Skip to main content
Log in

Nitrilimine cycloadditions catalyzed by iron oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles (diameter = 11.9 ± 1.0 nm). The reactions were fully regioselective with monosubstituted ethylenes and ethyl cyanoformiate, while mixtures of cycloadducts were obtained in the presence of methyl propiolate. The intervention of iron oxide nanoparticles allowed carrying out the cycloadditions at milder conditions compared to the metal-free thermal processes. A labile intermediate has been proposed to explain this behavior.

Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alemagna A, Del Buttero P, Licandro E et al (1981) Inter- and intra-molecular reactions of arylazomethylenetriphenylphosphoranes with unsaturated carbon-carbon bonds. Gazz Chim Ital 111:285–288

    Google Scholar 

  • Bégué D, GuangHua Qiao G, Wentrup C (2012) Nitrile imines: matrix isolation, IR spectra, structures, and rearrangement to carbodiimides. J Am Chem Soc 134:5339–5350

    Article  Google Scholar 

  • Bertini, I, Gray HB, Lippard S et al (1994) Bioinorganic chemistry, University Science Books: Mill Valley, 1994

  • Broggini G, Molteni G (2000) Dipolarophilic behaviour of (arylsulfonyl)allenes towards nitrile imines. J Chem Soc Perkin Trans 1:1685–1689

    Article  Google Scholar 

  • Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419

    Article  Google Scholar 

  • Caramella P, Grünanger P (1984) 1,3-Dipolar Cycloaddition Chemistry,Wiley: New York, Vol. 1, Ch. 3

  • Caramella P, Houk KN (1976) Geometries of nitrilium betaines. The clarification of apparently anomalous reactions of 1,3-dipoles. J Am Chem Soc 98:6397–6399

    Article  Google Scholar 

  • Cargnoni F, Molteni G, Cooper DL, Raimondi M, Ponti A (2006) The electronic structure of nitrilimine: absence of the carbenic form. Chem Commun:1030–1032

  • Cocco MT, Maccioni A, Plumitallo A (1985) Phytotoxic activity in pyrazole derivatives II. Farmaco Sci 40:272–284

    Google Scholar 

  • Corsico Coda A, De Gaudenzi L, Desimoni G et al (1987) A new thermal decomposition of the isoxazole ring. Heterocycles 26:745–750

    Article  Google Scholar 

  • Cvetovich RJ, Pipik B, Hartner FW, Grabowski EJJ (2003) Rapid synthesis of tetrahydro-4H-pyrazolo[1,5-a]diazepine-2-carboxylate. Tetrahedron Lett 44:5867–5870

    Article  Google Scholar 

  • Dadiboyena S, Hamme AT II (2013) Environmentally benign Lewis acid promoted [2+3] dipolar cycloaddition reactions of nitrile imines with alkenes in water. Eur J Org Chem 2013:7567–7574

    Article  Google Scholar 

  • De Benassuti L, Recca T, Molteni G (2007) 15N NMR spectroscopy of partially unsaturated pyrazoles. Tetrahedron 63:3302–3305

    Article  Google Scholar 

  • De La Mare PBD, Swedlund BE (1973) The chemistry of the carbon-halogen bond, John Wiley & Sons: London, Part 1, Ch. 7, pp. 407–458

  • Díaz-Ortiz A, de Cózar A, Prieto P, de la Hoz A, Moreno A (2006) Recyclable supported catalysts in microwave-assisted reactions: first Diels–Alder cycloaddition of a triazole ring. Tetrahedron Lett 47:8761–8764

    Article  Google Scholar 

  • Elguero J, Goya P, Jagerovic N et al (2002) Pyrazoles as drugs: facts and fantasies. Targets Heterocycl Syst 6:52–98

    Google Scholar 

  • Elwahy AHM, Shaaban MR (2017) Synthesis of heterocycles catalyzed by iron oxide nanoparticles. Heterocycles 94:595–655

    Article  Google Scholar 

  • Fauré JL, Réau R, Wong MW, Koch R, Wentrup C, Bertrand G (1997) Nitrilimines: evidence for the allenic structure in solution, experimental and ab initio studies of the barrier to racemization, and first diastereoselective [3 + 2]-cycloaddition. J Am Chem Soc 119:2819–2824

    Article  Google Scholar 

  • Ferretti AM, Ponti A, Molteni G (2015) Silver(I) oxide nanoparticles as a catalyst in the azide–alkyne cycloaddition. Tetrahedron Lett 56:5727–5730

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision C.01, Gaussian Inc.: Wallingford

  • Fusco R, Romani R (1946) Investigations of formazyls. I. The action of diazo compounds on chloro- and bromomalonic acids. Gazz Chim Ital 76:419–438

    Google Scholar 

  • Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl 2:565–598

    Article  Google Scholar 

  • Huisgen R (1984) 1,3-Dipolar cycloaddition chemistry, Wiley: New York, Vol. 1, Ch. 1

  • Huisgen R, Grashey R, Seidel M et al (1962) 1,3-Dipolar additions. II. Synthesis of 1,2,4-triazoles from nitrilimines and nitriles. Ann Chem 653:105–113

    Article  Google Scholar 

  • Kamal A, Swapna P (2013) An improved iron-mediated synthesis of N-2-aryl substituted 1,2,3-triazoles. RSC Adv 3:7419–7426

    Article  Google Scholar 

  • Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15

    Article  Google Scholar 

  • Marshak S (2005) The earth: portrait of a planet. W.W. Norton & Co., New York

    Google Scholar 

  • Meyers AI, Sircar CJ (1970) The chemistry of the cyano group. Wiley-Interscience, London, Ch 8

  • Molteni G (2007) Silver(I) salts as useful reagents in pyrazole synthesis. ARKIVOC (2):224–246

  • Molteni G, Del Buttero P (2005) Nitrilimine cycloadditions to the cyano group in aqueous media. Heterocycles 65:1183–1188

    Article  Google Scholar 

  • Molteni G, Garanti L (2001) Behavior of hydrazonoyl chlorides towards the C=N double bond of Δ2-pyrazolines. A study on 2-(4-nitrophenyl)-2,3,3a,4,5,6-hexahydro-6-oxofuro[3,4-c]zpyrazole. Heterocycles 55:1573–1580

  • Molteni G, Orlandi M, Broggini G (2000) Nitrilimine cycloadditions in aqueous media. J Chem Soc Perkin Trans 1:3742–3745

    Article  Google Scholar 

  • Molteni G, Ponti A, Orlandi M (2002) Uncommon aqueous media for nitrilimine cycloadditions. I. Synthetic and mechanistic aspects in the formation of 1-aryl-5-substituted-4,5-dihydropyrazoles. New J Chem 26:1340–1345

    Article  Google Scholar 

  • Molteni G, Bianchi CL, Marinoni G, Santo N, Ponti A (2006) Core-shell Cu@Cu-oxide nanoparticles as catalyst in the click azide-alkyne cycloaddition. New J Chem 30:1137–1139

    Article  Google Scholar 

  • Mondini S, Ferretti AM, Puglisi A et al (2012) Pebbles and Pebblejuggler: software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale 4:5356–5372 Pebbles is freely available from the authors, http://pebbles.istm.cnr.it

    Article  Google Scholar 

  • Movassagh B, Talebsereshki F (2013) Efficient one-pot synthesis of β-acetamido carbonyl compounds using Fe3O4 nanoparticles. Helv Chim Acta 96:1943–1947

    Article  Google Scholar 

  • Movassagh B, Yousefi A (2015) Magnetic iron oxide nanoparticles as an efficient and recyclable catalyst for the solvent-free synthesis of sulfides, vinyl sulfides, thiol esters, and thia-Michael adducts. Monatsh Chem 146:135–142

    Article  Google Scholar 

  • Padwa A (1992) Comprehensive organic synthesis. Pergamon Press, New York, 1992, Vol. 4, Ch. 4–9, p 1069

  • Padwa A (2002) Synthetic applications of 1,3- dipolar cycloaddition chemistry toward heterocycles and natural products. Wiley, New York

    Book  Google Scholar 

  • Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  • Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzene sul fonamide (SC-58635, Celecoxib). J Med Chem 40:1347–1365

    Article  Google Scholar 

  • Ponti A, Molteni G (2001) DFT-based quantitative prediction of regioselectivity: cycloaddition of nitrilimines to methyl propiolate. J Org Chem 66:5252–5255

    Article  Google Scholar 

  • Qu J, Cao CY, Dou ZF et al (2012) You have full text access to this content) Synthesis of cyclic carbonates: catalysis by an iron-based composite and the role of hydrogen bonding at the solid/liquid interface. ChemSusChem 5:652–655

    Article  Google Scholar 

  • Reddy PM, Kumar KA, Raju KM et al (2000) Synthesis and characterization of iron (II, III) complexes of 3-hydroxy-benzaldehyde isonicotinic acid hydrazone. Indian J Chem 39A:1182–1186

    Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  Google Scholar 

  • Shimizu T, Hayashi Y, Nishio T (1984) The reaction of N-aryl-C-ethoxycarbonylnitrilimine with olefins. Bull Chem Soc Jpn 57:787–790

    Article  Google Scholar 

  • Sircard G, Baceiredo A, Bertrand G (1988) Synthesis and reactivity of a stable nitrile imine. J Am Chem Soc 110:2663–2664

    Article  Google Scholar 

  • Su X, Aprahamian I (2014) Hydrazone-based switches, metallo-assemblies and sensors. Chem Soc Rev 43:1963–1981

    Article  Google Scholar 

  • Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theory Comput 4:2057–2066

    Article  Google Scholar 

  • Wade PA (1992) Comprehensive organic synthesis. Pergamon Press, New York, Vol. 4, Ch. 4–10, p 1111

  • Zeng T, Chen WW, Cirtiu CM, Moores A, Song G, Li CJ (2010) Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem 12:570–573

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to F. Cargnoni (ISTM-CNR, Milan) for useful suggestions about the DFT calculations.

Funding

This study was funded by Regione Lombardia (RSPPTECH Project); the Italian MIUR under grant FIRB RBAP115AYN (oxides at the nanoscale: multifunctionality and applications) and the Department of Chemistry of UNIMI under grant PSR2015-1716FDEMA_09 (cycloaddition reactions catalyzed by metal oxide nanoparticles: NANOCAT).

Author information

Authors and Affiliations

Authors

Contributions

G.M. and A.P. together conceived and planned the research, discussed the results, and wrote the manuscript. G.M. carried out all the cycloadditions. A.M.F. and S.M. synthesized the nanoparticles and A.M.F. characterized them. A.P. carried out the calculations. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Giorgio Molteni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molteni, G., Ferretti, A.M., Mondini, S. et al. Nitrilimine cycloadditions catalyzed by iron oxide nanoparticles. J Nanopart Res 20, 79 (2018). https://doi.org/10.1007/s11051-018-4184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4184-8

Keywords

Navigation