
DOI 10.1007/s11063-006-9001-1
Neural Processing Letters (2006) 23:257–271 © Springer 2006

An RCE-based Associative Memory
with Application to Human Face Recognition

XIAOYAN MU1, MEHMET ARTIKLAR2, PAUL WATTA3

and MOHAMAD H. HASSOUN2

1Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology,
Terre Haute, IN 47803, USA. e-mail: mu@rose-hulman.edu
2Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI
48202, USA. e-mail: mcayan@hotmail.com, hassoun@eng.wayne.edu
3Department of Electrical and Computer Engineering, University of Michigan-Dearborn,
Dearborn, MI 48128, USA. e-mail: watta@umich.edu

Abstract. Many models of neural network-based associative memory have been proposed
and studied. However, most of these models do not have a rejection mechanism and hence
are not practical for many real-world associative memory problems. For example, in human
face recognition, we are given a database of face images and the identity of each image.
Given an input image, the task is to associate—when appropriate—the image with the cor-
responding name of the person in the database. However, the input image may be that of a
stranger. In this case, the system should reject the input. In this paper, we propose a practi-
cal associative memory model that has a rejection mechanism. The structure of the model
is based on the restricted Coulomb energy (RCE) network. The capacity of the proposed
memory is described by two measures: the ability of the system to correctly identify known
individuals, and the ability of the system to reject individuals who are not in the database.
Experimental results are given which show how the performance of the system varies as the
size of the database increases—up to 1000 individuals.

Key words. associative memory, neural network, automated human face recognition, capac-
ity, image processing, RCE, false acceptance, database

1. Introduction

In the associative memory problem, we are given a memory set of M prototype
patterns or input-output pairs of the form {(xi ,yi ) : i = 1,2, . . . ,M } , where xi ∈
RN , yi ∈Rp . The goal is to design a system which can store each of the (xi ,yi )
associations in memory so that when pattern xi is presented as input (the mem-
ory key), the system reliably retrieves the pattern yi . In addition, the system should
retrieve yi even when xi is corrupted with various types of noise. But when the
memory key is not sufficiently close to any of the stored prototypes, the system
should reject the input as being noise [7].

Human face recognition can be seen as an associative memory problem whereby
the memory set consists of a database of face images paired with the identity
(name) of each individual. The input key is then a two-dimensional face image,
and the retrieved pattern should be one of the following:
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(1) the name of the person represented by the image
(2) reject state (either the input image is not a face, or else, it is a face of an indi-

vidual who is not in the database).

Many face recognition systems rely on template matching in order to determine
if the input should be associated with one of the known individuals or rejected.
For example, in a typical eigenface approach [2, 13], both the memory set images
and the input image are mapped onto a lower dimensional eigenspace. But once
that mapping is done, template matching is used to match the vector of eigen
coefficients of the input to the closest prototype vector of eigen coefficients. In the
Gabor features-based approach of Wiskott et al. [17], local features are extracted
from both the memory set images and the input image, and local distance calcu-
lations are made. A global distance measure between the memory pattern and the
input is obtained by summing the local distances [17, 18]. A local template match-
ing approach which uses a voting mechanism to combine the results of the local
computations was proposed in Ikeda et al. [8].

In its simplest form, the design of a template matching-based system involves
storing all of the fundamental input-output pairs (xi ,yi ) in the computer’s mem-
ory. Then for a given input key x, the system simply determines the closest match-
ing stored input pattern xi and then outputs the corresponding output pattern
yi . Such a template matching approach can be modified to provide for a reject
or no-decision state when the input pattern is not sufficiently close to any of the
stored prototypes [15], as well as modified to allow for local and parallel distance
computations [8].

Of course, to determine how close two patterns are, a suitable metric is needed.
Many distance functions have been proposed and used in the literature [9, 16, 17].
The associative memory model developed in the next section is quite flexible and
can be used with any suitable distance measure.

The performance of an associative memory is measured by its capacity, which
is how many patterns can be stored in the system. Various definitions of capacity
have been proposed in the neural network literature [6]. Most definitions, though,
only measure how well the system can retrieve the correct pattern when presented
with one of the memory keys (or distorted version of one of the keys) of the fun-
damental memory set. In this paper, we define capacity as a measure of how many
patterns can be reliably stored in the system. In particular, following the method-
ology used for face recognition [11], we will measure capacity by measuring the
results on two different types of experiments:

1. Correct classification experiments. Measure the ability of the system to correctly
recognize and identify individuals who are in the database.

2. False acceptance experiments. Measure the ability of the system to reject all
images of individuals who are not part of the database.
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In this paper, we develop an associative memory model similar in structure to
the restricted Coulomb energy (RCE) network. We will test the performance of the
proposed associative memory on a difficult and practical problem: human face rec-
ognition. We study how the performance of the system scales as a function of the
size of the memory set. The contribution of this paper is to present an associative
memory model that can retrieve the correct pattern (when appropriate), but also
reject patterns with very low signal to noise ratio.

2. An RCE-type Associative Memory

In this section we describe a restricted Coulomb energy (RCE)-type neural network
which operates as an associative memory suitable for the face recognition problem.

2.1. architecture

Suppose that the database of face images DB contains K different face image sam-
ples of each of the M individuals (for example, different facial expressions or light-
ing conditions, etc.):

DB={(xmk, IDm): m=1,2, . . . ,M; k =1,2, . . . ,K}

Here, xmk is the kth image (or feature vector) of person m, and IDm is the name
of person m.

Typically, the RCE network is a unit allocating system whereby the number of
units is increased as training proceeds [5, 12]. We will simplify the training by just
allocating one hidden unit for each prototype image in the database. Effectively,
this network acts as a template matching system (with K prototypes per class) with
rejection capabilities. The network structure is shown in Figure 1.

Associated with each hidden layer neuron in Figure 1 is a threshold or radius
which is used to determine whether the input is sufficiently close to the prototype
so that the unit should fire. The output zmk of the mkth hidden unit (with radius
rmk) is given by:

zmk =
{

1 if d(xmk,x)� rmk

0 otherwise
(1)

The outputs ym are obtained by ORing together the outputs of the hidden units:

ym = zm1 ∨ zm2 ∨· · ·∨ zmK (2)

That is, ym =1 if any of the hidden units zm1, zm2, . . . , zmK fire; otherwise ym =0.
For an input key of say the mth person, we want the output vector y to consist
of all 0s except for a single 1 at the mth position.

One of the advantages of using locally-tuned hidden units (as in an RBF or
RCE network) is that the system is able to reject outliers [7]. Here, the proposed
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Figure 1. Architecture of the RCE network.

system will reject the input in the following cases: (1) More than 1 output unit
fires, and (2) none of the output units fire.

The only tunable parameters of the RCE associative memory are the hidden unit
radii. The next section gives one way to compute suitable values for these param-
eters from the given fundamental memory set (training set).

2.2. training

The radius rmk gives a measure of how large a region the mkth hidden unit covers
in the underlying input space (space of all memory keys). The goal is to set rmk as
large as possible, but not too large, otherwise the system will reject a large num-
ber of inputs (because multiple units will likely fire). We propose a simple method
for computing the hidden unit radii from the given fundamental memory patterns.
For the mkth hidden unit, we compute the (between-class) distances between xmk

and all the other images in the given database (excluding the images of person m):

dij ={d(xmk,xij ) : i =1, . . . ,M; i �=m; j =1, . . . ,K} (3)

And then choose the minimum such distance

di∗j∗ =min{dij } (4)

The number di∗j∗ represents the largest radius that unit mk can have, because at
that radius, another (incorrect) unit (namely, the i∗j∗ unit) will also fire. Hence we
set the radius rmk as a fraction of that radius:

rmk =αdi∗j∗ (5)
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where 0<α <1. Later, we will show that α can be used as a system parameter to
adjust the trade-off between correct classification performance and false acceptance
performance.

3. Shift Invariance

Noise is always present in any practical image capturing system. Unfortunately,
template matching-based computations are sensitive to, and can be adversely
affected by, even small amounts of noise. For example, Figure 2 shows the distance
between two identical face images as the first image is shifted in various directions
(up and down; left and right) and compared to the first. Notice that even a 1-pixel
shift in the image can yield a large change in the distance.

There are several ways to make the RCE-based network less prone to errors in
small shifts (translations) and rotations in the image. For example, in the elastic
graph matching technique [3], the distance between the input and each of the data-
base images is computed on a rectangular grid of points and neighbors of the grid
points. The collection of grid points which yields the smallest distance is chosen
(deformed template).

A simple and computationally efficient method to provide invariance to small
amounts of image shift was given in [1]. Here, to compute the distance between
two images, s and t, an iterative procedure is used to optimize the alignment
between the two images. First, we select a center subwindow from each image, as
shown in Figures 3(a) and (b). Call these center sub windows s̃ and t̃. The distance
between the two windows d(s̃, t̃) is computed and recorded as the current best dis-
tance. Next, the position of the window s̃ is held fixed, but the position of the win-
dow t̃ is varied. In particular, the location of t̃ is shifted by 1 pixel in 4 directions:
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Figure 2. The distance between two identical images as the first image is shifted in various directions
(measured in pixels) and compared to the second.
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Figure 3. Shift optimization procedure to compute the distance between two images: s shown in (a) and
t shown in (b). After the optimization, the window has moved slightly up and to the right, as shown in
(c).

up, down, left, and right. In each case, the resulting distance with s̃ is computed. If
the smallest of these 4 distances is smaller than the best recorded distance, then we
shift t̃ in that direction, update the best recorded distance, and repeat the process.
The process terminates when none of the 4 distances yield a smaller value than
the best recorded distance. In addition, the process terminates when a maximum
number of shifts have occurred. In the experiments reported here, a maximum of 5
steps are used. In Figure 3, the final position of the window in (b) is shown in (c).
Notice that the window moved slightly up and to the right.

The nature of the optimization problem and the proposed strategy can best be
seen by viewing an exhaustive map of the distances between the two windows as
a function of window position. Such a map is given in Figure 4. In this table,
each number represents the (normalized) distance between the two windows as a

-4 -3 -2 -1 0 +1 +2 +3 +4

-4 29.4 28.5 27.5 27.3 27.3 28.5 29.4 30.5 31.5

-3 27.9 27.0 25.8 25.4 25.6 19.4 15.8 29.1 30.6

-2 27.0 25.4 24.2 23.5 23.7 18.0 10.9 10.1 29.9

-1 25.8 23.7 22.0 21.4 21.4 12.4 11.6 16.8 29.2

0 25.0 22.3 19.6 18.0 17.7 13.9 19.3 23.2 27.6

+1 24.0 21.2 17.5 17.8 17.8 18.0 19.9 21.7 25.1

+2 23.7 19.7 18.4 19.2 18.6 18.6 18.1 20.2 23.2

+3 24.2 20.8 19.1 19.9 19.8 19.9 24.1 25.3 31.9

+4 25.4 22.8 19.8 22.4 24.0 26.2 29.0 28.5 37.9
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Figure 4. This diagram shows the city-block distance (normalized) between a database image and
shifted versions of an input image.
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function of window position. The center of the table (with value 17.7) is the dis-
tance between the two windows at their default positions (no shift applied). As
t̃ is shifted 1 pixel to the right, the distance drops to 13.9. From there, shifting the
input image one pixel up results in a distance of 12.4. This process continues until
the distance can no longer be decreased by shifting in any of the 4 surrounding
directions (or until a maximum number of steps has been taken). Here, the shift-
ing process decreased the distance between the two images from 17.7 to 10.1 in five
steps.

Of course, in template matching-based recognition, we desire a metric which
gives small distances for like patterns and large distances for dissimilar patterns.
The above shift optimization procedure aids in reducing the distance between two
images of the same person. Unfortunately, this process can also reduce the distance
between images of different people. The conjecture here (supported by extensive
simulations) is that even though the shifting process decreases the distance between
different people, it tends to do so by a lesser amount than the distance improve-
ment for images of the same person. Hence, there is an overall increase in the dis-
crimination ability of the metric.

The shift processing algorithm is used in computing the distance between images
both during the training phase and the recall phase. Note that it is pointless to try
to shift images that are very dissimilar from each other. Hence, to reduce compu-
tation time, we only allow the top 40 matches to participate in the shifting pro-
cess. The shift processing algorithm occurs right before the hidden layer stage (see
Figure 1). Hence, for a given input image x, all distances d̂(xmk, x) are computed.
The 40 such smallest distances are selected and shift-optimization against each of
these 40 closest units to obtain a (possibly) smaller set of distances: d(xmk, x).
From there, Equation 1 is used, and the output is computed.

The above shift processing algorithm helps to mitigate the effects of small rota-
tions, as well as translations. Further discussion of this topic can be found in Mu
[10].

4. The Database of Face Images

A detailed discussion of the construction of the face database that is used in these
experiments can be found in [14]. Briefly, the database consists of 1000 different
men and women of various ages (between 15 and 65 years old). The images were
collected at an urban University and hence the database contains samples from
a variety of ethnic backgrounds. All images have been normalized to a uniform
size and scale. For each person, there are four training images that show differ-
ent facial expressions: blank, smile, angry, and surprised. There are four additional
blank expression training images available for each person (that may or may not be
used in the database). To test the system, an additional blank expression image is
available for each person in the database. Note that the database and test images
were captured on the same day and under the same conditions.
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Figure 5. Sample 82 × 115 images of one of the subjects in the database. In total, there are 1000 indi-
viduals in the database.

Both the database and test images were snapped at a dimension of 82×115 and
stored as 8-bit gray scale (256 levels). The shift optimization is performed on a sub
window size of 72 × 72 (centered in the image). Figure 5 shows a set of 82 × 115
sample images for one of the subjects in the database.

5. Experimental Results

As mentioned above, the RCE architecture can be used with any distance function.
In the results that follow, we use a simple city-block distance function. Here, the
distance between two N -dimensional vectors s and t is given by:

d(s, t) =
N∑

i=1

|si − ti |

Unless otherwise state, the fundamental memory set consists of the four facial
expression images (blank, smile, angry, and surprised) of each of the M known
individuals. So there’s a total of 4M images in the database, and hence there’s 4M

hidden units in the RCE network. In the training phase, the database images are
used to determine the radius rmk, m=1,2, . . . ,M; k=1,2,3,4, for each of the hid-
den units.

In order to assess the performace of the proposed RCE model, we will consider
two types of features: simple pixel features and eigenface features. In the case of
the pixel features, the patterns xmk in the memory set (and hidden units) are just
the images themselves. In the case of eigenface features, we first compute eigenfac-
es over the given image database using the standard approach [13]. The patterns
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xmk are then the eigen coefficients representing each database image. In either case,
the computation for training and recall are identical and given by Equations 1–5.

As mentioned above, two measures are used to assess system performance. First,
in the correct classification experiments, we measure the ability of the system to
correctly identify known people. Here, the input is a test set image. Three possi-
bilities can occur here: (1) the input image is rejected, (2) the input is classified
correctly, and (3) the input is associated with the wrong person (misclassified). For
these experiments, we will report the percent rejection and the percent error (mis-
classification). Note that the percent correct classification and the percent error
sum to 100%, hence percent correct classification is easily determined from the
given quantities.

The second measure is the ability of the system to reject unwanted inputs. In
these false acceptance experiments, we test the systems with images of people who
are not in the stored database. There are only 2 possible outputs here: (1) the input
is properly rejected, or (2) the input is incorrectly identified with one of the people
in the database. Since these two quantities sum to 100%, we will only report the
second: % error.

5.1. correct classification experiments

Table 1 shows the results of the correct classification experiments for the RCE-
based associative memory as the memory set size scales up from M = 100 to
M = 1000. Note that each number in Table 1 (except for the M = 1000 case) is an
average over five different trials. In each trial, a different database was (randomly)
chosen from the available 1000 individuals. The threshold scaling parameter was
set at α =0.8.

The results show that the memory with pixel features scales well and gives an
error rate of 0.1% (or less) with a reject rate of less than 5%. The performance

Table 1. Classification results for the blank facial expression
test set for various number of people in the database.

Num People M Pixel Features Eigenfaces

% Reject % Error % Reject % Error

100 3.4 0 2 0
200 2.7 0 5.5 0.5
300 2.7 0 5.5 1.5
400 3.4 0 5.5 2
500 3.5 0 5.5 2.5
600 4.0 0.1 5.6 2.5
700 3.5 0.1 6.7 2
800 4.2 0.1 6.2 2.2
900 4.2 0.1 7.6 2.1

1000 4.5 0.1 7.8 2
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using eigenface features is not as good as the pixel features due to the loss of
information from the dimensionality reduction.

5.2. false acceptance experiments

Next we ran false acceptance experiments and tested the system with 200 randomly
chosen individuals who are not present in the database to see how well the sys-
tem rejects these images. In this case, we used all available training and test images
(9 images total) for each test person. Note that we could not perform this experi-
ment on the M =1000 database due to lack of additional images, and could only
test with 100 people for the M =900 database.

The results of the false acceptance experiments are shown in Table 2. Curiously,
for the pixel features, the number of false matches decreases as the number of peo-
ple in the database increase, and is only 0.4% for M =800 and M =900. The rea-
son for this is that as more images are added to the database, the hidden layer
thresholds necessarily become tighter as Equations 2 and 3 are computed over
more images. Another reason is that as more and more images are added to the
database, it is more likely that more than one output unit will fire. But, by our
simple decision rule, if more than one output fires, we reject the input.

In the remaining experiments, we will focus on just the pixel features.

5.3. the correct classification/false acceptance trade-off

A plot of both the classification (rejection) and false acceptance results is shown
in Figure 6.

From this figure, we see that the general trend in rejection performance increases
linearly (after M =200). We did not plot the number of misclassified images, since
it was so low: there was at most one misclassified image for each test. However, it
is expected that as M increases, the number of misclassified images will also begin
to rise. A larger database is needed in order to perform such experiments.

Table 2. False acceptance rate (FAR) as a function of memory size.

Num People M Pixel Features Eigenface Features
% FAR % FAR

100 2.9 5
200 1.6 5.5
300 1.1 5.3
400 1.0 6.7
500 1.2 6.2
600 0.7 5.3
700 0.6 5.2
800 0.4 5.3
900 0.4 5.3
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Figure 6. Results of the rejection performance and false acceptance performance of the system as a
function of database size.
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5.4. the effect of radius size α

For all the results given above, a threshold scaling parameter of α =0.8 was used.
Figure 7 shows how the rejection and false acceptance results vary as a function
of α. Of course to get good false acceptance performance, we require a very small
value for α. But setting α too low causes a lot of rejections (in the correct classifi-
cation experiments) because the condition for a hidden unit to fire (Equation 1) is
too stringent. On the other hand, setting α too high also causes a lot of rejections
because it is more likely that more than one output unit will fire.

To analyze the rejection performance of the system, we measured the number of
rejections due to the fact that no hidden units were activated, as well as the number
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Figure 8. Number of times no unit fires (thick) and more than one unit fires (thin) as a function of α.
The sum of these is the number of images rejected by the RCE network.

of rejections due to the fact that more than one output unit was activated. Figure 8
shows the result of this experiment on a database of M =500 individuals. The sum
of both of these quantities is the number of images rejected by the system.

5.5. performance on different types of databases

For all the above simulations, the memory set consisted of the four expression
images: blank, smile, angry, and surprised. Since the test image shows a blank
expression, it is conceivable that the results would be better by using the four
blank training images instead of the four expression images. We performed three
different experiments on the 500 person database: (1) store the four expression
images, (2) store the four blank images, and (3) store all eight images per person.
The results are shown in Table 3. Note that, as above, these results are averaged
over five different runs.

Table 3. Performance of the RCE network when M = 500
individuals are stored, and different databases are used.

Memory set M =500 Classification % False acceptance %

Reject Error

4 Expression images 3.5 0 1.2
4 Blank images 5.1 0 0.8
All 8 images 1.6 0 1.0
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Surprisingly, the database of the four expressions gives lower rejection than the
database of the four blank images. We can conclude that the blank test images
sometimes contain things in common with the expression images; for example, one
may have a relatively blank expression with just a hint of a smile. Clearly, the best
result is to store eight images per person. However, the price to be paid for using
eight samples per person rather than four samples is in terms of storage (double
the size) and retrieval time (double the time).

5.6. adding and deleting associations

An important design consideration of associative memories is how easy it is to add
and delete associations from the memory set. For the given RCE network, it is
easy to delete individuals from the database—simply delete the hidden units allo-
cated to that person (or else shrink the radius to 0).

In terms of adding individuals to the database, the fact that the number of
false matches decreases as M increases (see Figure 6), allows us to use a modu-
lar approach for constructing and training large databases. For example, suppose
we start with a M = 400 person database. Now suppose we want to add an addi-
tional 400 people to the database. Rather than retraining on the whole 800 person
system, we can just formulate and train a separate 400-person network to handle
the new patterns. Then the outputs of the original network and the new network
can be combined with a simple decision: If both networks reject the input image
or both networks classify the input image, then the image is rejected. However, if
one of the networks classifies the pattern and the other network rejects it, then
we accept that classification. Figure 9 shows a schematic diagram of this modular
design.

Note that we expect to use such a modular approach for large size databases
(M = 1000 and above) where the number of false matches are sufficiently low. We
did, however, test the idea on the M = 400 database. In this case, two 400-people
RCE networks were independently trained and then the outputs combined with
the simple decision rule described above. The results are shown in Table 4. The
correct classification results show remarkable similar performance. The false accep-
tance performance is a bit worse for the two 400-person network, but not by much.

M 400=

M 400=

Decision outputinput image

Database 1

Database 2

Figure 9. Block diagram of the modular construction.
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Table 4. Performance of the modular RCE network (two 400-person da-
tabases) compared to the full network (a single 800 person database).

Memory set Classification % False Acceptance %

Reject Error

800 person database 4.2 0.1 0.40
Two 400-person databases 4.6 0.4 0.65

6. Summary

This paper introduced an RCE-based model of associative memory. The capacity
of the memory for the human face recognition problem was explored. Capacity
here is defined in terms of the trade-off between correct classification performance
and false acceptance performance. In the correct classification experiments, we
want to minimize the number of misclassifications as well as the number of rejec-
tions. Simultaneously, though, we want to minimize the number of false matches
for people who are not in the database. The results given in Figure 7 show that
it is not possible to simultaneously optimize both capacity measures. In terms
of design, one would specify the maximum amount of misclassification or false
matches that the system should produce, and then one would determine an appro-
priate database size.

When using the RCE network on databases of up to 1000 people, the results
indicate that the system can achieve a correct classification rate of over 99%, with
a rejection rate of about 5%, and a false acceptance rate of less than 1%.

In future work, we will investigate the performance of this associative memory
model when other types of features [4] and distance measures [9, 16] are used.
In addition, we will explore the possibility of using a soft output (real number
between 0 and 1) for each hidden unit instead of just 0 or 1.
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