Mater. Sol. Cells 96, 231–237 (2012)

    Article  Google Scholar 

  • Krasnov I.A.: Light scattering by textured transparent electrodes forthin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 94, 1648–1657 (2010)

    Article  Google Scholar 

  • Krebs F.C., Alstrup J., Spanggaard H., Larsen K., Kold E.: Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol. Energy Mater. Sol. Cells 83, 293–300 (2004)

    Article  Google Scholar 

  • Kuang D., Klein C., Ito S., Moser J.E., Humphry-Baker R., Evans N., Duriaux F., Gratzel C., Zakeeruddin S.M., Gratzel M.: High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv. Mater. 19, 1133–1137 (2007)

    Article  Google Scholar 

  • Kurtz, S., Johnston, S.W., Geisz, J.F., Friedman, D.J., Ptak, A.J.: Effect of nitrogen concentration on the performance of GaInNAs solar cells. In: Proceedings of the 31st IEEE Photovoltaic Specialists Conference, p. 595. IEEE, New York, FL, USA (2005)

  • Lee D.Y., Lee H.H., Ahn J.Y., Park H.J., Kim J.H., Kwon H.J., Jeong J.W.: A new back surface passivation stack for thin crystalline silicon solar cells with screen-printed back contacts. Sol. Energy Mater. Sol. Cells 95, 26–29 (2011)

    Article  Google Scholar 

  • Lenzmann F.O., Kroon J.M.: Recent advances in dye-sensitized solar cells. Adv. Optoelectron. 2007, 1–10 (2007)

    Article  Google Scholar 

  • Li G., Shrotriya V., Huang J.S., Yao Y., Moriarty T., Emery K., Yang Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Article  ADS  Google Scholar 

  • Lide D.R.: CRC Handbook of Chemistry and Physics, 87th edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  • Lin H., Irfan , Xia W., Wu H.N., Gao Y., Tang C.W.: MoOx back contact for CdS/CdTe thin film solar cells: preparation, device characteristics, and stability. Sol. Energy Mater. Sol. Cells 99, 349–355 (2012)

    Article  Google Scholar 

  • Liou B.W.: InxGa1-xN-GaN-Based solar cells with a multiple-quantum-well structure on SiCN–Si (111) substrates. IEEE Photonics Technol. Lett. 22, 2015–2017 (2010)

    Article  Google Scholar 

  • Liu D., Kamat P.V.: Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films. J. Phys. Chem. 97, 10769–10773 (1993)

    Article  Google Scholar 

  • Liu, X.Q., Fetzer, C.M., Rehder, E., Cotal, H., Mesropian, S., Law, D., King, R.R.: Organometallic vapor phase epitaxy growth of upright metamorphic multijunction solar cells. J. Cryst. Growth (2011). doi:10.1016/j.jcrysgro.2011.10.024

  • Lobato, P.K.: PhD Thesis, University of Bath, October (2007)

  • Loehr J.P., Manasreh M.O.: Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors. Artech House, Boston (1993)

    Google Scholar 

  • Loferski J.: Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic energy conversion. J. Appl. Phys. 27, 777–784 (1956)

    Article  ADS  Google Scholar 

  • Lund J., Roge R., Petersen R., Larsen T.: Polymer Solar Cells. The Report of the 4th Semester Project Period on the Nanotechnology Education. Aalborg University, Denmark (2006)

    Google Scholar 

  • Luque A., Hegedus S.: Handbook of Photovoltaic Science and Engineering. Wiley, England (2003)

    Book  Google Scholar 

  • Luque A., Marti A.: Electron–phonon energy transfer in hot-carrier solar cells. Sol. Energy Mater. Sol. Cells 94, 287–296 (2010a)

    Article  Google Scholar 

  • Luque A., Marti A.: On the partial filling of the intermediate band in IB solar cells. IEEE Trans. Electron Devices 57, 1201–1207 (2010b)

    Article  ADS  Google Scholar 

  • Mahan A.H., Williamson D.L., Furtak T.E.: Observation of improved structural ordering in low H content. Hot wire deposited a-Si:H. Mater. Res. Soc. Symp. Proc. 467, 657–662 (1997)

    Article  Google Scholar 

  • Marstein, E.S., Solheim, H.J., Wright, D.N., Holt, A.: Acidic texturing of multicrystalline silicon wafers. In: Proceedings of the thirty-first IEEE photovoltaic specialists conference, pp. 1309–1312 (2005)

  • Marti A., Cuadra L., Luque A.: Design constraints of the quantum-dot intermediate band solar cell. Phys. E 14, 150–157 (2002)

    Article  Google Scholar 

  • Marti A., Stanley C.R., Luque A.: Nanostructured Materials for Solar Energy Conversion, Chap. 17: Intermediate Band Solar Cells (IBSC) Using Nanotechnology, pp. 539–566. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Martinson A.B.F., Elam J.W., Hupp J.T., Pellin M.J.: ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7, 2183–2187 (2007)

    Article  ADS  Google Scholar 

  • Maruyama, E., Terakawa, A., Taguchi, M., Yoshimine, Y., Ide, D., Baba, T., Shima, M., Sakata, H., Tanaka, M.: Sanyo’s challenges to the development of high-efficiency hit solar cells and the expansion of hit business. In: Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, pp. 1455–1460. WCEP-4, Hawaii (2006)

  • Matsuda A.: Microcrystalline silicon, growth and device application. J. Non-Cryst. Solids 1, 338–340 (2004)

    Google Scholar 

  • Meier J., Flückiger R., Keppner H., Shah A.: Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?. Appl. Phys. Lett. 65, 860–862 (1994)

    Article  ADS  Google Scholar 

  • Meier J., Torres P., Platz R., Dubail S., Kroll U., Anna Selvan J.A., Pellaton Vaucher N., Hof Ch., Fischer D., Keppner H., Shah A., Ufert K.D., Giannoulès P., Koehler J.: On the way towards high efficiency thin film silicon solar cells by the “Micromorph” concept. Mater. Res. Soc. Proc. Ser. 420, 3 (1996). doi:10.1557/PROC-420-3

    Article  Google Scholar 

  • Meillaud F., Feltrin A., Despeisse M., Haug F.-J., Domine D., Python M., Soderstrom T., Cuony P., Boccard M., Nicolay S., Ballif C.: Realization of high efficiency micromorph tandem silicon solar cells on glass and plastic substrates: issues and potential. Sol. Energy Mater. Sol. Cells 95, 127–130 (2011)

    Article  Google Scholar 

  • Merten J., Asensi J.M., Voz C., Shah A.V., Platz R., Andreu J.: Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules. IEEE Trans. Electron Devices 45, 423–429 (1998)

    Article  ADS  Google Scholar 

  • Middya, A.R., Hamma, S., Hazra, S., Ray, S., Longeaud, C.: Stability and nanostructure of heterogeneous amorphous silicon thin films developed under high chamber pressure (500 to 1800 mTorr) regime of RF PECVD in amorphous and heterogeneous silicon-based films. Mater. Res. Soc. Proc. (2001). doi:10.1557/PROC-664-A9.5

  • Mishima T., Taguchi M., Sakata H., Maruyama E.: Development status of high-efficiency HIT solar cells. Sol. Energy Mater. Sol. Cells 95, 18–21 (2011)

    Article  Google Scholar 

  • Muhlbacher D., Scharber M., Morana M., Zhu Z., Waller D., Gaudiana R., Brabec C.J.: High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006)

    Article  Google Scholar 

  • Muthmann S., Gordijn A.: Amorphous silicon solar cells deposited with non-constant silane concentration. Sol. Energy Mater. Sol. Cells 95, 573–578 (2011)

    Article  Google Scholar 

  • Naghavi N., Abou-Ras D., Allsop N., Barreau N., Bucheler S., Ennaoui A., Fischer C.H., Guillen C., Hariskos D., Herrero J., Klenk R., Kushiya K., Lincot D., Menner R., Nakada T., Platzer-Bjorkman C., Spiering S., Tiwari A.N., Torndahl T.: Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt. Res. Appl. 18, 411–433 (2010)

    Article  Google Scholar 

  • Naghavi N., Renou G., Bockelee V., Donsanti F., Genevee P., Jubault M., Guillemoles J.F., Lincot D.: Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: role of windows layers. Thin Solid Films 519, 7600–7605 (2011)

    Article  ADS  Google Scholar 

  • Narasimha S., Rohatgi A., Weeber A.: An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Trans. Electron Devices 46, 1363–1370 (1999)

    Article  ADS  Google Scholar 

  • Nelson J.: The Physics of Solar Cells (Properties of Semiconductor Materials). Imperial College Press, London (2003)

    Google Scholar 

  • Noh J.H., Lee S.H., Lee S., Jung H.S.: Influence of ZnO seed layers on charge transport in ZnO nanorod-based dye-sensitized solar cells. Electron. Mater. Lett. 4, 71–74 (2008)

    Google Scholar 

  • Nozik A.J.: Quantum dot solar cells. Phys. E 14, 115–120 (2002)

    Article  Google Scholar 

  • Nozik A.J.: Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001)

    Article  ADS  Google Scholar 

  • Ohtsuka H., Sakamoto M., Tsutsui K., Yazawa Y.: Bifacial silicon solar cellswith 21.3% front efficiency add 19.8% rear efficiency. Prog. Photovolt. 8, 385–390 (2000)

    Article  Google Scholar 

  • Olson, J.M., Gessert, T., Al-Jassim, M.: GaInP/GaAs, a current- and lattice-matched tandem cell with a high theoretical effciency. In: Proceedings of the 18th IEEE Photovoltaic Specialists Conference, pp. 552–555, Las Vegas, Nevada, USA (1985)

  • O’Regan B., Gratzel M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  ADS  Google Scholar 

  • Parida B., Iniyan S., Goic R.: A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011)

    Article  Google Scholar 

  • Park Y., Choong V., Gao Y., Hsieh B.R., Tand C.W.: Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Am. Inst. Phys. 68, 2699–2701 (1996)

    Google Scholar 

  • Partain L.D., Schneider R.A., Donaghey L.F.: Surface chemistry of CuxS and Cux S/CdS determined from x-ray photoelectron spectroscopy. P. S. McLeod J. Appl. Phys. 57, 5056–5065 (1985)

    ADS  Google Scholar 

  • Pysch D., Bivour M., Hermle M., Glunz S.W.: Amorphous silicon carbide heterojunction solar cells on p-type substrates. Thin Solid Films 519, 2550–2554 (2011)

    Article  ADS  Google Scholar 

  • Rancourt J.D.: Optical Thin Films. Society of Photo-Optical Instrumentation Engineers, Macmillan (1996)

    Book  Google Scholar 

  • Ranjan S., Balaji S., Panella R.A., Ydstie B.E.: Silicon solar cell production. Comput. Chem. Eng. 35, 1439–1453 (2011)

    Article  Google Scholar 

  • Rao T.N., Bahadur L.: Photoelectrochemical studies on dye-sensitized particulate ZnO thin-film photoelectrodes in nonaqueous media. J. Electrochem. Soc. 144, 179–185 (1997)

    Article  Google Scholar 

  • Romeo, N., Bosio, A., Canevari, V., Zanotti, L.: 7th EC PV Solar Energy Conference, pp. 656–661 (1986)

  • Ryo T., Nguyen D.C., Nakagiri M., Toyoda N., Matsuyoshi H., Ito S.: Characterization of superstrate type CuInS2 solar cells deposited by spray pyrolysis method. Thin Solid Films 519, 7184–7188 (2011)

    Article  ADS  Google Scholar 

  • Saga T.: Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96–102 (2010)

    Article  Google Scholar 

  • Salbeck, J.: In: Mauch, R.H., Gumlich, H.E. (eds.) Proceedings of the Symposium Inorganic and Organic Electroluminescence (EL 1996), p. 243. Wissenschaft und Technik, Berlin (1996)

  • Salome P.M.P., Malaquias J., Fernandes P.A., Ferreira M.S., daCunha A.F., Leitao J.P., Gonzalez J.C., Matinaga F.M.: Growth and characterization of Cu2ZnSn(S,Se)4 thin films for solar cells. Sol. Energy Mater. Sol. Cells 101, 147–153 (2012)

    Article  Google Scholar 

  • Sao, C.N.: Dye-sensitized solar cells based on perylene derivatives. PhD Thesis, Uni Kassel (2009)

  • Sayama, K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., Abe, Y., Sugihara, H., Arakawa, H.: Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem. Commun. 13, 1173–1174 (2000)

    Google Scholar 

  • Schmidt-Mende L., Bach U., Humphry-Baker R., Horiuchi T., Miura H., Ito S., Uchida S., Gratzel M.: Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv. Mater. 17, 813–815 (2005)

    Article  Google Scholar 

  • Schropp R.E.I.: Nanostructured Materials for Solar Energy Conversion, Chap. 5: Amorphous (Protocrystalline) and Microcrystalline Thin Film Silicon Solar Cells, pp. 131–166. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Schropp R.E.I., Rath J.K.: Novel profiled thin-film polycrystalline silicon solar cells on stainless steel substrates. IEEE Trans. Electron Devices 46, 2069–2071 (1999)

    Article  ADS  Google Scholar 

  • Schropp, R.E.I., Van Veen, M.K., Van der Werf, C.H.M., Williamson, D.L., Mahan, A.H.: Protocrystalline silicon at high rate from undiluted silane. Mat. Res. Soc. Symp. Proc. (2004). doi:10.1557/PROC-808-A8.4

  • Shao W., Gu F., Li C.Z., Lu M.K.: Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Inorg. Chem. 49, 5453–5459 (2010)

    Article  Google Scholar 

  • Shen Q., Kobayashi J., Diguna L.J., Toyoda T.: Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304–084308 (2008)

    Article  ADS  Google Scholar 

  • Shockley W., Queisser H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  ADS  Google Scholar 

  • Singh V.P., Singh R.S., Sampson K.E.: Nanostructured Materials for Solar Energy Conversion, Chapter 6: Thin-Film Solar Cells Based on Nanostructured CdS, CIS, CdTe andCu2S. pp. 167–190. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Soga T.: Nanostructured Materials for Solar Energy Conversion. Chap. 1. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Sriprapha K., Piromjit C., Limmanee A., Sritharathikhun J.: Development of thin film amorphous silicon oxide/microcrystalline silicon double-junction solar cells and their temperature dependence. Sol. Energy Mater. Sol. Cells 95, 115–118 (2011)

    Article  Google Scholar 

  • Sritharathikhun J., Moollakorn A., Kittisontirak S., Limmanee A., Sriprapha K.: High quality hydrogenated amorphous silicon oxide film and its application in thin film silicon solar cells. Curr. Appl. Phys. 11, S17–S20 (2011)

    Article  ADS  Google Scholar 

  • Staebler D.L., Wronski C.R.: Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 31, 292–294 (1977)

    Article  ADS  Google Scholar 

  • Takahashi K., Yamada S., Minagawa Y., Unno T.: Characteristics of Al0.36Ga0.64As/GaAs tandem solar cells with ppnn structural AlGaAs solar cells. Sol. Energy Mater. Sol. Cells 66, 517–524 (2001)

    Article  Google Scholar 

  • Takanezawa K., Tajima K., Hashimoto K.: Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer. Appl. Phys. Lett. 93, 063308 (2008)

    Article  ADS  Google Scholar 

  • Tavakkoli M., Ajeian R., Badrabadi M.N., Ardestani S.S., Feiz S.M.H., Nasab K.E.: Progress in stability of organic solar cells exposed to air. Sol. Energy Mater. Sol. Cells 95, 1964–1969 (2011)

    Article  Google Scholar 

  • Thi T.C., Koyama K., Ohdaira K., Matsumura H.: Passivation characteristics of SiNx/a-Si and SiNx/Si-rich-SiNx stacked layers on crystalline silicon. Sol. Energy Mater. Sol. Cells 100, 169–173 (2012)

    Article  Google Scholar 

  • Thibaut D., Sylvain D.V., Florent S., Djicknoum D., Delfina M., Marie G.F., Jean-Paul K., Pierre-Jean R.: Development of interdigitated back contact silicon heterojunction (IBC Si-HJ) solar cells. Energy Procedia 8, 294–300 (2011)

    Article  Google Scholar 

  • Tommila J., Polojarvi V., Aho A., Tukiainen A., Viheriala J., Salmi J., Schramm A., Kontio J.M., Turtiainen A., Niemi T., Guina M.: Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography. Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010)

    Article  Google Scholar 

  • Tseng M., Horng R., Tsai Y., Wuu D., Yu H.: Fabrication and characterization of GaAs solar cells on copper substrates. IEEE Electron Device Lett. 30, 940–942 (2009)

    Article  ADS  Google Scholar 

  • Tsunomura Y., Yoshimine Y., Taguchi M., Baba T., Kinoshita T., Kanno H., Sakata H., Maruyama E., Tanaka M.: Twenty-two percent efficiency HIT solar cell. Sol. Energy Mater. Sol. Cells 93, 670–673 (2009)

    Article  Google Scholar 

  • Turner G.W.: Detrimental optical properties of germanium intermediate layers in monolithic tandem solar cell structures. Solar Cells 14, 139–148 (1985)

    Article  ADS  Google Scholar 

  • Uchida S., Chiba R., Tomiha M., Masaka N., Shirai M.: Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry 70, 418–420 (2002)

    Google Scholar 

  • Vallat-Sauvain E., Kroll U., Meier J., Shah A., Pohl J.: Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution. J. Appl. Phys. 87, 3137–3142 (2000)

    Article  ADS  Google Scholar 

  • Veprek S., Marecek V.: The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid-State Electron. 11, 683–684 (1968)

    Article  ADS  Google Scholar 

  • Vesaghi M.A., Asadi K.: Simultaneous optimization and simulation of a-Si1-xCx layers on n-type silicon solar cells. Sol. Energy Mater. Sol. Cells 85, 467–476 (2005)

    Article  Google Scholar 

  • Vogel R., Hoyer P., Weller H.: Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Article  Google Scholar 

  • Vougioukalakis G.C., Philippopoulos A.I., Stergiopoulos T., Falaras P.: Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coord. Chem. Rev. 255, 2602–2621 (2011)

    Article  Google Scholar 

  • Wagner S., Shay J.L., Migliorato P., Kasper H.M.: CuInSe2/CdS heterojunction photovoltaic detectors. Appl. Phys. Lett. 25, 434–435 (1974)

    Article  ADS  Google Scholar 

  • Wang, M.C., Chang, T.C., Tsao, S.W., Chen, Y.Z., Hsu, T.C., Jan, D.J., Ai, C.F., Chen, J.R.: Improvement of n+-doped-layer free amorphous silicon thin film solar cells fabricated with CuMg alloy as back contact metal. Solid State Electron (2012). doi:10.1016/j.sse.2011.12.012

  • Wang Z.S., Kawauchi H., Kashima T., Arakawa H.: Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 Dye-sensitized solar cell. Coord. Chem. Rev. 248, 1381–1389 (2004)

    Article  Google Scholar 

  • Waskasi M.M., Hashemianzadeh S.M., Sarhangi O.M.: Significant enhancement in efficiency of NKX-2807 Coumarin dye by applying external electric field in dye sensitizer solar cell: theoretical study. Comput. Theor. Chem. 978, 33–40 (2011)

    Article  Google Scholar 

  • Wei D.: Dye sensitized solar cells. Int. J. Mol. Sci. 11, 1103–1113 (2010)

    Article  Google Scholar 

  • Weller H.: Quantum sized semiconductor particles in solution and in modified layers. Ber. Bunsenges. Phys. Chem. 95, 1361–1365 (1991)

    Article  Google Scholar 

  • Wenham, S.R., Robinson, S.J., Dai, X., Zhao, J., Wang, A., Tang, Y.H., Ebong, A., Honsberg, C.B., Green, M.A.: Rear-surface effects in high efficiency silicon solar cells. In: Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, 10, pp. 1278–1282. Waikoloa, IEEE Press, Piscataway (1994)

  • Wolf M.: Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. Inst. Radio Eng. 48, 1246–1263 (1960)

    Google Scholar 

  • Wurfel P.: Physics of Solar Cells (From Principles to New Concepts). Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005)

    Google Scholar 

  • Xi J., Zhang Q., Park K., Sunb Y., Cao G.: Enhanced power conversion efficiency in dye-sensitized solar cells with TiO2 aggregates/nanocrystallites mixed photoelectrodes. Electrochimica Acta 56, 1960–1966 (2011)

    Article  Google Scholar 

  • Yamaguchi M.: Multi-junction solar cells and novel structures for solar cell applications. Phys. E 14, 84–90 (2002)

    Article  Google Scholar 

  • Yamaguchi M.: Radiation-resistant solar cells for space use. Sol. Energy Mater. Sol. Cells 68, 31–53 (2001)

    Article  Google Scholar 

  • Yamaguchi M., Nishimura K., Sasaki T., Suzuki H., Arafune K., Kojima N., Ohsita Y., Okada Y., Yamamoto A., Takamoto T., Araki K.: Novel materials for high-efficiency III–V multi-junction solar cells. Sol. Energy 82, 173–180 (2008)

    Article  Google Scholar 

  • Yamaguchi M., Takamoto T., Araki K., Ekins-Daukes N.: Multi-junction III–V solar cells: current status and future potential. Sol. Energy 79, 78–85 (2005)

    Article  Google Scholar 

  • Yang J., Banerjee A., Guha S.: Amorphous silicon based photovoltaics—from earth to the “final frontier”. Sol. Energy Mater. Sol. Cells 78, 597–612 (2003)

    Article  Google Scholar 

  • Yang J., Banerjee A., Guha S.: Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett. 70, 2975–2977 (1997)

    Article  ADS  Google Scholar 

  • Yang L., Lin Y., Jia J.G., Xiao X.R., Li X.P., Zhou X.W.: Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. J. Power Sour. 182, 370–376 (2008a)

    Article  Google Scholar 

  • Yang S.M., Huang C.H., Zhai J., Wang Z.S., Jiang L., Mater J.: High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. J. Mater. Chem. 12, 1459–1464 (2002)

    Article  Google Scholar 

  • Yang W.J., Ma Z.Q., Tang X., Feng C.B., Zhao W.G., Shi P.P.: Internal quantum efficiency for solar cells. Sol. Energy 82, 106–110 (2008b)

    Article  Google Scholar 

  • Yang Z., Chang H.T.: CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%. Sol. Energy Mater. Sol. Cells 94, 2046–2051 (2010)

    Article  Google Scholar 

  • Yu G., Gao J., Hummelen J.C., Wudl F., Heeger A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Article  ADS  Google Scholar 

  • Zaban A., Micic O.I., Gregg B.A., Nozik A.J.: Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14, 3153–3156 (1998)

    Article  Google Scholar 

  • Zdanowicz T., Rodziewicz T., Zabkowska-Waclawek M.: Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations. Sol. Energy Mater. Sol. Cells 87, 757–769 (2005)

    Article  Google Scholar 

  • Zhang Q., Chou T.P., Russo B., Jenekhe S.A., Cao G.: Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv. Funct. Mater. 18, 1654–1660 (2008a)

    Article  Google Scholar 

  • Zhang Q., Chou T.P., Russo B., Jenekhe S.A., Cao G.Z.: Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew. Chem. Int. Ed. 47, 2402–2406 (2008b)

    Article  Google Scholar 

  • Zhao J., Wang A., Altermatt P., Green M.A.: 24% efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett. 66, 3636–3638 (1995)

    Article  ADS  Google Scholar 

  • Zhao J., Wang A., Green M.A.: High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol. Energy Mater. Sol. Cells 65, 429–435 (2001)

    Article  Google Scholar 

  • Zhao Y., Wang J., Hu Q., Li D.: Crystallization of sputtered amorphous silicon induced by silver–copper alloy with high crystalline volume ratio. J. Cryst. Growth 312, 3599–3602 (2010)

    Article  ADS  Google Scholar 

  • Zhou Q.M., Hou Q., Zheng L., Deng X., Yu D., Cao Y.: Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Appl. Phys. Lett. 84, 1653–1655 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bahrami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahrami, A., Mohammadnejad, S. & Soleimaninezhad, S. Photovoltaic cells technology: principles and recent developments. Opt Quant Electron 45, 161–197 (2013). https://doi.org/10.1007/s11082-012-9613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9613-9

Keywords

Navigation