Skip to main content

Advertisement

Log in

Efficacy of interstitial continuous vincristine infusion in a bioluminescent rodent intracranial tumor model

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Interstitial chemotherapeutic drug infusion can bypass the blood–brain barrier, and provide high regional drug concentrations without systemic exposure. However, toxicity and efficacy for drugs administered via interstitial continuous (i.c.) infusion have not been characterized. In the current study, vincristine (VIN) was infused into the right frontal lobes of healthy Fisher 344 rats at 30, 45, 60, and 120 μg/ml over a period of 7 days at 1 μl/h, using an Alzet osmotic pump to evaluate toxicity. C6 rat glioblastoma cells transduced with a luciferase gene were inoculated into the right frontal lobe of a second group of rats. VIN was administered to tumor bearing rats via i.c. infusion 7 days later and tumor growth was monitored by bioluminescence intensity (BLI) to assess VIN efficacy, intravenous (i.v.) drug administration was used as a comparison drug delivery method. The results suggested that VIN toxicity is dose-dependent. Efficacy studies showed increased BLI, which correlates with histopathological tumor size, in saline-infused and i.v.-treated tumor-bearing rats. These rats survived an average of 28 ± 0.85 days and 33 ± 1.38 days, respectively. Both groups had large tumors at the time of death. Animals treated with VIN via i.c. infusion survived until day 90, the observation endpoint for this study. This was significantly longer than average survival times in the previous two groups. These results demonstrate that VIN via i.c. infusion is effective in reducing C6 glioblastoma tumors and prolonging rodent survival time compared to i.v. injection and suggest that chemotherapeutic drug administration via i.c. infusion may be a promising strategy for treating malignant brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bidros DS, Vogelbaum MA (2009) Novel drug delivery strategies in neuro-oncology. Neurotherapeutics 6:539–546

    Article  PubMed  CAS  Google Scholar 

  2. Stukel JM, Caplan MR (2009) Targeted drug delivery for treatment and imaging of glioblastoma multiforme. Expert Opin Drug Deliv 6:705–718

    Article  PubMed  CAS  Google Scholar 

  3. Ghose A, Lim G, Husain S (2010) Treatment for glioblastoma multiforme: current guidelines and Canadian practice. Curr Oncol 17:52–58

    Article  PubMed  CAS  Google Scholar 

  4. Olivi A, Grossman SA, Tatter S et al (2003) Dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: a new approaches to brain tumor therapy cns consortium trial. J Clin Oncol 21:1845–1849

    Article  PubMed  CAS  Google Scholar 

  5. Raizer JJ, Malkin MG, Kleber M, Abrey LE (2004) Phase 1 study of 28-day, low-dose temozolomide and BCNU in the treatment of malignant gliomas after radiation therapy. Neuro Oncol 6:247–252

    Article  PubMed  CAS  Google Scholar 

  6. Buonerba C, Di Lorenzo G, Marinelli A et al (2010) A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit Rev Oncol Hematol. doi:10.1016/j.critrevonc.2010.09.001

    PubMed  Google Scholar 

  7. Tepe P, Hassenbusch SJ, Benoit R, Anderson JH (1991) BCNU stability as a function of ethanol concentration and temperature. J Neurooncol 10:121–127

    Article  PubMed  CAS  Google Scholar 

  8. Goodisman J, Souid AK (2006) Constancy in integrated cisplatin plasma concentrations among pediatric patients. J Clin Pharmacol 46:443–448

    Article  PubMed  CAS  Google Scholar 

  9. Preiss R, Baumann F, Regenthal R, Matthias M (2006) Plasma kinetics of procarbazine and zao-procarbazine in humans. Anticancer Drugs 17:75–80

    Article  PubMed  CAS  Google Scholar 

  10. Bedikian AY, Vardeleon A, Smith T, Campbell S, Namdari R (2006) Pharmacokinetics and urinary excretion of vincristine sulfate liposomes injection in metastatic melanoma patients. J Clin Pharmacol 46:727–737

    Article  PubMed  CAS  Google Scholar 

  11. Lauer AK, Wobig JL, Shults WT, Neuwelt EA, Wilson MW (1999) Severe ocular and orbital toxicity after intracarotid etoposide phosphate and carboplatin therapy. Am J Ophthalmol 127:230–233

    Article  PubMed  CAS  Google Scholar 

  12. Qureshi AI, Suri MF, Khan J, Sharma M et al (2001) Superselective intra-arterial carboplatin for treatment of intracranial neoplasms: experience in 100 procedures. J Neurooncol 51:151–158

    Article  PubMed  CAS  Google Scholar 

  13. Imbesi F, Marchioni E, Benericetti E et al (2006) A randomized phase III study: comparison between intravenous and intraarterial ACNU administration in newly diagnosed primary glioblastomas. Anticancer Res 26:553–558

    PubMed  CAS  Google Scholar 

  14. Lawson HC, Sampath P, Bohan E et al (2007) Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neurooncol 83:61–70

    Article  PubMed  CAS  Google Scholar 

  15. Sampath P, Rhines LD, DiMeco F, Tyler BM, Park MC, Brem H (2006) Interstitial docetaxel (taxotere), carmustine and combined interstitial therapy: a novel treatment for experimental malignant glioma. J Neurooncol 80:9–17

    Article  PubMed  CAS  Google Scholar 

  16. Brem S, Tyler B, Li K et al (2007) Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemother Pharmacol 60:643–650

    Article  PubMed  CAS  Google Scholar 

  17. Sugiyama S, Yamashita Y, Kikuchi T, Saito R, Kumabe T, Tominaga T (2007) Safty and efficacy of convection-enhanced delivery of ACNU, a hydrophilic nitrosourea, in intracranial brain tumor models. J Neurooncol 82:41–47

    Article  PubMed  CAS  Google Scholar 

  18. Tange Y, Kondo A, Egorin MJ et al (2009) Interstitial continuous infusion therapy in a malignant glioma model in rats. Childs Nerv Syst 25:655–662

    Article  PubMed  Google Scholar 

  19. Kondo A, Goldman S, Lulla RR et al (2009) Longitudinal assessment of regional directed delivery in a rodent malignant glioma model. J Neurosurg Pediatrics 4:592–598

    Article  Google Scholar 

  20. Kondo A, Goldman S, Vanin EF et al (2009) An experimental brainstem tumor model using in vivo bioluminescence imaging in rat. Childs Nerv Syst 25:527–533

    Article  PubMed  Google Scholar 

  21. Luther N, Cheung NK, Souliopoulos EP et al (2010) Interstitial infusion of glioma-targeted recombinant immunotoxin 8H9sc Fv-PE38. Mol Cancer Ther 9:1039–1046

    Article  PubMed  CAS  Google Scholar 

  22. Carpentier A, McNichols RJ, Stafford RJ et al (2008) Real-time magnetic resonance-guided laser thermal therapy for local metastatic brain tumors. Neurosurgery 63:21–29

    Article  Google Scholar 

  23. Rueger MA, Winkeler A, Thomas AV, Kracht LW, Jacobs AH (2008) Molecular imaging-guided gene therapy of gliomas. Handb Exp Pharmacol 185:341–359

    Article  PubMed  CAS  Google Scholar 

  24. Szentirmai O, Baker CH, Lin N et al (2006) Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 58:365–372

    Article  PubMed  Google Scholar 

  25. Hollingshead MG, Nonomi CA, Borgel SD et al (2004) A potential role for imaging technology in anticancer efficacy evaluations. Eur J Cancer 40:890–898

    Article  PubMed  CAS  Google Scholar 

  26. Lee CJ, Spalding AC, Ben-Josef E, Wang L, Simeone DM (2010) In vivo bioluminescent imaging of irradiated orthotopic pancreatic cancer xenografts in nonobese diabetic-severe combined immunodeficient mice: a novel method for targeting and assaying efficacy of ionizing radiation. Transl Oncol 3:153–159

    PubMed  Google Scholar 

  27. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94:299–312

    Article  PubMed  Google Scholar 

  28. Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Bock BC et al (2008) Apoptosis-based treatment of glioblastoma with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27:6646–6656

    Article  PubMed  CAS  Google Scholar 

  29. Ashley DM, Riffkin CD, Lovric MM, Mikeska T, Dobrovic A, Maxwell JA et al (2008) In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br J Cancer 99:294–304

    Article  PubMed  CAS  Google Scholar 

  30. Watts RG, Merchant RE (1992) Cerebrovascular effects and tumor kinetics after a single intratumoral injection of human recombinant interkeukin-2 alone or in combination with intravenous chemotherapy in a rat model of glioma. Neurosurgery 31:89–98

    Article  PubMed  CAS  Google Scholar 

  31. Tao-Cheng JH, Gallant EP, Brightman WM, Dosemeci A, Reese TS (2007) Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J Comp Neurol 501:731–740

    Article  PubMed  CAS  Google Scholar 

  32. Hynynen K, Pomeroy O, Smith DN et al (2001) MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 219:176–185

    PubMed  CAS  Google Scholar 

  33. Jenkins DE, Oei Y, Hornig YS et al (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20:733–744

    Article  PubMed  CAS  Google Scholar 

  34. Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24:1273–1280

    Article  PubMed  CAS  Google Scholar 

  35. Qweider M, Gilsbach JM, Rohde V (2007) Inadvertent intrathecal vincristine administration: a neurosurgical emergency. Case report. J Neurosurg Spine 6:280–283

    Article  PubMed  Google Scholar 

  36. Oliver AS, Firth G, McKeran RO (1985) Studies on the intracerebral injection of vincristine free and entrapped within liposomes in the rats. J Neurol Sci 65:25–30

    Article  Google Scholar 

  37. Origitano TC, Reichman OH (1993) Photodynamic therapy for intracranial neoplasms: development of an image-based computer-assisted protocol for photodynamic therapy of intracranial neoplasms. Neurosurgery 32:587–595; discussion 595–596

    Article  PubMed  CAS  Google Scholar 

  38. Chen ZJ, Broaddus WC, Viswanathan RR, Raghavan R, Gillies GT (2002) Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans Biomed Eng 49:85–96

    Article  PubMed  Google Scholar 

  39. Lawson HC, Sampath P, Bohan E et al (2007) Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neurooncol 83:61–70

    Article  PubMed  CAS  Google Scholar 

  40. Saito R, Kumabe T, Jokura H, Yoshimoto T (2002) Fatal hemorrhage after radiochemotherapy for leptomeningeal dissemination of glioma: report of two cases. Surg Neurol 57:46–48

    Article  PubMed  Google Scholar 

  41. Kanda M, Tanaka H, Shinoda S, Masuzawa T (2002) Leptomeningeal dissemination of pilocytic astrocytoma via hematoma in a child. case report. Neurosurg Focus 13: ECP2

Download references

Acknowledgments

We acknowledge practice manager of neurosurgical department Sana Abbed for her kindly organization for this project and Dr. Jose Hernandez for his help in the animal housing. We also acknowledge the Department of Pathology and Laboratory Medicine, Children’s Memorial Hospital, Chicago, IL, USA, and all the members of the Soares Laboratory (Cancer Biology and Epigenomics Program, Children’s Memorial Research Center) for their technical advice. This project was supported by the Rory David Deutsch Foundation, the Neuro-Oncology Research Foundation of Children’s Memorial Hospital and the Dr. Ralph and Marian C. Falk Medical Research Trust (all Chicago, IL, USA)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifa Xi.

Additional information

Guifa Xi was previously affiliated with Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2011_680_MOESM1_ESM.tif

In vitro bioluminescene of rat C6-Luc glioblastoma cell lines expressing luciferase. A C6-Luc cells were diluted from 312 to 10,000 cells/well, in triplicate and imaged for 30 s after addition of luciferin to the culture media. Negative controls were not treated with luciferin (TIFF 148 kb)

11060_2011_680_MOESM2_ESM.tif

In vitro bioluminescene of rat C6-Luc glioblastoma cell lines expressing luciferase. B Correlation between cell number and mean bioluminescence (photons/s/cm2/steradian) (r2 = 0.9979) (TIFF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, G., Mania-Farnell, B., Rajaram, V. et al. Efficacy of interstitial continuous vincristine infusion in a bioluminescent rodent intracranial tumor model. J Neurooncol 106, 261–270 (2012). https://doi.org/10.1007/s11060-011-0680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0680-8

Keywords

Navigation