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Abstract
The emerging progress of video gaming and eSports lacks the tools for ensuring high-quality
analytics and training in professional and amateur eSports teams. We report on an Artificial
Intelligence (AI) enabled solution for predicting the eSports player in-game performance
using exclusively the data from sensors. For this reason, we collected the physiological,
environmental, and the smart chair data from professional and amateur players. The player
performance is assessed from the game logs in a multiplayer game for each moment of time
using a recurrent neural network. We have investigated an attention mechanism improves
the generalization of the network and provides a straightforward feature importance as well.
The best model achieves Area Under the Receiver Operating Characteristic Curve (ROC
AUC) score 0.73 in predicting whether a player will perform better or worse in the next 240
seconds based on in-game metrics. The prediction of the performance of a particular player
is realized although their data are not utilized in the training set. The proposed solution has a
number of promising applications for professional eSports teams and amateur players, such
as a learning tool or performance monitoring system.

Keywords eSports · Machine learning · Neural networks · Sensor network · Video gaming

1 Introduction

Esports is a competitive video gaming where the single players or teams contend with each
other to achieve a specific goal by the end of the game. The eSports industry has progressed
a lot within the last decade [5]: a number of professional and amateur teams take part in
numerous competitions where the prize pools achieve tens of millions of US dollars. Its
global audience has already reached 474 mln. in 2021 and is expected to reach more than
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577 mln. by 2024 [49]. eSports industry includes so far a number of promising research
and commercial directions, e.g., streaming, hardware, game development, connectivity,
analytics, and training.

Apart from the growing audience, the number of eSports players and ‘Pro’-players (profes-
sional players or athletes), the players with a contract, has grown in the last few years [49].
It made the competition among the players and teams even harder, attracting extra funding
for training process and analytics. The opportunity to win a prize pool playing a favorite
game is very tempting for amateur players, and most of them consider a professional eSports
career in the future. At the same time, analytics and training direction [27] is recognized
as the most promising one as it includes the innovative research and business in artificial
intelligence,1 data/video processing, and sensing.

Although eSports is recognised in a number of countries as sport, it is still in infancy
period: there is a lack of holistic training methodologies and widely accepted data analytics
tools [48]. It makes it unclear how to improve the particular game skill except for spending
the lion share of time in the game and watching how the popular streamers perform, and
participating in trainings. Currently, there is a lack of tools providing feedback about the
player performance and advising how to perform better [51]. It creates a huge potential
for the eSports research in order to understanding the factors essential to win in a game.
Considering the abundance of data available through the game replays, so-called ‘demo’
files, allow for replicating the game and performing fundamental analysis.

In terms of prediction and analytics, which is relevant to the research reported in this
work, most of the current works in eSports rely exclusively on the in-game data analysis.
However, using only in-game data for estimating the players’ performance is a limiting
factor for providing helpful feedback to the team and players. While it can provide the
primary information about the gamer’s traits and behavior, the huge amount of data from
the physical world and captured by sensors [12] is omitted. Moreover, sensor data may be
more suitable for the eSports domain since models trained on in-game data only quickly
become obsolete when a new patch is released. Information about the player’s physiological
conditions, e.g. heart rate, muscle activity, and movements can supplement logs obtained
from in-game data to provide additional information for predictive models and potentially
improve their performance. In addition, this can be used for selecting proper players for
particular opponents and making a proper substitution during the game. Multimodal systems
utilizing this information have already been explored for audio, photo, and video stimuli [7].

In this article, we report on predicting the eSports player performance in Counter
Strike:Global Offensive (CS:GO) using the data collected from different sensors and recur-
rent neural network for data analysis. While there is a number of relevant research papers
dealing with the prediction of a player skill in general [9, 70], there is still lack of research
on the estimation of current player performance at a particular moment of time relying on
various sensors and the data collected from professional players. This immediate predic-
tion can provide the instantaneous feedback and can serve as a useful tool for the eSports
team analysts and managers to monitor the current conditions of players. Another practi-
cal application is the real-time performance monitoring tool for eSports enthusiasts who
want to progress towards the professional level and sign a contract with a professional team.
Since playing a game is a high mental load and stress, we propose to use a multimodal sys-
tem to record the players’ physiological activity (heart rate, muscle activity, eye movement,

1The Power of AI in eSports, https://medium.com/the-esports-analyst-club-by-itero-gaming/the-power-of-ai-
in-esports-80edd6a4270e.

https://medium.com/the-esports-analyst-club-by-itero-gaming/the-power-of-ai-in-esports-80edd6a4270e
https://medium.com/the-esports-analyst-club-by-itero-gaming/the-power-of-ai-in-esports-80edd6a4270e
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skin resistance, mouse movement), gaming chair movement, and environmental conditions
(temperature, humidity, and CO2 level). This data may help explain variations in gam-
ing performance during the game and to identify which factors affect the performance the
most.

Contribution of this work is threefold. (i) Experimental testbed and heterogeneous data
collection from various sensors. The dataset is collected in collaboration with a professional
eSports team. (ii) Investigation of the optimal neural network architecture for predicting a
player performance and interpreting the obtained results. The model is characterized by the
ability to predict performance of a new player not included in the training set. (iii) In terms
of data analysis, a special emphasis is made on the current performance status of the player
instead of considering the overall player skill. In this regard, the sensor data are used to
evaluate the in-game performance in a First-Person Shooter (FPS) game discipline.

This paper is organized as follows: in Section 2 we introduce the reader to the rel-
evant research in the area. Afterwards, the methods used in this research are presented
in Section 3. Experimental results are demonstrated in Section 4. Finally, we provide
concluding remarks in Section 5.

2 Related work

Wearable sensors and body sensor networks have been widely applied for assessing a human
behaviour and activity recognition in many areas [64]. However, this approach has not been
extensively used for assessing eSports players: typically, in-game data or data collected
from computer keyboard and mouse have been analyzed so far. Due to this limitation the
performance evaluation methods are limited as well.

This section is therefore divided into two parts: first, we overview relevant research in
terms of data collection and activity recognition and, second, we discuss recent research on
performance evaluation methods.

2.1 Activity recognition using sensors

Indeed, there is a lack of prior research utilizing sensors data to predict eSports player
behavior. It happens due to young research domain in eSports. Recent research on using
sensor data in eSports is limited to predicting the overall player skill or finding simple
dependencies in the data. Also, the limited number of sensors is used (maximum three are
reported in [32]). We utilize the findings from other studies to shape a useful set of sensors
for extensive research.

Another challenge we addressed in this work, is the data collection from the eSports
professional players using sensing technologies.

In [13] authors investigate the correlations between psychophysiological arousal (heart
rate, electrodermal activity) and self-reported player experience in a first-person shooter
game. Similar research about the relation between the player stress and game experience
has been investigated in the Multiplayer Online Battlefield Arena (MOBA) genre [8]. The
connection between the gaze and player skill is investigated in [65]. Mouse and keyboard
data is a natural source of information about the players. Its relation with player performance
in first-person shooters is covered in [9] for Red Eclipse and [32] for Counter-Strike: Global
Offensive (CS:GO). Player performance can also be predicted by activity on a chair during
the game [56] or in reaction to key game events [57], and these features were informative in
our study as well.
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In [58], the authors investigate how to predict whether the player wins the next encounter
in League of Legends (LoL) using the sensor data. Their best model (Transformer network)
achieves ROC AUC score (the area under the ROC curve (AUC), where ROC stands for
the receiver operating characteristic) of 0.706 in predicting whether the player will win
the encounter occurring 10 seconds later, and they built the system predicting the ‘player
burnout’ with 73.5% precision and 88.3% recall. While this study also investigates how to
use sensor data for eSports analytics, their research is focused on League of Legends dis-
cipline (MOBA genre) instead of CS:GO discipline (FPS genre) considered in this work.
Also, the frequency of events in League of Legends and CS:GO varies, thus it affects
the target construction and data processing (the smoothing, the number of outliers, the
intensity/influence of noise).

Application of sensors for activity recognition tasks in eSports and sport is summarized
in Table 1.

Apart from eSports, there is extensive research work carried out on data collection and
activity recognition in other applications including sports, medicine, and daily activity mon-
itoring. In sports, wearable sensing systems are used for detection and classification of
training exercises for goalkeepers [23], assessing header skills in soccer [60]. Also, wearable
systems were designed to classify tricks in skateboarding [22], classify popular swimming
styles using sensors [69], and other activities in sports [67]. In terms of daily activity mon-
itoring and medical applications, they have been studied for nearly three decades with the
use of wearable sensors. Many medical studies deal with the investigation of human gait,
for example, for patients with the Parkinson’s disease [6].

Table 1 Data collection using sensors in eSports and sport

Game Sensors Target Reference

discipline

FPS (Prey, Doom 3, Heart rate monitor (HRM), Player experience [13]

Bioshock) electrodermal activity (EDA)

MOBA (LoL) Photoplethysmogram (PGP), Player stress [8]

galvanic skin response (GSR),

inertial measurement unit

(IMU), mouse, keyboard

FPS (CS:GO) Eye-tracker Player skill [65]

FPS (Red Eclips) Mouse, keyboard Player performance [9]

FPS (CS:GO) Mouse, keyboard Player performance [32]

FPS (CS:GO) IMU Player performance [56, 57]

MOBA (LoL) Electromyography (EMG), Win prediction [58]

GSR, IMU

Soccer IMU Movement classification [23]

Soccer IMU Head impact monitoring [60]

Skateboarding IMU Tricks classification [22]

Swimming IMU Swimming stroke [69]

phase segmentation
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2.2 Performance evaluationmethods

Professional players compete in the video gaming context in front of large audience and
imagine the opportunity to win a huge prize pool. It requires their top form and ability to
perform in stressful situation. Therefore, the players need their optimal mental, cognitive,
and physical abilities. Training allows for evaluation of the players performance. However,
eSports players do not have access to a comprehensive health management system. Find-
ings from multidisciplinary study in domains like movement and cognitive science, as well
as game research, could lead to the development of holistic body ‘n’ brain training method-
ologies for eSports athletes. Exergaming, which combines physical and cognitive training
in a fun gaming environment, is a promising and unique training method. Exergames could
serve as an alternative training option to comprehensively enhance gaming performance and
overall health in eSports athletes, taking into account game design and training concepts as
well as eSports particular requirements [46]. Another training method for eSports players is
reported in [51]. The proposed method employs a network analysis of eye movement coor-
dinates in conjunction with the crucial decisions to generate new information that neither
method can produce on its own.

Most of the current research in eSports analytics relies exclusively on the in-game data
collection and further analysis. It has been shown that information about kills, deaths, and
other game events can help predict a game outcome in MOBA discipline for Dota 2 [27],
League of Legends [41], and Rocket League [59]. Another opportunity to predict the game
outcome in the MOBA related disciplines is based on the features extracted from players’
match history, as well as in-game statistics [74]. Players match history can also be used to
create a rating system for predicting the matches outcome in the FPS genre [44].

As noticed earlier, the in-game data in eSports is widely used for analytic studies in
the area. Drachen et al. consider clustering a player behavior to learn the optimal team
compositions for League of Legends discipline to develop a set of descriptive play style
groupings [14]. Research by Gao et al. [20] targets the identification of the heroes that play-
ers are controlling and the role they take. The authors have used classical machine learning
algorithms trained on game data to predict a hero ID and one of three roles and achieve
the accuracy ranging from 73% to 89% which depends on features and targets used. Eggert
et al. [16] has continued the work by Gao et al. [20] and applied the supervised machine
learning to classify the behavior of DOTA players in terms of hero roles and playstyles.
Martens et al. [45] have proposed to predict a winning team analyzing the toxicity of
in-game chat. In [66] authors used pre-match features to predict the outcome and ana-
lyze blowout matches (when one team outscores another by a large margin). The research
reported in [10] describes the cluster evaluation, description, and interpretation for player
profiles in Minecraft. The authors state that automated clustering methods based on game
interaction features help identify the real player communities in Minecraft.

In many domains the skills and performance can be assessed and/or predicted based on
sensors data [52]. The connection between physiological data and mental stress as well as
the performance of drivers was demonstrated in [25]. The authors used electrocardiogram,
electromyogram, skin conductance, and respiration data from 24 drivers. In sport, the data
from the Inertial Measurement Unit (IMU) can be helpful for estimating volleyball athlete
skill [68]. Tennis player performance can be assessed from the IMU data on the hand and
chest [2], or on the waist, leg, and hand [1]. Similar techniques have been investigated for
skill estimation in soccer [23], climbing [38], golf [76], gym exercising [37], and alpine
skiing [47].
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Another popular domain for skill assessment based on the sensor data is surgery. In [31]
authors use IMU data to create a skill quantification framework for surgeons. Ershad
et al. [17] have shown the connection between the surgeon skill and behavior information
collected from IMU. Ahmidi et al. [3] developed a system using motion and eye-tracking
data for surgical task and skill prediction. The authors have used hidden Markov models
[15] to represent surgeon state which is similar to the method proposed in this work in
Section 3. The connection between the surgeon actions and pressure sensors data has been
investigated in [73].

Physiological data have also been used for predicting skill level and skill acquisition
in working activities, such as mold polishing [36] and clay kneading [72], as well as
dancing [71].

In this research, we use a number of wearable and local unobtrusive sensors used for data
collection during the game session and further data analysis. It was carried out with respect
to the player’s needs.

3 Methods

In this section, we describe the sensors used in this research, data collection procedure, data
pre-processing, and data analysis helping predict the player’s performance. In Fig. 1 we
present an overview of prediction system.

3.1 Sensors

In our work, we use three groups of sensors: physiological sensors, sensors integrated into a
game chair, and environmental sensors. The sensor network architecture is shown in Fig. 2.
The list of sensors used, their locations, and sampling rates are presented in Table 2. Further
issues associated with sampling rates are discussed in Section 3.5.1.

Physiological data recorded:

• Electromyography (EMG) data as an indicator of muscle activity. EMG data are
related to physiological tension affecting player’s current state [40].

• Heart rate data received by a heart rate monitor on a chest. A timeline of heart rate
data is connected to heart rate variability (HRV), and HRV is connected to mental stress
and arousal [61], which might affect the rationality of player decisions. Research in
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Fig. 1 An overview of prediction system during the development and runtime phases
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Fig. 2 Sensor network architecture

[13] indicates significant correlation between heart rate and self-reported gameplay
experience.

• Electrodermal activity (GSR) or skin resistance data as a measure of person arousal
[19]. This value is also connected with the stress level. Study [13] demonstrates the
connection between GSR data and player experience.

• Eye tracker data of player gaze position on a monitor in pixel values. The player must
check the minimap and other indicators on the screen to have relevant information about
the game and, thus, make effective decisions [65].

• Mouse movements captured by a custom python script as a measure of the intensity of
a player input. This data is an indirect indicator of the hand movement activity as well
as the player skill [9]. Research in [32] shows that information about number of clicks
and their duration in first-person shooter games improves the player skill prediction
algorithm.

A 3-axial accelerometer and a 3-axial gyroscope present the sensors integrated into a
game chair. We illustrate axes orientation for the chair in Fig. 3. Recorded data includes:

• Linear acceleration of a chair. It captures the player movements to the game table,
parallel to it, chair height changes, and small oscillations possible in stress conditions.
Behavior on a chair is connected with the player skill [56, 57].

Table 2 Sensors location and sampling rates

Sensor Sensor Location Sampling

type rate

Physiological Electromyography sensor [53] Elbow 70 Hz

Sensors GSR sensor [54] Fingers 70 Hz

Heart rate monitor [21] Chest 3 Hz

Eye tracker Under the PC monitor 90 Hz

Mouse Hand 250 Hz

Sensors on a 3-axis accelerometer and 3-axis The bottom of the 100 Hz

Chair gyroscope [30] chair

Environmental CO2 sensor [43] Environment, ≈1m 0.2 Hz

Sensors Temperature sensor [28] from the player 5 Hz

Humidity sensor [29] 5 Hz
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Fig. 3 Axes orientation for the
chair
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• Angular velocity of a chair. This data provides the information about the person’s
wiggling and spinnings on a chair.

Environmental data recorded:

• CO2 level. High CO2 level results in the reduction of cognitive abilities [4], thus
directly affect the gaming process.

• Relative humidity. High level of relative humidity results in the reduction of neurobe-
havioral performance [77]

• Environmental temperature. Too warm conditions may affect the human performance
[39].

3.2 Sensor network and synchronization

Apart from a number of heterogeneous sensors, the sensor network has a dedicated stor-
age server (based on Intel NUC PC), gamer PC (a high-speed Intel I7 PC with the DDR4
(Double Data Rate) memory, and an advanced GPU card). For synchronization reasons, we
have an Network Time Protocol (NTP) server with Global Positioning System and Precise
Positioning Service (GPS and PPS) support. A high-speed wireless router connects all the
devices in the network. PC with strict requirements to ping value (gamer PC, NTP server)
has a wired connection to the router (Local Area Network, or LAN). The sensors have a
wireless connection to the network as they are placed near the eSports athletes (Wireless
LAN, or WLAN). The router has a low latency connection to the Internet (WAN). Proper
synchronization of the sensors and gamer PC is essential for further data collection and
analysis.

3.2.1 NTP server

At present, there are many options for building time-synchronous systems for industrial
applications, we decided to realize the synchronization on our own local NTP server. Such
server can be located close enough and characterized by the minimum delay in transmitting
the packets over the network.

A single-board computer Raspberry PI 3B was selected as a server, and a GPS (MTK
MT3333) signal was used as a source of reasonably accurate time. Raspberry PI was located
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Fig. 4 Synchronization scheme

near the window for better satellite signal reception and connected to the local area network
via a wired interface. The presence of a dedicated PPS signal acquired by a separate IO pin
(GPIO) Raspberry PI made it possible to ensure time accuracy in the range of 10−5−10−6 s
(time accuracy of 1 − 10 us).

3.2.2 Sensors

The sensors in our network are deployed on Raspberry PI (RPI). The broadcast network
“sync” command was sent to the sensors prior to measurements. After the command recep-
tion, a custom made script synchronized the local time to the local NTP server (Stratum 1)
time on each RPI. Feedback status with the current time difference was also reported from
every RPI to the local data storage PC. In this case, all RPI were synchronized before the
measurement procedure starts. Time drift of local RPI time was measured: it is in the range
10–20 ms per hour. In this case, the sync command was repeated every 10 min. This allows
us to have synchronized sensors all the time (Fig. 4).

3.2.3 Gamer PC synchronization

Performing the time synchronization on a gamer PC was another significant issue. The accu-
racy of the clock within 1 ms requires to meet a number of conditions.2 In our experiment
(taking into account the local time server Stratum 1 based on RPI), all the requirements
were met with the exception of the ping value (it was <1 ms, instead of the required value
<0.1 ms). However, it allows us to achieve the necessary synchronization accuracy.

In the case of proper registry settings3 after some time, the drift is compensated by
the internal Windows algorithms, and the clocks become synchronous with the time server
(within 2–3 ms accuracy).

Upon synchronizing the hardware in the network, we start the data collection procedure.

3.3 Game selection

CS:GO is in the short-list of top eSports disciplines with the average numbers exceeding
500k and 1000k peak concurrent players.4 Major tournament has up to 1 mln. USD prize

2https://docs.microsoft.com/en-us/windows-server/networking/windows-time-service/support-boundary
3https://docs.microsoft.com/en-us/windows-server/networking/windows-time-service/
configuring-systems-for-high-accuracy
4https://steamcharts.com/app/730

https://docs.microsoft.com/en-us/windows-server/networking/windows-time-service/support-boundary
https://docs.microsoft.com/en-us/windows-server/networking/windows-time-service/configuring-systems-for-high-accuracy
https://docs.microsoft.com/en-us/windows-server/networking/windows-time-service/configuring-systems-for-high-accuracy
https://steamcharts.com/app/730
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Fig. 5 Experimental testbed

pool.5 CS:GO is a FPS game. Personal skills, team management and coordination is a key
for the ability to win in this discipline. Game Application Programming Interface (API)
by itself and sensor data recorded during the game is a rich dataset for analysis, players
characterization and prediction analytics by various methods. It is important to use non-
invasive type of sensors during data collection (HRM/eye-tracking/mouse/keyboard/chair-
IMU), so pose or movement would not restrict the player. In case of GSR and body-IMU
sensors location should be selected carefully (GSR on left hand fingers, IMU on right hand
elbow) in this case data will not be treated by noise or false body movements (players
usually use left hand for controlling keyboard and right hand for controlling mouse).

3.4 Data collection

CS:GO is one of the most popular computer games in the world. It is a team game in
5x5 format (5 players per team). Different international tournaments have various game
scenarios, one of the most popular is best of 3 matches (every match consists of 30 rounds,
the winning team should complete the 30th round with +2 score, in case of less distance in
score an additional round is played).

We invited 21 participants to play the FPS CS:GO for 30–35 min. We note here that six
pro-players took part in this experiment. Professional player is a player who has a contract
with a team participating in tournaments and receives a salary for his game. All the par-
ticipants were informed about the project and the experimental details. Every participant
signed a written consent form, which allowed recording physiological and in-game data.
Then players were equipped with the sensors for data collection. We did not receive any
complaints about the uncomfortable gaming experience because of the sensors. The exper-
imental testbed is shown in Fig. 5. 2 participants out of 21 were left-handed. For those
participants we switched the locations of GSR and EMG sensors.

Players needed to playDeathmatchmode of CS:GOwith other random players of normal
skill on an open CS:GO server. Participants played at different times during several consec-
utive days and didn’t interact with each other. The example of the game screen interface is
shown in Fig. 6. Deathmatch mode is a special game mode where people play against all
others (1 to many), and it’s focused on personal skills for shooting and movement. In this

5https://www.esports.net/news/csgo-major-winners/

https://www.esports.net/news/csgo-major-winners/
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Fig. 6 CS:GO screen interface. Most of the time the players watch at the aiming crosshair

mode the goal of each player is to achieve as many kills of other players as possible and to
minimize the number of their own deaths. When the player is killed it immediately respawns
in a random location in the game. All participants were instructed about the controls and the
goal of the game. This mode is often used by eSports players in their training routine. After
the game had been finished, we saved the replays for the future game events extraction.

Collected data samples for the 5-min intervals for two players are shown in Fig. 7. For the
reader convenience, we color the intervals in the 1-second vicinity of kill and death events.

It is clear that for the data from some physiological indicators, e.g. skin resistance or
heart rate, there are global and local trends, which might align with changes in the player’s
efficiency in the game. Another point is that the players usually do not move a lot on a
gaming chair. However, they can change their posture from time to time, and this event is
captured by the IMU on the chair and also might be connected with the game events and
player performance.

Fig. 7 5-minutes data samples for one player. Green and red coloring correspond to kill and death events,
respectively
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3.5 Data pre-processing

To get rid of the noise and occasional outliers, we have clipped all the data by 0.5 and 99.5
percentiles and smoothed the data by 100 ms moving window. We have also reparametrized
gaze, mouse, and muscle activity signals. Mouse signal has been converted from x and
y increments to Euclidian distance passed to reflect the mouse speed; gaze data has been
transformed from x and y coordinates to Euclidian distance passed; muscle activity signal
has been changed to L1-distance to the reference level for the player in order to represent
the intensity of muscle tension. For 3.7% data missed we have used linear interpolation to
fill in the unknown values since it provides a stable and accurate approximation.

3.5.1 Sensor data resampling

In order to predict the player performance at each moment of time, it is convenient to resam-
ple the data from all the sensors to the common sampling rate. This helps apply the proposed
data analysis for discrete time series predictions, such as hidden Markov models [15] or
recurrent neural networks [63].

However, data from different sensors has different underlying nature and should be
resampled accordingly. While it is reasonable to average the data within a time step interval
for heart rate, skin resistance, muscle activity, environmental data, chair acceleration and
rotation, averaging is not applicable for the gaze movement and mouse movement data. The
reason behind it is that we are interested in the total distance passed within the time step
instead of the average distance passed per measurement. The total distance does not depend
on a number of samples, but only on their sum.

Resampling introduces an important hyperparameter time step. Throughout the
manuscript we refer to it is as dt ∈ R. Big time step values, e.g. 5 min, are not meaningful
for our problem since we need to extract the relevant information about the player. On the
other hand, too small timestamp, e.g 0.1 s, may lead to an excessive number of observa-
tions and noisier data. Indeed, the resampling time step should not be smaller than the time
between the measurements for the majority of sensors.

After converting the sampling rates to the common value, we obtained a 15-dimensional
feature vector for each moment of time. Further in the paper we will refer to this feature
vector as x(t) ∈ R

n. Its components are described in Table 3.

Table 3 Feature vector
components Feature group Feature name

Physiological Activity Heart Rate

Muscle Activity

Skin Resistance

Gaze Movement

Mouse Movement

Mouse Scroll

Chair Movement
Linear Accelerations along x, y, z axes

Angular velocity along x, y, z axes

Environment

CO2 level

Temperature

Humidity
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3.6 Player performance evaluation

There is no generic player effectiveness metric for the majority of eSports disciplines. The
most popular evaluation metric for FPS and MOBA games is Kill Death Ratio (KDR) [55].
It equals the number of kills divided by the number of deaths for the time interval. If KDR >

1, it means that the player performs skilfully, or, at least, better than some players on a game
server do. Otherwise, the player most likely underperforms compared to other players.

KDR takes values from 0 to +∞ which is not a clear range for prediction. When the
player performs skilfully and has many kills and few deaths, KDR is fluctuating drastically
because of division by a small number. In opposite, if there are many deaths and few kills,
KDR is around 0 and changes slowly. This drastic inconsistency in the target creates dif-
ficulties for training machine learning algorithms. One possible solution could be to apply
logarithm to KDR, but this does not solve the issue with the scale, because logarithm takes
the values from −∞ to +∞. Another possible solution is to check how many potential tar-
gets the player hits, but, to the best of our knowledge, there is no technical opportunity to
track potential in-game targets.

We propose a more numerically stable target value, which equals the proportion of kills
for the player. More precisely,

pτ (t) = kτ (t)

kτ (t) + dτ (t)
, (1)

kτ (t) = K(t + τ) − K(t), (2)

dτ (t) = D(t + τ) − D(t), (3)

where pτ (t) ∈ R is the proportion or performance and equals the proportion of kills for a
player at the moment t ∈ R considering the kills and death in the next τ ∈ R seconds. In
other words, it is the ratio of kills in the next τ seconds. K(t) ∈ R and D(t) ∈ R are the
total number of kills and deaths at the moment t ; therefore kτ (t) ∈ R and dτ (t) ∈ R equals
the number of kills and deaths within the interval [t, t + τ ]. pτ (t) varies from 0 to 1 and has
higher values for skilful players. Bounding by 0 and 1 helps efficiently train the machine
learning algorithms that are sensitive to the target scale.

The important hyperparameter introduced above is τ . Essentially, it is a window size for
which the information about the future player performance is aggregated. Small values of
the hyperparameter like 1 s lead to noisy target values, while large values like 10 min neglect
the subtle yet important changes in the player performance. τ is commonly referred to as a
forecasting horizon.

pτ (t) is a well-defined metric for evaluating the player effectiveness, and it is possible to
predict this value directly, thus considering the problem as a regression problem. However,
it is unclear how to interpret the quality of regression results in an understandable and inter-
pretable way. Formulating the problem in classification terms helps measuring the quality
of prediction by more comprehensive classification metrics like accuracy, ROC AUC, and
others. These metrics are much easier to compare with results obtained on other data or by
other models.

The natural way to claim if a person plays skilfully or a person underperforms at the
moment is to compare the current performance with his or her average performance in the
past. It is important to consider the past events only to avoid overfitting. Formally:

yτ (t) = [pτ (t) > pτ (t)], (4)

pτ (t) =
∑

t ′<t pτ (t
′)

∑
t ′<t 1

, (5)
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where yτ (t) ∈ {0, 1} and equals 1 in case of good game performance and 0 otherwise; pτ (t)

is an average player performance in the past.
Figure 8 demonstrates how the kills ratio pτ (t) and corresponding binary target yτ (t)

changes over time for three forecasting horizons.
The substantial advantage of using yτ (t) instead of pτ (t) is target unification between

the players. 0 and 1 values of yτ (t) have the same meaning for all players and imply under-
performance and good current performance, respectively. That is not the case for raw values
of pτ (t), because the same values of pτ (t) may be good for one player, but not satisfactory
for another one. For example, 0.5 kills ratio may be an achievement for a newbie player, but
a failure for a professional player.

Another justification of using yτ (t) as a target is robustness to the skill of other players
on a server. Player’s score pτ (t) may be too low in absolute value because of the strong
opponents, but target yτ (t) is robust because it evaluates the performance within one game.
The motivation for this target is to unify the target variable for all players and to provide
in advance an immediate feedback for a player or for a manager that something is going
wrong.

Predicting future player performance yτ (t) is essential for coaches and progressing play-
ers as it provides the quick feedback on players’ actions. That might help identify the
inevitable failures in player performance, e.g. burnout, fatigue, etc., in advance and take
measures to help the player to recover or even to change the player during the eSports com-
petition. This target is also helpful for learning purposes: although a person plays skilfully
or a person underperforms, it helps find the moments when the player performs a bit better
or worse than average.

Despite we formulate the performance metric in terms of kills/deaths, the metric is
directly applicable to the majority of First-Player Shooters, as well as other games including
kills/deaths. The performance metrics for these and other games can be calculated in other
terms (such as gold, scores, progress, etc.), while the data processing and algorithms may
be the same.

Fig. 8 Player performance as the kills proportion pτ (t) and its binarization for three forecasting horizons τ

for a player in a dataset
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3.7 Predictive models

We trained four models for predicting a player performance using the data from sensors:
baseline model, logistic regression, recurrent neural network, and recurrent neural network
with attention. In this section, we describe these methods in detail. The output for all models
is the probability that the person will play better in some fixed period in the future. All the
models are evaluated by ROC AUC score discussed in Section 3.8.2.

3.7.1 Baseline

Before training a complex model, it is crucial to set up a simple baseline to compare it
with. A common practice in time series analysis is to establish a baseline model using a
current target value as a future prediction. For our problem, the baseline uses average player
performance in the last τ seconds as a prediction. In other words, baseline prediction is
pτ (t). This prediction is correct because pτ (t) takes values from 0 to 1, and then they treated
as probabilities by the algorithm used to calculate the ROC AUC metric.

3.7.2 Logistic regression

Logistic regression [35] is a simple and robust linear classification algorithm. It takes a
feature vector x(t) ∈ R

n as an input at the moment of time t and provides the probability
y(t) equals 1 as an output:

P(yτ (t) = 1|x(t)) = 1

1 + exp(−〈w, x(t)〉 + b)
, (6)

where w ∈ R
n is the learnable weights vector, b ∈ R is the bias term. In our study, the

dimensionality is n = 15 since we used 15 values from sensors. Logistic regression can
capture only linear dependencies in the data because the feature vector x(t) involved in dot
product with vector w only.

3.7.3 Recurrent neural network

A neural network can be considered as a nonlinear generalization of logistic regression. In
this subsection, we first describe the essential components used in the network and then
describe the entire architecture.

Recurrent Neural Network Background
A Recurrent Neural Network (RNN) is a network that maintains an internal state

inherent to some sequence of events. It is proven to be efficient for discrete time series
prediction [63]. One of the simplest examples of RNN is a neural network with one
hidden layer.

Denote the sequence of input features and targets as
{
x
(
0
)
, x

(
dt

)
, . . . , x

(
(N −1)dt

)}

and
{
y
(
0
)
, y

(
dt

)
, . . . , y

(
(N−1)dt

)}
respectively, where x(t) ∈ R

n is the n-dimensional

feature vector for the moment t , y(t) ∈ R is the corresponding target, dt is the time step
used for discretization, N ∈ N is the total number of steps.
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At each moment t , the recurrent network has an m-dimensional hidden state vector
h(t) ∈ R

m which is calculated using the current input x(t) and the previous hidden state
h(t − dt):

h(t) = tanh
(
Wx(t) + Uh(t − dt) + b

)
, (7)

where W ∈ R
m×n, U ∈ R

m×m, b ∈ R
m are the learnable matrices and the bias vector.

The intuition behind using the RNN architecture might be in considering the hidden
state of the network as a current state of the player represented by the data from sensors.
The state is a vector with many components and some of them can present how skilfully
the person will play. The final prediction ŷτ (t) at the moment t is calculated by the
feed-forward network consisting of 1 or more linear layers:

ŷτ (t) = f (h(t)), (8)

where f : Rm → R is the function corresponding to the feed-forward network. We used
a sigmoid function as a final activation for the network to ensure ŷτ (t) ∈ [0, 1], so ŷτ (t)

has a meaning of probability.
Gated Recurrent Unit

More advanced modifications of the recurrent layer include the Gated Recurrent Unit
(GRU) [11] and Long Short-Term Memory (LSTM) [26]. Both of them utilize the gating
mechanism to better control the flow of information. LSTM architecture incorporates
an input, output, and forget gates and a memory cell, while a simpler GRU architecture
uses the update and reset gates only. We found GRU performs better in our task, so we
formally define it as follows:

h(t) = (1 − z(t)) 	 h(t − dt) + z(t) 	 h̃(t), (9)

h̃(t) = tanh(Whx(t) + Uh(r(t) 	 h(t − dt)) + Bh), (10)

z(t) = σ(Wzx(t) + Uzh(t − dt) + Bz), (11)

r(t) = σ(Wrx(t) + Urh(t − dt) + Br ), (12)

where z(t) and r(t) are the update and reset gates, Wh, Wz, Wr , Uh, Uz, Ur , Bh, Bz,
Br are the learnable parameters, 	 is Hadamard product, σ is the sigmoid function.
Attention Mechanism

A popular technique for improving the network quality and interpretability is an atten-
tion mechanism. Temporal attention can help emphasize the relevant hidden states from
the past. Input attention helps to select the essential input features. It is also possible to
combine both of them [50]. Since the proposed GRU model uses only one previous hid-
den state for prediction, it makes no sense to use the temporal attention. However, the
input attention can be used.

The attention layer provides the weights vector α(t) ∈ R
n, which is applied to a vector

x′(t) ∈ R
n by the element-wise multiplication:

x̃(t) = x′(t) 	 α(t). (13)

This operation demonstrates important components in the vector x(t)while decreasing
the contribution of its non-relevant components. Typically, α(t) components are bounded
by 0 and 1 and produced by another linear layer integrated into the network. In order to
consider both the current and the previous data from sensors, the attention layer takes
current measurements x(t) and hidden state h(t) produced by GRU:

α(t) = σ(Wa[h(t − dt), x(t)] + Ba), (14)

where theWa ∈ R
(m+n)×m,Ba ∈ R

m are trainable parameters.
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The intuition behind the input attention mechanism is a feature selection. Based on
the current input and hidden state, it can help ignoring the uninformative features for
each moment of time and keep relevant features unaltered. The ability to provide the
time-dependent feature importance is a significant advantage compared to other methods,
which can either provide feature importance for one particular moment or provide it only
for the whole time series.
Recurrent Neural Network With Attention Architecture

The neural network architecture is shown in Fig. 9. First, the sensor data are processed
by the dense layers for each feature group. Then the attention block is applied to amplify
a signal from the features relevant at the moment. The resulting vector goes through the
GRU cell to update the hidden state h(t). This hidden state is saved for further iterations
and goes through a feed-forward network to form the eventual prediction ŷτ (t). The total
inference time is about 5 ms on a CPU.

The network was trained by the truncated backpropagation through time [62] tech-
nique designed for RNNs and Adam optimizer [34] with learning rate warmup [42]
technique to improve the convergence. For attention and feed-forward networks, we used
1 and 2 linear layers, respectively, with ReLU nonlinearity. This activation function can
improve the convergence and numerical stability [24]. To validate whether the atten-
tion mechanism helps improve network performance, we also trained another network
without the attention block.

GRU cell is a crucial part of the network architecture. It helps accumulate informa-
tion about previous player states, so the network can use the retrospective context for
prediction. This information is stored in the hidden layer of the GRU cell. According to
the experiments, 8 neurons in the hidden layer works for our problem the best. Too few
neurons caused low predictive power, while too many led to overfitting.

The motivation to use separate linear layers for three feature groups is to combine
more complex features from the sensors data and to preserve the disentangled feature
representation for the attention layer. This is an analog of grouped convolutions [75] in
convolutional networks. For the same reasons, we applied the attention to each feature
group separately, thus having a 3-dimensional attention vector at each moment of time.

3.8 Validation

3.8.1 Training and evaluation process

In order to correctly estimate the generalization capabilities of classical machine learn-
ing algorithms, we used repeated cross-validation [33]. In particular, we randomly split 21

Fig. 9 Recurrent neural network architecture
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players into the train and test groups of 16 and 5 players, respectively, and trained/evaluated
algorithms on these data. We repeated random train/test splits and re-trained algorithms 100
times in total and averaged results across splits. This procedure helps lowering the variance
in evaluation and get more reliable results.

For neural networks, we also used a validation set, so we randomly split players into
train, validation, and test sets with 11, 5, and 5 players, respectively. The neural network
has been trained until the error on the validation set is not improving for 5 epochs (early
stopping procedure). One training epoch comprises of 20 batches. Each batch consists of
input features and targets for all the time steps for a randomly selected player from the train
set. To minimize the randomness in the evaluation results, each network has been trained
15 times with random weight initializations and train/val/test split. In both cases, the input
features for train, test, and validation sets are normalized based on the mean values and
standard deviations calculated on the train set.

3.8.2 Evaluation metric

Due to construction, the target is balanced: 50.1% belong to the positive class and 49.9%
to the negative class. The common metric for classification evaluation is the area under the
receiver operating characteristic curve (ROC AUC) [18]. It ranges from 0 to 1 with the 0.5
score for random guessing. Higher values are better.

For proper evaluation, we first calculated the ROC AUC scores for each individual par-
ticipant in the train, validation, or test sets, and then averaged the results. That is the proper
evaluation because it estimates at what extent the model can separate the high/low perfor-
mance conditions for one individual participant and does not benefit from separating the
participants between themselves in the case when the metric is calculated on predictions for
all the participants.

4 Results

4.1 Performance of algorithms

We have trained the predictive models for several time steps dt (see Section 3.5.1) and
forecasting horizons τ (see Section 3.6) combinations. According to our experiments, rea-
sonable ranges are from 5 to 30 s for time step, and from 60 to 300 s for the forecasting
horizon. The average results for the neural network with attention are shown in Table 4.

Table 4 Experimental results for the neural network with the attention for varying time steps and forecasting
horizons. Results are reported in ROC AUC score

Forecasting horizon τ , s Time step dt , s

5 10 15 20 24 30

60 0.602 0.658 0.632 0.617 0.645 0.689

120 0.609 0.621 0.682 0.631 0.680 0.657

180 0.611 0.622 0.652 0.711 0.682 0.642

240 0.667 0.661 0.654 0.726 0.724 0.703

300 0.619 0.667 0.721 0.680 0.717 0.724
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Fig. 10 Algorithms performance w.r.t. discretization time step dt with fixed forecasting horizon τ = 180 s

According to Table 4, the best time step value is about 20 s, and the best forecasting
horizon for the model is from 3 to 5 min. In other words, the optimal way to predict the
player behavior is to aggregate the sensors data every 20 s and make a prediction for the
next 3–5 min.

We have compared the performance of the algorithms described in Section 3.7 with
respect to the time step values with fixed forecasting horizon τ equal 180 s. The results are
shown in Fig. 10. There is a clear peak near 20–25 s for all the methods. The neural net-
work consistently outperforms the logistic regression and the baseline model. The use of
the attention block helps increase the model score.

Figure 11 demonstrates the relation between the forecasting horizon and algorithms per-
formance with the time step dt equal to 20 s. The neural network outperforms other methods
and achieves the maximum performance for forecasting horizons in the range from 3 to
5 min. The attention block helps to improve the model.

Fig. 11 Algorithms performance w.r.t. forecasting horizon τ with fixed time step dt = 20 s
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Fig. 12 Visualization of attention weights α(t), hidden state h(t), game performance pτ (t), binary target
yτ (t) and network prediction ŷτ (t) w.r.t. time step number for a player in the test set

4.2 Feature importance

In order to interpret the neural network predictions, we calculated the feature importances
and visualized predictions of a pretrained network and its internal state for the discretiza-
tion step equal to 20 s and the forecasting horizon equal to 3 min. Figure 12 shows how
attention, network hidden state, target, and network prediction change over time. Clearly,
the importance of different features varies over time, and periodically the data from some
sensors is non-relevant. The network-hidden state, which can be treated as a player state,
also varies during the game.

To calculate the feature importance, we trained 100 instances of the neural network with
random weight initializations and the train/val/test splits, and the averaged attentions on
the test set for the best epoch of each neural network. Afterwards, we averaged the results
across all networks. The results are shown in Table 5.

Information about physiological activity such as heart rate, muscle activity, hand move-
ment, and so on is the most relevant for the network. It is worth noting that all the feature
groups have considerable importance, thus contribute to the overall prediction. Since the
features in each feature group are mixed, we can not estimate the feature importance for
every raw feature.

Table 5 Mean neural network
attention for feature groups Feature group Mean attention

Physiological Activity 0.228

Chair Movement 0.207

Environment 0.197
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4.3 Discussion

Experimental results have shown practical feasibility of predicting the eSports player’s
behavior using only data from sensors. The system updates the prediction several times per
minute, so this interactivity is enough for potential users like eSports managers or profes-
sional players to understand that something goes wrong or to get a quick feedback. Feedback
from the algorithm about the performance prediction and feature importance may suggest
the users to change their gaming behavior. For example, an eSports manager may under-
stand in time that poor results of the team are connected with the stuffy environmental
conditions and adjust the air conditioning. Users may find information from the system use-
ful to make the radical decisions, e.g., changing a player or gaming equipment (computer
mouse, display, game chair, etc.). Negligible model inference time and data collection time
on a PC proves the principal feasibility of deploying the model on the edge devices, some
of which might be designed specifically for neural network operations. However, the model
retraining still requires high computational capability.

An advantage of multi-sensor approach, as opposed to single-sensor approach in the
majority of prior work, is adaptiveness. If a player finds some sensors disturbing or just
wants to save money, then these data might be excluded from the prediction, although
additional research on sensor importance is needed. For instance, EEG headset might be
too expensive or incompatible with player’s headphones, or GSR sensor on a hand can be
disturbing for some people.

Regarding machine learning methods applied, we have found neural network with atten-
tion mechanism performing the best. It outperforms the baseline, which does not use the
sensor data, as well as logistic regression and regular neural network, which use sensor data.
That says that sensor data provide a signal about player performance, and the internal state
of recurrent neural network combined with attention can catch this dependency better than
alternatives.

We have found that 20 s time step and 3–5 min behavior forecasting horizon are the most
natural parameters for CS:GO, but potential users can set up any other hyperparameters
depending on their scenario. In the study [58] focused on League of Legends, authors find
time step 1 s and forecasting horizon 10 s close to optimal for the game, although forecasting
horizons up to 90 s are still reasonable. The difference in optimal forecasting horizons can
be explained by higher frequency of kill/death/assist events in League of Legends, thus less
time is needed to estimate player performance.

Importantly, the dataset includes data from professional eSports players, which is hard
to obtain because of their availability and business. Significant advantage caused by the
diversified training dataset is universality for the player skill level enabling a wide range
of potential users. Larger and more diversified dataset could improve the performance of
prediction.

In terms of research community, this research contributes towards a holistic data analysis
system for eSports players [46].

4.4 Limitations

The limitations of the study is a small number of participants involved, the fuzziness of the
definition of player’s performance, and overrepresentation of data from males and young
people in the dataset. Future work includes more diverse and extensive data collection with
more subjects recorded, and the investigation of better metrics of players’ performance.
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These would allow researchers to utilize more complex machine learning methods and to
develop more reliable and robust models.

5 Conclusions

In this article, we have reported on the AI-enabled system for predicting the performance
of eSports players using only the data from heterogeneous sensors. The system consists of
a number of sensors capable of recording players’ physiological data, movements on the
game chair, and environmental conditions. Upon data collection we have processed them
into time series with meaningful sensors features and the target extracted from the game
events. The Recurrent Neural Network (RNN) demonstrated the best performance compar-
ing to baseline and logistic regression. The best model achieved ROC AUC score 0.73 in
predicting whether a player will perform better or worse in the next 240 seconds in terms of
in-game metrics based on KDR score. Other forecasting horizons from 60 to 300 seconds
demonstrated similar ROC AUC scores. The important feature of the model is the ability
to predict performance of a new player not included in the training set. Application of the
attention mechanism for RNN has helped to interpret the network predictions as well as to
extract the feature importance. Our work showed the connection between the player perfor-
mance and the data from sensors as well as the possibility of making a real-time system for
training and forecasting in eSports.

We have also investigated potential applications of the proposed AI system in the eSports
domain. Given the growth of eSports activity due to the coronavirus pandemic in 2019–
2021 and rapid development of consumer wearable devices within the last years, this work
shows the prospectives of full-fledged research in the intersection of these two fields. More-
over, the model trained on the eSports domain can be transferred to other domains using
domain adaptation methods to estimate user’s performance similar to estimating in-game
performance.

Considering the hundreds of millions of active gamers in the world and widespread of
wearables, crowdsourcing data collection is a promising way to collect the data on a global
scale. We also see potential improvements in our system with computer vision methods.
Emotion recognition and pose estimation techniques applied to data collected from web
camera can provide more information about the current state of a player.
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