
TRACK 4 : D IG ITAL GAMES , V IRTUAL REAL ITY , AND AUGMENTED
REAL ITY

NCCollab: collaborative behavior tree authoring
in game development

Md. Yousuf Hossain1 & Loutfouz Zaman1

Received: 7 March 2021 /Revised: 11 November 2021 /Accepted: 17 January 2022

The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Game development is a collective process in which a variety of different professionals
from different backgrounds collaborate together not only by means of conversational
interaction but also collaborative participation, one of which is programming. While
collaborative and pair programming solutions exist for text-based programming lan-
guages, visual programming has not enjoyed as much attention. These solutions would
not only address advanced forms of business communication among team members but
could find their use in distance learning, which would have been useful during the
pandemic. In our work, we propose a solution for collaborative behavioral animation of
NPCs using behavior trees through synchronous and asynchronous modes of collabora-
tion. We conducted a user study with 12 moderately skilled game development university
students who were placed in groups of two and engaged in joint fixed behavior tree
development tasks using the synchronous and asynchronous modes and auxiliary features
of live preview, access and restoration of previous states from behavior tree history,
conflict resolution, and instant messaging. Participants also completed a control task
where no collaboration was involved and auxiliary features were not available. Feedback
form Creativity Support Index, a self-developed questionnaire, and a semi-structured
interview were collected. Additionally, task completion times were logged. The results
indicate that the two collaborative modes provide expected improvement over the control
condition. No significant differences were found between the two collaborative modes.
However, the semi-structed interview revealed that the synchronous mode could be useful
for quick prototyping, while the asynchronous mode – for most other situations.

Keywords Behavior tree . Collaboration . GameAI . Game development . Unity engine

https://doi.org/10.1007/s11042-022-12307-2

* Loutfouz Zaman
loutfouz.zaman@ontariotechu.ca

Md. Yousuf Hossain
yousuffahim8@gmail.com

1 Ontario Tech University, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada

Published online: 13 April 2022

Multimedia Tools and Applications (2023) 82:4671–4708

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12307-2&domain=pdf
http://orcid.org/0000-0003-4966-8899
mailto:loutfouz.zaman@ontariotechu.ca

1 Introduction

Today video game development is a collective process in which a variety of profes-
sionals from different backgrounds, such as game designers, programmers, QA special-
ists, come together and collaborate on a common task by constantly communicating with
each other. Solutions for the support of distributed collaboration such as project man-
agement [3, 56, 59, 69], version control [28], instant messaging [17, 66], and video
conferencing [32, 77] currently facilitate this. Being stand-alone, these systems are not
aligned with the programming environment, which may result in either substantial
distraction or their underuse due to flow interruption.

People are inherently social, requiring to collaborate, coordinate, and communicate with
each other, and the diverse range of applications has emerged to enable them to do so in
extensive and diverse ways [65]. People often learn effectively when collaborating together, in
particular with the help of technology [65]. Pair programming is an agile technique in which
two developers work together on the same code or project. Pair programming was found
beneficial for teaching and engaging learners, see e.g., [67, 78]. Arguably there may exist an
increased and urgent need for tools that support collaboration during the pandemic, when the
only option to learn for many remains through distance learning. While work has been done
for code-based programming, visual pair programming in comparison has not received as
much attention for collaboration to this day.

A visual programming language is a programming language [44, 64] where the users create
programs by manipulating program elements graphically rather than by writing textual code
[42]. Due to its simplicity of use and low learning curve, visual programming has gained
popularity among non-programmers for developing game AI [43]. Using node-based pro-
gramming, applications are developed by connecting “blocks” of self-contained code. Node-
based and other visual programming interfaces have become commonplace in popular game
development environments such as Unreal Engine [75] and Unity [74], as they facilitate and
expedite prototyping and development. Both Unreal and Unity have native support for visual
scripting through Unreal Blueprints [7] and Unity’s recently acquired Bolt [8]). Collaborative
options in these tools are also available. Work has been done on collaboration for source code
[39, 41, 67], and more recently, for visual programming in education with Blockly [76].
However, to the best of our knowledge, currently there is no collaborative environment
available for behavior trees. In our work we aim to demonstrate that a collaborative visual
programming environment for developing game AI using behavior trees is a viable approach.

A behavior tree (BT) is a graphical modeling language to model artificial intelligence (AI)
in video games and visual simulators. Although other game AI technologies currently exist,
such as Utility AI [60] for implementing complex non-player character (NPC) behavior, BTs
today remain popular and continue to be included in game engines such as, e.g., Unreal
Engine [75]. Due to their simplicity of use, BTs make developing game and simulation AI
accessible even to non-programmers [43], which is arguably one of the main reasons behind
their continuing popularity. Furthermore, BTs are recommended if some game designers are
not programmers, the conditions governing the behavior are complex, and the NPCs have
aspects of behavior in common [46].

In our work, we focus specifically on the development process of collaborative gameAI using
behavior trees, as we believe it can help to close the gap between the programmers and non-
programmers through the use of visual pair programming and also to facilitate distance learning.
As our work will demonstrate this also has a potential to facilitate the process of prototyping.

4672 Multimedia Tools and Applications (2023) 82:4671–4708

As a solution, we built NCCollab (NodeCanvas Collaboration), which is an extension to
NodeCanvas [51] – a visual behavior authoring framework for Unity (Unity Technologies,
[74]), which enables developers to create advanced AI behaviors and logic. NCCollab
facilitates collaborative visual programming of game AI between multiple developers.
NCCollab supports two modes of collaboration: synchronous and asynchronous. In the
synchronous mode, multiple users work on the same BT, where the changes are merged
between these users in real time. In the asynchronous mode, multiple users can work on the
same or different BT and they can merge their changes with other users’ changes whenever
they are ready. NCCollab is an extension to NodeCanvas.

The aim of our work is to investigate if collaboration can be done with behavior trees. In
doing so we used HCI research methodology, which included requirements gathering, imple-
mentation and validation in a mixed-methods user study. More specifically, we wanted to
answer the following research question: how can programming environments for behavior
trees be improved with collaboration features for synchronous and asynchronous pair
programming? Specifically, we were interested in this question in the context of game
development education, as this is where we believe most of the use cases for this work will
be, similar to the example described above [76]. To address the research question, we created
NCCollab – a node-based behavior authoring framework to create BTs, which features:

& synchronous and asynchronous collaboration modes;
& live preview of other collaborators’ BT alternatives;
& BT history, which allows restoring previous states from history;
& a semi-automatic conflict resolution interface to resolve conflicts that may arise during

collaboration;
& a one-to-many difference visualization for showing differences between collaborators’ BT

alternatives;
& an instant messaging system for collaboration.

We then conducted a user study with participants who were sampled mainly from undergrad-
uate and graduate students in game development, who using fixed tasks, compared synchro-
nous and asynchronous collaboration to a control condition with no collaboration.

2 Related work

2.1 Collaboration in programming environments

The use of collaboration is a well-established practice in a variety of fields, including node-
based programming. Collabode [30] – a web-based Java integrated development environment
designed to support close, synchronous collaboration between multiple programmers.
Goldman et al. examined the problem of collaborative coding in the context of program
compilation errors introduced by other users which make collaboration more difficult and
describe an algorithm for error mediated integration of program code. They evaluated this
collaboration algorithm and interface on recorded data from previous pilot experiments with
Collabode, and via a user study with student and professional programmers. They found that
Collabode offers appreciable benefits over naïve continuous synchronization without regard to
errors and over manual version control. NCCollab does not directly stop errors from happening

4673Multimedia Tools and Applications (2023) 82:4671–4708

and does not try to solve them. However, NCCollab makes sure if there is an error in the tree,
the updates are not sent to the server to prevent other users from becoming affected by the
error. Jimbo [67] is a collaborative IDE with live preview for facilitating distance learning of
programming. Jimbo integrates text chat, audio discussion, inline discussion and live preview
of programming to support better collaboration and communication, bridge gaps and develop
mutual understanding between designers and developers. Jimbo lacks a formal study to test the
collaborative features in a real scenario. To facilitate better communications, NCCollab also
aims to facilitate this for game developers through the use of instant messaging, live preview of
other users’ BT, restoring BTs from history, conflict resolution, and by repurposing vanilla
NodeCanvas features, such as inline commenting through node comments and creating canvas
groups. Besides, NCCollab was formally evaluated with a control condition using fixed tasks.
AMOEBA [6]– a tool to support the instrumentation of communication between novice
programmers in non-traditional programming environments. Traditional programming ap-
proaches involve a programmer working individually manipulating a single piece of code.
However, AMOEBA was developed and utilized to facilitate collaboration in a learning
scenario. A formal study [6] was conducted in a classroom setting between inexperienced
middle school and high school programmers using the Intelligent Programming (IPRO)
framework. A collaborative programming environment [53] was introduced where two pro-
grammers working jointly on the same algorithm and code. Nosek et al. performed a
comparative study, which found that student programmers working collaboratively
outperformed individual programmers for aspects of performance, which included readability,
functionality, and time and satisfaction (as confidence and enjoyment). A novel Any-Time
Collaborative Programming Environment (ATCoPE) [23] was introduced to combine tradi-
tional non-real-time collaborative programming tools and environments seamlessly with
emerging collaborative real-time programming techniques. ATCoPE enables collaborative
programmers to work in software development scenarios and move flexibly according to their
needs between different collaboration modes. Fan et al. have proposed a functional design for
ATCoPE. However, although they validated the feasibility performance evaluation, they did
not implement the system and did not run a formal user study. Examples in education include
Blockly [76] and Scratch [64], which use visual programming for collaborative developing
interactive 2D applications.

The works above feature both synchronous and asynchronous collaborative systems for
code-based programming. As a result, visual programming specific techniques for supporting
collaboration are not present in these works. NCCollab, in contrast, features access to the
history, the ability to revert to previous states, or graphical difference visualizations between
collaborators’ digital works. NCCollab also offers a conflict resolution for solving conflicts
during collaboration. This is quite different from traditional programming languages, which
are text-based unlike NCCollab. Although underneath the tree-based structure there is Json file
to store all the information for the BT, the users never interact with that Json file directly. Since
the traditional conflict resolutions algorithms are built for code-based programming languages,
there is very little to no use of them in regard to a visual scripting, such as NCCollab.

2.2 Collaboration in non-programming environments

Research on collaboration is an extensive field. Here, we will only focus on works that support
virtual/remote collaboration. The goal of NCCollab is to support collaborative game AI
authoring in the style of cloud-based services such as Google Docs (Google Docs [31]),

4674 Multimedia Tools and Applications (2023) 82:4671–4708

Microsoft OneDrive [47], Git [28], Expat Software Twiddla [72], Nulab (Online Collabora-
tion Tools for Modern Teams [54]), and Cacoo (Online Diagram and Flowchart Software |
[55]) because these are the common platforms used for collaboration. These platforms allow
addition of files in Git, text in Google Docs and OneDrive, and shapes in Twiddla and Cacco
from multiple users with no conflicts or warnings.

Table 1 presents a comparison between these collaborative tools for operations such as
addition, deletion and updating. Flowchart or text-based tools such as Twiddla, Nulab, and
Cacoo allow a user to delete or update another user’s file without warning. However, version
control systems such as Git always ensures a user does not delete or modify a file belonging to
another user by mistake. For example, a user has pushed their modified file to a remote server
while other users are still modifying the previous version of the file before the first user pushes
changes. In this case, these other users have inconsistent versions of the file compared to the
remote server’s version. Now, if they try to push their versions, Git will not allow this to
prevent conflicts. In NCCollab only addition of nodes is allowed without warnings but, when
it comes to deletion or updating, the user needs to solve every conflict to merge with another
user’s BT. Also, in NCCollab, similar to Git, if the user deletes or makes changes that they are
not satisfied with during collaboration, there is an option to restore a previous version of the
BT from the history.

2.3 Collaboration in game development

LevelMerge [62] is a collaborative game level editing tool that supports editing scenes
and behavior scripts in Unity by merging labeled graphs. Using LevelMerge, level
designers can be designing the game scene, artists can be designing 3D models or its
materials, while programmers can work on the scripts at the same time. The system,
however, has not been formally evaluated. In contrast, NCCollab focuses on a more
specific aspect of game development collaboration which is developing game AI.
Similar to LevelMerge [62], the intrinsic hierarchical structure, graphs are commonly
used to represent game levels. XML3DRepo [19] is an optimized API for game scenes
with versioning and encoding all the objects and assets into a unified game scene
graph. The system has been evaluated on the basis of the cumulative CPU decoding

Table 1 A comparison of collaborative tools for common operations

Operations Google Doc
(Sync)

OneDrive
(Async)

Git (Async) Twiddla
(Sync)

Cacoo (Sync)

Add in a different
Paragraph (Text)/
Branch (Tree)/ Shape
(Diagram)

No warning No warning No warning No warning No warning

Add in the same
Paragraph (Text)/
Branch (Tree)/ Shape
(Diagram)

No warning Paragraph
locked while
editing.

No warning No warning Wait until shape
completed, No
warning

Update/Overwrite No warning Paragraph locked
while editing.

Warning to
manually
fix conflict

No warning Wait until shape
completed, No
warning

Delete No warning Paragraph locked
while editing.

Force Delete No warning No warning

4675Multimedia Tools and Applications (2023) 82:4671–4708

time and the overall download time for a variety of 3D models. The system was
evaluated by the authors but not research participants.

The industry and academic tools mentioned here allow collaboration between users of
different backgrounds. NCCollabwas designed to support collaboration between programmers
or AI designers only. NCCollab can also facilitate collaboration between programmers and
non-programmers, since one of the key benefits of visual scripting tools is that it can be
understood by users with limited programming experience.

2.4 Communication features in collaborative tools

The integration of communication features into collaborative tools can help collabo-
rators discuss and resolve issues without losing focus on the code [67]. For collab-
orative environments, built-in instant messaging is found to be effective, see e.g., [39,
63, 67].

NCCollab offers a built-in instant messaging system where collaborators can leave notes or
ask for each other’s help. NCCollab follows the “continuous coordination” model introduced
by van der Hoek et al. [41] where a system needs to notify the developers of events relevant to
them.

2.5 Versioning

NCCollab implements branching, diffing and selective merging for BTs, which are the
features commonly associated with version control. Traditionally these techniques
have been used for source code and text but, more recently, they have been adapted
for more sophisticated types of data. Methods that utilize recording of editing oper-
ations have been introduced for 2D images [13] and 3D models [15]. In contrast, a
method [12] was introduced that uses the results of editing operations for 3D scenes.
Earlier examples include works by Dobos et al. [18–21]. All these works, however,
are orthogonal to our work, since we focus on interfaces for AI asset creation. In
contrast, LevelMerge [62] is a collaborative environment for level editing that supports
editing of scenes and behavior scripts in Unity, which also supports diffing and
merging. Branching, merging, history for node-based generative design has been
introduced in GEM-NI [81]. All except merging have been found useful in the
evaluation. To the best of our knowledge, we are the first to study some of these
versioning interfaces on game AI asset creation interfaces.

2.6 Difference visualizations of graphs and trees

Different representation techniques for a single tree, trees in pair and multi-tree visualization
have been previously surveyed [33]. Furthermore, a general taxonomy of visual designs that
can be used for comparison of three basic categories of trees has been proposed [29]. In these
two works the following common techniques were identified: juxtaposition (e.g., [49]),
overlay (e.g., [16, 79]), explicit codes (e.g., [80]), animation ([11, 40], matrix, agglomeration
and edge drawing.

Side-by-side views is a technique related to our variant of one-to-many diffing. Examples
of this technique include DualNet [50], which visualizes sub-networks of node-link diagrams
with side-by-side views. TreeJuxtaposer [49] compares large trees with side-by-side views.

4676 Multimedia Tools and Applications (2023) 82:4671–4708

TreeVersity [34–37] shows changes in topology and node values by using glyphs that pre-
attentively highlight changes. TreeVersity also highlights new and deleted nodes. A new
technique for comparing multiple hierarchies on global and local structures for use in biology
has been introduced [9]. This work is orthogonal since it targets trees that are significantly
more complex than behavior trees. Moreover, our trees encode priority information, which
cannot be captured using this approach.MACE [80] is an interface for comparing two or more
generative node-based model alternatives using a one-to-many diffing interface. In this work,
two types of encodings were introduced for diffing in the model viewer and both were found
effective.

Table 2 summarizes the works that influenced the diffing techniques implemented in
NCCollab. In NCCollab, we employ explicit codes, a variant of change highlights, juxtapo-
sition and a variant of overlay for showing deleted nodes. NCCollab also builds on the additive
encoding and a one-to-many diffing technique of MACE [80], by introducing an additional
encoding for priority change, which is unique to BTs. The user can compare their BT with that
of the collaborator using a variant of side views. NCCollab uses the top-down layout as it is an
easier layout for visualizing common BT systems in game development tools, such as Unreal
Engine’s Behavior Trees [5], Behavior Designer [4], etc. It is also important to note that the
work behind NCCollab is related to the concept of a modeling language. A significant body of
work has been done in the area of model-driven engineering. This includes collaborative
modeling [61], model differencing, patching and merging tools [1, 45].

3 NODECANVAS collaboration

Here we present NCCollab (NodeCanvas Collaboration) – an extension to NodeCanvas that
supports collaboration between game developers so that they can improve the adaptation of
unplanned challenges and help co-developers when they are stuck. The development of
NCCollab was preceded by requirements gathering from self-identified practicing game
developers on online forums. This helped us to arrive at major design decisions. This is
presented below and followed by the system description using worked examples.

3.1 Pre-development requirements gathering

Before development on NCCollab started, we wanted to solicit data for our requirements from
potential future users. We posted a list of questions online on Unity Forum [73], GameDev
Forum [26], Dream.in.code [58], TIGForums [52, 71]. The list consisted of the following
questions:

1. Which tool or resources do you use while developing games collaboratively?

Table 2 Relevant diffing techniques in NCCollab

Explicit codes Overlay Juxtaposition

Works [80] [16,79] [49] [50] [36] [37] [35] [34] [80]
NCCollab additive encoding, priority change deleted nodes side views to compare BTs between

collaborators, one-to-many diffing

4677Multimedia Tools and Applications (2023) 82:4671–4708

2. Do you think that using collaboration features in a visual scripting tool (such as Unreal
Blueprints, Playmaker, Bolt, NodeCanvas) for game development would benefit you
during game development? If so, could you please explain how?

3. Tracking history allows access to previous states quickly. Do you think having this feature
while developing games collaboratively using a visual scripting tool would be useful?
Why? If so, then how?

4. Do you think the ability to perform collaborative game development in real-time using a
visual scripting tool would be useful (e.g., real-time collaborative editing in Google
Docs)? If so, then how? Or do you think asynchronous collaborative visual scripting
would be more useful? Why?

3.2 Results of pre-development requirements gathering

In total, we managed to solicit data from a total of eight respondents online. The findings were
as follows:

3.2.1 Question 1

All the solicited respondents stated that for collaborative development they used Git. This
included also those who had experience with only scripting languages.

3.2.2 Question 2

One respondent stated: ‘Providing an easy-to-understand form of scripting for 2+
users to work within real-time is already a step up from what Unreal Blueprint
system provides (no merging, local only). Such a tool would make working with a
non-programmer much easier and debugging projects as a group becomes much more
streamlined’. Another respondent stated: ‘collaboration will be helpful in scenarios
where I am working with another team member – such as an artist or designer – who
is not as well-versed in the game’s code. In cases like this, being able to edit the
script together can be helpful. With everything being online right now, collaborative
tools can be very helpful to communicate across development teams’. Two other
respondents mentioned that it will be useful for prototyping ideas with other people,
instead of being stuck in an echo chamber where they are on their own and unsure of
what decisions to make.

3.2.3 Question 3

One respondent stated: ‘Tracking history would be extremely helpful for bug checking
for example, if you have a previous working version you can easily backtrack to that
working version’. Besides, three respondents expressed that they were confused an
alternative history tracking mechanism is needed, as according to them, Git’s history
already does the work. We tried to address this by designing BT history in such a
way so that it keeps track of all the changes of the BT while Git’s history tracks
changes for every push to the server. Also, BT history keeps track of changes
automatically without interfering with the development flow, while with Git’s history

4678 Multimedia Tools and Applications (2023) 82:4671–4708

explicit pushes need to be initiated by the user who decides which significant events
need to go on record. While this offers more customization of history, Git’s process is
arguably more interrupting to the development flow.

3.2.4 Question 4

7 of 8 respondents replied to this from a point of view of text-based programming. One
respondent stated they always prefer the asynchronous mode for text-based programming but
would like to try the synchronous mode for visual scripting. Another respondent stated that
‘Synchronous mode would be nice for fast prototyping because two participants can put some
concrete idea really fast’. Yet another respondent stated that it would be beneficial to make sure
there are no compilation errors before syncing with other users – somethingGit, being language
and syntax neutral, does not inherently support. This feature was implemented in NCCollab.

3.2.5 Summary and implications for interaction design in NCCollab

The responses we received helped us to expand our initial thoughts on a collaborative visual
environment for behavioral NPC animations.

From the responses to the first question, we identified that Git is used by the programmers
for collaboration. Although this is a common knowledge, while developing NCCollab, we
tried not to significantly deviate from how Git is used in collaboration.

From the responses to Question 2, we identified use case scenarios for NCCollab. Among
these is a situation where an artist or designer who are not proficient in programming could
edit the scripts together.

From the responses to Question 3, we identified that BT history which allows access to
previous states of BTs is different from traditional Git history. This is because history tracking
in NCCollab is more non-intrusive compared to Git, since Git users need to push the code to
the server to keep track of history. In contrast, NCCollab does this in the background without
interfering with the flow of BT development.

From the responses to Question 4, we identified that both synchronous and asynchronous
collaboration could be useful. We also identified that the preference will vary between
different users and use cases. As a result, both modes were implemented in NCCollab and
later evaluated in a user study described below.

3.3 Introduction of NodeCanvas collaboration

Here we presentNCCollab (NodeCanvas Collaboration) – an extension toNodeCanvas that supports
collaboration between game developers so that they can improve the adaptation of unplanned
challenges and help co-developers when they are stuck. In NCCollab, developers can collaborate
both synchronously and asynchronously while working on BTs. In order to add collaboration features
to a visual programming environment, we need to achieve two goals by identifying:

1. The concepts that need to be conveyed in these channels,
2. The UIs to use to implement these features?

To achieve the first goal, we have drawn on several concepts from the previous work and applied
them to visual programming. As a result, the following forms of interactions were implemented:

4679Multimedia Tools and Applications (2023) 82:4671–4708

a) two types of collaboration (synchronous and asynchronous);
b) a live preview of other collaborators’ BTs and a build-in text messaging option to chat

with other collaborators;
c) ability to track and restore BTs from history;
d) conflict resolution.

To achieve the goal, we strived to keep the balance between delivering a variety of function-
alities and not overwhelming the user with complex interaction, since this would defeat the
purpose of using visual programming in the first place. To accomplish this, we aligned
implementing all the auxiliary features with collaboration, which was the focus in the
development of NCCollab. NCCollab was developed on top of NodeCanvas by modifying
the source code of NodeCanvas [52]. On the server side, NCCollab uses Google Firebase [25].
As a result, there could be a practical limit on the number of collaborators working at the same
time due to the limit on the number of responses to the API requests at a time but we do not
foresee this to happen often with normal use. Moreover, NCCollab makes sure that it does not
sync with the other user’s BT if there is an error in the BT or game source code.

3.3.1 Support for alternatives

NCCollab supports collaborative exploration of multiple BT alternatives. However, we chose
not to evaluate this feature in our user study as it is beyond the scope of the research goals we
set for this work. The support for alternatives we implemented in NodeCanvas and their
evaluation is to be described in a separate publication. However, references to this feature will
appear in this work due to its tight integration with NCCollab.

3.4 Asynchronous collaboration

In NCCollab, the user can collaborate with others asynchronously. In this mode, the users
work on their own BT. At any time, if desired, they can sync with another collaborator’s BT.
This is done by clicking on the “Sync” button in the NCCollab toolbar. See, e.g., Fig. 5. The
user has the option to work on the same BT, a BT alternative of the same game object, or a
different game object altogether.

When our version of NodeCanvas is launched NCCollab is inactive by default. To enable
asynchronous collaboration, the user must check the “Asynchronous Collaboration Mode”
under the “Prefs” tab as shown in Fig. 1.

When the user enables asynchronous collaboration, NCCollab starts sending all the recent
BT data (listed below) to the Google Firebase real-time database. The data is saved as a JSON
file in the Google Firebase. To simplify storage in the database and minimize the number of
API requests, three pieces of data are transmitted to the server, which are:

& the current BT JSON file that is hosted in the canvas allowing other users to sync their BTswith;
& a JSON file that consists of a unique ID (AltId) for all the nodes that have been created by

the users to keep track of which nodes were created by which users, and
& a Boolean variable that sends an update to other users that there has been a change made

on this BT or its alternative (if there are multiple of them) by a specific user.

4680 Multimedia Tools and Applications (2023) 82:4671–4708

A fundamental requirement to support collaboration is awareness. Dourish and Belloti define
awareness as ‘an understanding of the activities of others that provides a context for your own
activity’ [22]. To support the requirement for awareness in a collaborative system, it needs to
provide information about development activities or to notify developers of events relevant to
them, such as tree changes, comments, etc. To notify about the changes made in a BT,
NCCollab uses a refresh icon appearing to the right of the alternative’s name in the BT selector
window (Fig. 2). When the users hover their mouse above the alternative’s name or the update
icon, they can see who has updated the BT as the name of the user appears in the tooltip.

Imagine, two game developers John and Sarah, are trying to create an AI behavior for a
game object named TurtleShell in a game jam working from home. Figure 3 shows TurtleShell
in the game scene chasing the player. The corresponding BT is at the bottom. The BT Selector
panel is on the bottom left. John and Sarah have an overall idea that their AI character will
have three states patrolling, attacking, and fleeing. They decided that John will be working on
the patrolling state and Sarah will be working the attacking and fleeing states.

John starts working on the patrolling state. In his vision, the AI character moves from one
position to another and after arriving at each position the character rests for 2 s. To perform
these actions, John creates a selector node, a binary selector node (IF CAN SEE $PLAYER), a
sequencer node, and four action nodes. John then assigns necessary tasks to the nodes as

Fig. 1 Enabling Asynchronous
Collaboration Mode in the Prefs
tab menu

Fig. 2 BT Selector Window with
Update Icon

4681Multimedia Tools and Applications (2023) 82:4671–4708

shown in Fig. 4(a). NCCollab sends the BT data to the cloud every time an update has been
made by John except for if there is an error in the game. Since Sarah is also using NCCollab in
the asynchronous mode, these changes will not be automatically applied to her BT. However,

Fig. 3 Overview of the NCCollab interface

Fig. 4 BT of the TurtleShell AI Character: (a) John’s, (b) Sarah’s

4682 Multimedia Tools and Applications (2023) 82:4671–4708

she can see in the BT selector panel that an update has been made by John and she can also
check the live preview of John’s BT in another canvas, which is discussed below.

At the same time, Sarah is also working on the attacking and fleeing states in the TurtleShell
(AI character) BT. In the attacking state, the AI character starts chasing the player. If the AI
character reaches the player, the AI character engages in an attack for 15 s. After that, the AI
character changes its state to fleeing. In the fleeing state, the AI character wanders around for
15 s. Then the AI character changes its state to patrolling. To perform these actions, Sarah
creates a selector node, two timeout nodes, two action nodes, and assigns necessary tasks to the
nodes as shown in Fig. 4(b). After finishing the work, Sarah decides to sync her BT with
John’s. She clicks on the Sync button from the canvas toolbar (Fig. 5). Now, NCCollab
automatically syncs Sarah’s BT with John’s. The newly added nodes after syncing are
highlighted using a purple outline as shown in Fig. 5. Highlighting allows the user to identify
the changes after syncing.

3.5 Synchronous collaboration

In NCCollab, the users can also collaborate with other users synchronously. The mode is
called synchronous due to the fact that multiple users can work on the same BT at the same
time. In synchronous collaboration, each user has the whole working tree locally stored. This
allows them to work independently. The network is used to transfer only user-to-user changes.
Another reason for storing the trees locally is to prevent users from deleting someone else’s
nodes to prevent potential errors. If one user deletes, moves or changes nodes, the other users
can see them in the collaboration conflicts window (discussed below). To enable synchronous
mode, the user needs to check the “Synchronized Collaboration Mode” button in the “Prefs”
tab menu (Fig. 1).

Imagine John and Sarah are creating another AI behavior for a game object called Slime in a
game development jam working from home. Similar to TurtleShell (Fig. 3), Slime also chases
the player. They have an overall idea about what their AI character should be. Like earlier, this

Fig. 5 Sarah’s TurtleShell BT after syncing with John’s BT

4683Multimedia Tools and Applications (2023) 82:4671–4708

AI character has the same distinct states: patrolling, attacking and fleeing. However, how the
AI character changes its state is different from before as follows:

1. If the guard (Slime) sees the player, the guard attacks.
2. If the guarded character (Beholder) is asking for help, the guard attacks.
3. If the guard is attacking but no longer seeing the opponent, the guard goes back to patrolling.
4. If the guard is attacking but is badly hurt, the guard starts fleeing to its home position to

regain its full health.

In Fig. 6, a white rectangular outline and user’s name are used to differentiate the nodes that
were added by John and Sarah (Note: they do not actually appear in theNCCollabUI, we added
them to the figure help understand the example better). John first starts with the third condition
from the above. To perform these actions, he adds a selector node (→), an interrupt node, an
action node and assigns all the necessary tasks to these nodes (Fig. 6). In the synchronous mode,
all these nodes automatically appear on Sarah’s canvas in real time. Sarah starts working on the
attacking part of the fourth condition mentioned above. To perform this action, she adds a
timeout node. Doing so results in it appearing on John’s canvas in real time. Furthermore, Sarah
adds a binary selector node (IF $HEALTH >5), two action nodes (IN SEQUENCE. SEEK PLAYER.
$HEALTH − =1 PER SECOND .OWNER.PLAYERDAMAGE() and In Sequence. Seek $Home. $Health =
10). See the “Sarah” group in Fig. 6. While this is being done, John is also working on the third
branch of this BT (see the “John” group on the right in Fig. 6) where he completes the second
condition from the list above. When everything is done, the resultant BT appears in Fig. 6.

Sarah then decides to make some changes in the patrolling state to enable walking and idle
animations. So, she deletes the action node (IN SEQUENCE, SEEK $POS1, SEEK, WAIT 2 S, $POS2,
WAIT 2 S). In its place, Sarah adds a sequencer node and four action nodes and assigns
necessary action tasks to them as shown using a highlighted white outline with the letter
“Sarah” in Fig. 7. Sarah could make changes to her BT. However, these changes do not affect
John’s BT because NCCollab was not designed to allow deletion of other users’ nodes. This
was implemented to prevent potential loss of important work of other users (only added nodes
appear in other users’ BTs). John can see these changes in the collaboration conflicts window
and the difference visualization view (both discussed below). If John is not happy with the

Fig. 6 Resultant Slime BT after syncing John and Sarah

4684 Multimedia Tools and Applications (2023) 82:4671–4708

changes, he can use the “BT history” window (discussed below) and restore from previous
states of the nodes from the history.

3.6 Live preview of BT canvas

Live programming is a technique where programmers re-execute a program continuously
while editing [68]. Live preview is a variation of this technique that refreshes the output
immediately upon a change to the code, and it is ideally suited for UI-heavy application
development such as visual programming. In a visual programming environment, this provides
an immediate connection between the program’s logic and the output for the developers so
they can see the effects of changes to their tree or node in real time. This feature leads to fewer
iterations of the AI development cycle and expedites the development process overall.

NCCollab provides a live preview of other collaborators’ BTs in another canvas (Fig. 8).
Using our worked example, John is the remote user. In Fig. 8 John’s BT appears on top and its

Fig. 7 Sarah’s Slime BT after enabling walking and idle animation

Fig. 8 A live preview of John’s BT of the TurtleShell AI character from the perspective of the collaborator

4685Multimedia Tools and Applications (2023) 82:4671–4708

background is shaded in dark green to distinguish it from the local version. The collaborator’s
(Sarah’s) own version of the BT appears at the bottom and shows the state when the first part
of the BT was complete. The game scene appears in the middle. The panels can be re-arranged
in any way the user desires. The game scene always shows the behavior of the local BT (the
one the bottom). In this example, John has created a functioning BT, while the collaborator has
not started on their BT yet.

Live preview helps the user to have a clear idea of what the other collaborators are working
on. This also allows the user to guide other collaborators who are stuck by showing a live
preview of their own BT. A live preview of John’s TurtleShell BT is shown in Fig. 9. To open
this live preview, the user needs to click on “BT Live Preview” from the main canvas toolbar
(Fig. 5). By default, when the user opens the BT live preview, NCCollab automatically re-
focuses on the center of the whole graph. This has been done by constructing a rectangle that
encapsulates all the positions of the nodes. The rectangle consists of the following points:
xMin, xMax, yMin, and yMax. Here, the position of the left most node is xMin, while the
position of the right most node is xMax. Similarly, yMin is the position of the lowest node and
yMax is the position of the top most node in the canvas. This calculation will be only applied
when opening live preview window. After that, the user can move to any part of the tree by
holding the left button of the mouse. The background of the canvas color appears green instead
of grey to allow the user better differentiate live preview from their working canvas. NCCollab
shows the user’s name, AI character’s name and the name of the BT alternative on the top left
of the live preview to give a clear idea about the opened BT. The live preview shows what
John’s canvas looks like in real time except for the zoom and pane of the graph and the
positions of the nodes. Since the users can resize the live preview window, changing zoom and
pan can be necessary depending on the size of the window.

Fig. 9 Live Preview of John’s BT of the TurtleShell AI Character

4686 Multimedia Tools and Applications (2023) 82:4671–4708

3.7 Conflict resolution

In NCCollab, conflicts can arise when multiple users modify the properties of the same node or
when operations are applied by one user on a node which was deleted by another user or in a
situation when a user adds nodes that were never added by another user (only applicable for
asynchronous collaboration). In these situations, the user can resolve the conflicts manually,
similar to how it is done in version control systems like Git [28]. To see the conflicts the user
needs to click on the Conflict Resolution GUI button from the NCCollab toolbar as shown in
Fig. 5. A conflict resolution window then appears where the information is displayed about the
type of conflict, who it was caused by, the timestamp, and the details. See Fig. 13.

Imagine, John and Sarah, are creating another AI behavior for a game object named
Beholder in a game development jam while working from home. Beholder is guarded by Slime
that was described earlier (see Section 3.5 above). Beholder has three states based on its health:

1. Idle State: Beholder remains in the idle state when its HEALTH >5. If the player attacks the
Beholder, it asks for help from Slime.

2. Dizzy state: Beholder stays in the dizzy state when the HEALTH <= 5, and it flees away.
3. Dead State: If the health of Beholder is below 0, it dies.

Suppose, John has completed developing all three states of Beholder’s BT (Fig. 10). When
Sarah syncs with John’s BT only the left branch was completed, so she does not have access to
the entire BT of Beholder. Sarah’s Beholder BT is shown in Fig. 11. After that, Sarah deleted
one action node ($LIFE + = .5 PER SECOND. MEC.SETTRIGGER “IDLE”) from the left branch (white
rectangle in Fig. 11) and replaced it with another action node ($LIFE + = .5 PER SECOND SEEK
POS1. SEEK HOME) as shown in the white rectangle in Fig. 12. To see if there is a conflict, John
opens the “Collaboration Conflicts” window as shown in Fig. 13. He finds out that two binary
selectors nodes, two action nodes, one condition evaluator node (white rectangle in Fig. 10)

Fig. 10 John’s Beholder BT with both states completed

4687Multimedia Tools and Applications (2023) 82:4671–4708

Fig. 11 Sarah’s Beholder BT with John’s left branch only

Fig. 12 Sarah’s Beholder BT with added (green rectangle) and replaced (white rectangle) node

4688 Multimedia Tools and Applications (2023) 82:4671–4708

have not been added by Sarah and one action node (IN SEQUENCE $LIFE = −1 PER SECOND
MAC.SETTRIGGER “IDLE”) has been deleted by Sarah and replaced with another action node
(white rectangle in Fig. 12).

NCCollab uses a red and green rectangular outline to highlight nodes in the canvas that are
involved in a conflict. E.g., to highlight a conflict in the BT, a user needs to right-click on a
conflict and select “Ping”. NCCollab then focuses on that node, highlights it using a red
rectangular outline and flickers at a rate of 4 Hz between red and green for 2 s (Fig. 14) to get
the attention of the user.

NCCollab offers partially automatic collaboration conflict resolution. It is partially automat-
ic because the users do not need to manually modify or delete a node. We call it partial because
the users need to choose manually which conflict they want to solve and automatic because they
can select “Perform” to automatically resolve the selected conflicts. For example, in Fig. 10 the
prime node of John’s Beholder BT is “IF $LIFE > 5” and in Fig. 12 Sarah modified the prime
node to “IF $LIFE > 6”. So, to modify John’s Beholder BT prime node, he needs to click on the
“Perform” button as shown in Fig. 15.NCCollab cannot resolve “Not Added” conflicts because
one user cannot add nodes on another user’s canvas. Although if the users do not want to see the
Not Added conflicts, they can delete those conflicts from the list. To delete a conflict from the
list of collaboration conflicts, the user needs to right click on a conflict from the list and click the
“Delete” button in Fig. 15. This will only remove that particular conflict from the list, the
conflict will still remain there in the BT but the user does not see it in the list.

3.8 Difference visualizations of BTs

To show difference visualizations in the BT, we will use the same Beholder’s BT example that
we have discussed above (see Section 3.7). In that example, John completed both states of the

Fig. 13 John’s Collaboration Conflicts window using ping

Fig. 14 John’s pinged node using
Collaboration Conflicts window

4689Multimedia Tools and Applications (2023) 82:4671–4708

Beholder’s AI character (Fig. 10). However, when Sarah synced with John’s BT, only the left
branch was completed, therefore she did not have access to the entire BT of Beholder’s AI
character. Besides, Sarah deleted one action node from the left branch (white rectangle in
Fig. 11), added one empty action node (green rectangle in Fig. 12) to the rightmost branch of
the tree and modified the first binary selector node (IF $LIFE >6 in Fig. 12). Therefore, when
John compares his BT with Sarah’s in the BT difference visualizations, he discovers the
following differences listed below.

3.8.1 Not added nodes

As shown in Fig. 16, Sarah has six nodes (white rectangle in Fig. 10) relative to John’s
Beholder BT that were not added from before. A missing icon on top of the nodes and reduced
transparency informs the user that they have not added these nodes from before.

3.8.2 Deleted nodes

As shown in Fig. 16, Sarah has deleted one node (white rectangle in Fig. 11). A garbage bin
icon on top and highlighted as reduced transparency informs the user that they deleted the
nodes.

Fig. 15 John selects “Perform” in context sensitive menu in the Collaboration Conflicts window

Fig. 16 Difference visualization of the BT of Beholder AI Character with differences marked

4690 Multimedia Tools and Applications (2023) 82:4671–4708

3.8.3 Added nodes

As shown in Fig. 16, Sarah has added one empty action node. A “+” icon on top of the nodes
informs the user that these nodes were newly added relative to John’s Beholder BT.

Both deleted and not added nodes are visualized with reduced transparency using a
complementary shade of grey for the dark green background color of the live preview.
This approach of using reduced transparency was found to be effective in the previous
work [80].

3.8.4 Modified nodes

As shown in Fig. 16, Sarah has modified one Binary Selector node from $HEALTH >5 to
$HEALTH>6. A “≠” icon displaying on top of the nodes informs the user that these nodes were
modified relative to John’s Beholder BT.

3.9 BT history

The ability to restore from a previous state makes NCCollab a more complete versioning
system by allowing the users to look through their past work and select a particular state of a
BT. Previous states are accessible in NCCollab in the “BT History” window (Fig. 17a). BT
history contains all the previous states of the BT. BT history is updated each time the user
performs an operation on the BT. Whenever the user makes a change in the BT such as adding
a node or a task, deleting a node or a task, or modifying a node or a task, a new state of the BT
appears in the BT History (Fig. 17a). Figure 17b contains the final version 7 of the behavior
tree where a sequencer node and two action nodes have been added in the canvas. When the
user selects version 4 from BT History (Fig. 18a), version 4 appears in the canvas (Fig. 18b).
Version 4 contains a sequencer node and an action node with the “SEEK (0.0, 0.0, 0.0)”
assigned task. The user can use the BT History as a version control tool. BT history is stored in
a JSON file that contains a unique ID, an operation such as “Added Node Sequencer” or
“Added Task Wander”, and a filename of a JSON file that contains the entire BT of that
version.

Fig. 17 (a) BT History window (b) Version 7 opened in the canvas

4691Multimedia Tools and Applications (2023) 82:4671–4708

3.10 Hierarchical BT representation

In the BT History window, BTs are shown using a hierarchical view of the tree. This
hierarchical representation gives the user visual feedback in the BT History window without
the need to look at the canvas for the selected version of the BT every time a change is made.
NCCollab also helps to visualize a specific node or a connector from the hierarchy by
highlighting them in the BT. When the user moves the mouse cursor on top of a node or a
connector in the hierarchy, the node or a connect will flicker. In Fig. 17a, the user hovers the
mouse cursor above the action node in the hierarchy and in Fig. 17b, the same action node is
highlighted in green and flickers.

3.11 Instant messaging

NCCollab offers a built-in instant messaging system where collaborators can leave notes or ask
for each other’s help. E.g., John is trying to get an update of a BT from Sarah. To start the text
chat, John right-clicks on an empty area in the canvas to trigger the context sensitive menu and
clicks on “Send message to Sarah “from the list as shown in Fig. 19. Then, the chat box
appears (Fig. 20) for the recipient user. Through this chat box John and Sarah can send each
other instant text messages. Imagine, John sends Sarah the first message “Hi”, but Sarah does
not have this chat box open. She receives an instant notification update as shown in Fig. 21.

Fig. 18 (a) BT History window Version 4 selected (b) Version 4 hosted in the canvas

Fig. 19 Accessing the chat box

4692 Multimedia Tools and Applications (2023) 82:4671–4708

NCCollab notifies the developers of events relevant to them according the continuous
coordination model [41]. NCCollab sends an instant notification to the other user because
the recipient’s chat window was not open at that time.

4 User study

We performed a user study, the goals of which were to:

1. compare synchronous and synchronous modes in NCCollab against NodeCanvas (the
control condition where none of the collaboration support was available);

2. study the usability and usefulness of

a. BT history for restoring previous states of BT,
b. live view of the BT,
c. conflict resolution, and
d. integrated instant messaging;

3. investigate how different collaborative modes affect collaboration, exploration, confi-
dence, chance of future use; and

4. evaluate the overall process.

Fig. 20 Accessing the chat window

Fig. 21 Message notification window

4693Multimedia Tools and Applications (2023) 82:4671–4708

4.1 Participants

We recruited 12 paid participants (ten males, one female and one preferred not to disclose)
from relevant technical undergraduate and graduate programs and from among industry
professionals. All are familiar with a concept of game character’s AI as all of them had
experience creating at least a few games in the course of their studies or as professionals. The
participants’ backgrounds were game development and computer science. All the participants
were between 21 and 35 years old (M = 24.6, SD = 2.6) and had on average 17.3 years of
experience using a desktop/laptop computer (SD = 5.3, years). All participants had between 2
and 10 years of experience with Unity (M = 5.3, SD = 2.4). Six participants had on average
1.3 years (SD = 1.03) of experience with Unreal Engine. All participants on average had 2.1
(SD = 1.8) years of experience with at least one visual scripting system. Seven participants
previously worked with Unreal Engine Blueprints, three— with Blender Node Editor, two—
with Flow Canvas, two — with Nodebox, two — with NodeCanvas, one — with Maya, one
— with Blackmagic Fusion and one — with Nuke. Some participants also had experience
working with block-based system programming languages as follows: four — with Scratch,
two — with Blocky, two — with Snap!, one — with Alice, and one — with GML (Game
Maker Language). We also asked participants to rate their level of proficiency with general-
purpose programming languages, such as C, C++, C#, Java, Python, Kotlin, Go, Swift etc.
Three participants had average proficiency, six — above average, and another three —
professional level proficiency. Two participants took an AI course where they studied behavior
trees.

4.2 Apparatus

Since this study was performed online due to COVID-19 pandemic, the workstations and
monitors which participants used were a random variable.

4.3 Procedure

4.3.1 Tutorials and tasks

We designed three tasks for the study. One task was performed using NodeCanvas (NC),
which was the control condition. Another task was performed using the asynchronous mode in
NCCollab. The third task was performed using the synchronous mode in NCCollab. Partic-
ipants were given a Unity game project template that contained all the game objects and the
game scenes for all three tasks. Participants were asked to create an AI for three specific game
objects (Slime, TurtleShell, and Beholder). Each of the tasks was preceded by a written tutorial
where the corresponding task and template were thoroughly explained. For NC the tutorial
covered how to create these different types of nodes and connect them and how to write a
script for a node. For NCCollab the tutorial also covered how to use synchronous and
asynchronous versions of NCCollab, versioning of BTs through restoring from BT history
window, live BT window to see another participant’s canvas, solving conflicts in the behavior
tree, and sending text messages through the chat window. The participants were asked to
perform a warm-up task as shown in the tutorial so that they are comfortable to use the system
when they started the actual tasks.

4694 Multimedia Tools and Applications (2023) 82:4671–4708

For the actual tasks, participants were asked to create three behaviors for three game objects
in an RPG game. Having three different games for three different tasks would have been ideal,
but that would make the study too long as it would require more learning on the part of the
participants. So, we decided to use only one game. In NCCollab, the participants were only
told to use the synchronous or asynchronous modes for two tasks. However, we did not
impose the use of the auxiliary features: BT history, live BT window, conflict resolution, and
instant messaging. As a result, the participants had full freedom whether they wanted to use the
auxiliary features or not. Giving this freedom allowed us to investigate how and in which
scenarios the participants would use a certain auxiliary feature in NCCollab.

In the control condition (None), the participants were told to create an AI for the game object
offline, without the use of collaboration. This also meant they did not communicate with each other
and did not coordinate their work in any way. In this condition, they used the vanilla version of
NodeCanvas. The three tasks involved developing AI behaviors for three AI characters in a game.
The tasks were inspired by examples 1 and 2 provided by Richard Moss [48] and by following the
guidelines provided by Ben Sizer [70]. The tasks were similar to what we described in the worked
example with John and Sarah. All the AI characters’ BTs are shown in Figs. 5, 6, and 10. The
movement of the humanoid player character was pre-written where the character could:

& move in any direction by using the arrow or WASD keys on the keyboard;
& attack by pressing the left button of the mouse;
& rotate the camera around the player by holding the left mouse button, and
& zoom in and out by scrolling the mouse.

Participants needed to work on the AIs for Slime, TurtleShell, and Beholder. Three functions
for the AIs were pre-written in the script. These included playerdamage, SetCallforHelp, and
CheckCallforHelp. An empty BT was created for all three AI characters, so the participants
had to make their BTs from scratch.

4.3.2 Experimental design, Independent & Dependent Variables, and data collection

The study used a 6 × 3 mixed factorial design. See Table 3 for details.
To minimize the effect of a potential confounding variable of pairing certain tasks with

certain modes, the pairings were randomized without replacement according to Table 4.
Methodological triangulation provides multiple perspectives from different data gathering

techniques with the goal to validate the results, which has been advocated extensively in the
HCI practice, see e.g., [57, 65]. To comply with this practice, we collected data from two
questionnaires, data logging and a semi-structured qualitative interview.

Table 3 Independent variables and levels used in the study

Independent Variable Type Levels

Order Between-subject A. Sync→ Async→None;
B. Async→ Sync→ None;
C. None → Async→ Sync;
D. None → Sync→ Async;
E. Async → None → Sync;
F. Sync → None → Async.

Mode Within-subject None, Async, Sync

4695Multimedia Tools and Applications (2023) 82:4671–4708

Creativity Support Index (CSI) [14] is a quantitative psychometric survey that measures
how well creativity is supported by a tool. In this survey, participants rate six dimensions of
creativity support: Enjoyment, Exploration, Expressiveness, Immersion, Results Worth Effort,
and Collaboration. We used this survey to measure participants’ CSI scores for each mode
(None, Async, Sync). This survey is particularly well-suited for rating the extent of how well a
certain system supports collaboration. The CSI score was one of the dependent variables.

The CSI was inspired by and modeled after NASA-TLX [38]. Galy et al. [27] propose a
method of analyzing the gathered NASA-TLX data, which is to analyze the individual
subscales. Analogously, we analyzed individual weighted factor scores from the CSI survey
that we administrated. As a result, the weighted factor score was another dependent variable.

4.4 Quantitative results

4.4.1 Creativity support index

The breakdown of CSI results is shown in Table 5.
The main effect of Order was not significant, F(5,6) = .93, ns, indicating that

counterbalancing was successful. A Mauchly’s test for sphericity revealed that sphericity was

Table 4 Randomization of task and mode pairings between participants

Participant # Task 1 Task 2 Task 3

P1, P2 Slime with None TurtleShell with Async Beholder with Sync
P3, P4 Slime with Async TurtleShell with Sync Beholder with None
P5, P6 Slime with Sync TurtleShell with None Beholder with Async
P7, P8 Slime with Sync TurtleShell with Async Beholder with None
P9, P10 Slime with None TurtleShell with Sync Beholder with Async
P11, P12 Slime with Async TurtleShell with None Beholder with Sync

Table 5 CSI averages for all three modes

Mode Factor/ Scale Collaboration Enjoyment Exploration Expressiveness Immersion Results
Worth
Effort

None Factor counts
(SD)

3.6 (0.7) 1.8 (0.9) 3.5 (0.6) 2.2 (0.8) 1.6 (0.6) 3.8 (1.3)

Factor Score
(SD)

0 (0) 12.9 (1.9) 12.7 (2.3) 13.1 (2.0) 10.7 (1.5) 14.4 (1.7)

Weighted Factor
Score (SD)

0 (0) 22.5 (10.7) 45.6 (17.7) 29.6 (16.4) 17.5 (6.6) 53.0 (15.9)

Async Factor counts
(SD)

3.6 (0.7) 1.8 (0.9) 3.5 (0.6) 2.2 (0.8) 1.6 (0.6) 3.8 (1.3)

Factor Score
(SD)

15.5 (1.5) 14.0 (1.9) 14.3 (1.3) 13.4 (1.6) 10.9 (1.8) 16.1 (0.9)

Weighted Factor
Score (SD)

55.6 (11.1) 23.7 (9.4) 50.4 (13.4) 30.2 (15.7) 18.2 (8.7) 61.2 (20.6)

Sync Factor counts
(SD)

3.6 (0.7) 1.8 (0.9) 3.5 (0.6) 2.2 (0.8) 1.6 (0.6) 3.8 (1.3)

Factor Score
(SD)

13.0 (1.8) 12.8 (2.2) 12.9 (2.1) 12.8 (2.2) 10.9 (2.0) 14.6 (2.4)

Weighted Factor
Score (SD)

46.6 (11.2) 21.6 (9.3) 46.2 (17.1) 28.1 (14.1) 17.1 (7.8) 54.3 (21.1)

4696 Multimedia Tools and Applications (2023) 82:4671–4708

violated for Mode, W = 0.256, p < .05. The degrees of freedom were corrected using
Greenhouse-Geisser estimates of sphericity (ε = .573). The main effect of Mode was signif-
icant, F(1.14,6.88) = 26.99, p < .001, η2P = .81. A pairwise post-hoc t-test with Bonferroni
correction revealed that the mean CSI score for None (M = 57.36, SD = 11.50) was different
from both: Async (M = 77.59, SD = 8.99), p < .0001 and Sync (M = 72.27, SD = 12.86),
p < .01. There was no significant difference between Async and Sync, p > .05. See Fig. 22.

4.4.2 Weighted factor scores

We ran mixed ANOVA on weighted factor scores for Enjoyment, Exploration, Expressive-
ness, Impression, and Results Worth Effort. None of the results were significant. Since
collaboration was not rated for None, we ran a dependent t-test, which revealed that Async
(M = 55.5, SD = 11.5) was significantly different from Sync (M = 46.58, SD = 11.66), t(11)
= 3.5975, p < .01, d = 0.77.

4.4.3 Self-developed questionnaire

We asked the participants to rate None as well as Async and Sync modes in
NCCollab on a Likert scale from 1 (lowest) to 7 (highest) for confidence, efficiency,
chance of future use. In Async and Sync modes only, we also asked the participants
to rate the features of live BT preview, BT history, conflict resolution, and instant
messaging. Finally, all modes were also rated overall. A divergent bar chart summa-
rizes the results in Fig. 23.

A Friedman rank sum test revealed a significant difference for Confidence, χ2(2) = 14.774,
p < .001, W = .615. A post-hoc Conover test further revealed that Async (Mdn = 4) was

ns

**

0

25

50

75

100

None Async Sync
Mode

Sc
or

e

Fig. 22 Mean CSI scores for the two collaboration modes and the control with significance levels from the post-
hoc pairwise t-test with Bonferroni correction. Error bars: ±1 SD. ns: p > .05, **: p < .01, ****: p < .0001

4697Multimedia Tools and Applications (2023) 82:4671–4708

different from None (Mdn = 3.5), p < .05, and that Sync (Mdn = 4.5) was different from
None, p < .05. A Friedman rank sum test also revealed a significant difference for Chance of
Future Use, χ2(2) = 9, p < .05,W = .375. A post-hoc Conover test further revealed that Sync
(Mdn = 4.5) was different from None (Mdn = 3), p < .05. All other differences were not
significant.

4.4.4 Task completion time

The main effect of Order was not significant, F(5,6) = 0.64, ns, indicating that
counterbalancing was successful. The main effect of Mode was significant, F(2,12)
= 5.52, p < .05, η2P = .48. A pairwise post-hoc t-test with Bonferroni correction
revealed that the mean task completion time for None (M = 21.32, SD = 3.5) was
different from both: Async (M = 16.25, SD = 3.85), p < .05 and Sync (M = 17.57,
SD = 2.26), p < .01. There was no significant difference between Async and Sync,
p > .05. See Fig. 24.

50%
17%

8%

0%
33%
50%

50%
50%
42%

8%
8%
8%

67%
58%
50%

25%
33%
42%

58%
17%

8%

17%
58%
50%

25%
25%
42%

0%
0%
8%

0%
100%
92%

0%
0%
0%

0%
17%
8%

0%
50%
50%

0%
33%
42%

0%
8%

25%

0%
67%
50%

0%
25%
25%

0%
8%

17%

0%
50%
25%

0%
42%
58%

33%
0%
8%

33%
75%
58%

33%
25%
33%

8. Overall

7. Instant Messaging

6. Conflict Resolution

5. BT History

4. Live BT Preview

3. Chance of Future Use

2. Efficiency

1. Confidence

100 50 0 50 100

Sync
Async
None

Sync
Async
None

Sync
Async
None

Sync
Async
None

Sync
Async
None

Sync
Async
None

Sync
Async
None

Sync
Async
None

Percentage

Response
1 (Lowest)

2

3

4

5

6

7 (Highest)

Ratings of the collaboration modes

Fig. 23 A diverging stacked bar chart comparing the ratings of the two collaboration modes (Async and Sync)
and a None

4698 Multimedia Tools and Applications (2023) 82:4671–4708

4.5 Qualitative results

We administered a semi-structured interview with the participants at the end of the study.
During this time, the participants were asked to express their opinions, to provide feedback on
the overall experience, and to explain the reasoning behind their decisions.

4.5.1 Live preview

Overall, live preview was one of the most popular features of NCCollab, about which nearly
all the participants felt positive. This is likely because live preview enabled them to be instantly
aware about the updates their partners made to their BTs. P4 stated: ‘I really enjoyed the live
preview feature, being able to see what my peer was working on’. P2 stated: ‘The collabora-
tive features seemed fairly robust, I could preview what was happening over the network and
the chat window enhances the collaboration’. These qualitative findings agree with the results
of the self-developed Likert questionnaire in Fig. 23 for live preview. Moreover, P10 sug-
gested that live preview could be also used for teaching and learning.

4.5.2 BT history

Arguably, the addition of BT history brings NCCollab one step closer to being a fully-fledged
version control system like Git [28]. All the participants were familiar with the idea of version

ns

*

**

0

10

20

30

None Async Sync
Mode

T
im

e
(m

in
ut

es
)

Fig. 24 Mean task completion times for the three collaboration modes with significance levels from the post-hoc
pairwise t-test with Bonferroni correction. Error bars: ±1 SD. ns: p > .05, *: p < .05, **: p < .01

4699Multimedia Tools and Applications (2023) 82:4671–4708

control systems. The participants liked the idea that NCCollab, to an extent, offers similar
functionality through BT history. P6 stated: ‘I like that it’s like a live version control. It has lots
of analogs to programming and version control making it easier to understand’. Although P3,
P5 mentioned that they did not use the BT history in this study because they were too focused
on completing the task, they did see the benefit of having this feature in the long run. They
thought that they would be more willing to use BT history if they were working on a project
with a larger scope. P5 suggested an interesting use case for BT history: after a long break, if the
developers cannot exactly remember which part they were working on, they can just restore BT
from history to see the changes they have made before the break. These findings somewhat
agree with the results from the self-developed questionnaire in Fig. 23 for BT history, since half
felt positive about the feature in both Sync and Async modes, while less than 20% felt negative.
P12 did not end up using BT history because they stated that ‘I would [be] more willing to use
the history tracking feature if I was working on an open-ended task or a larger BT’.

4.5.3 BT hierarchy

We asked the participants if they found it useful to see a BT represented as a hierarchy. P7
found it useful because they liked simple text-based representation in the form of a hierarchy.
However, P12 did not find the hierarchy that beneficial because the original BT structure was
already straight forward.

4.5.4 Collaboration

We asked the participants what their preferred mode of collaboration was (None, Async, or
Sync). Eight of them were in favor of Async and four were in favor of Sync. P9 stated that they
were missing the collaboration features when the vanilla NodeCanvas was presented after the
two collaborative modes ‘I did miss having some of the collaboration features such as the
syncing when using this variant. It wasn’t necessarily something I disliked but it felt like
something was missing without them’.

4.5.5 Instant messaging

We were observing the instances when the participants used instant messaging during the task.
The following purposes of use have been identified as a pattern:

(i) to divide their work on the behavior tree at the start,
(ii) to check if another collaborator can see their update in real time,
(iii) to signal to the other collaborator that the task has been completed or to confirm this.

In one instance, after completing one of the tasks, P7 sent a message to P8 but since
NCCollab does not use sound to notify the user, P8 never noticed that message. So,
P7 had to send multiple messages. P7 stated ‘I would want the receiver to get a
sound notification after receiving every new message’. We also asked all the partic-
ipants opinion on how we could improve the usability of the messaging. P8 stated ‘I
would prefer voice chat over text chat’.

4700 Multimedia Tools and Applications (2023) 82:4671–4708

4.5.6 Usefulness of NCCollab

We asked the participants regarding the situation where they would use NCCollab. P3, P4, P7,
P11 stated that since there is a time limit, NCCollab would be useful in a game jam. P4 stated
‘I would like to use NCCollab’s synchronous mode in a game jam where I need to make a
prototype of a game in a short time’. Coincidentally, we have also used this game jam scenario
to describe the features of NCCollab above. Moreover, P8 mentioned three noteworthy use
case scenarios for NCCollab as follows:

(i) use by novice users such as design professionals,
(ii) use by two experienced developers,
(iii) use by one experienced and one novice developer.

4.5.7 Game genres

We were interested to learn for developing which types of games NCCollab would be most
useful according to the participants. P4 suggested it would be useful for prototyping, P9
suggested third-person role-playing games. However, P6 suggested that regardless if collab-
oration is supported or not, NodeCanvas would not work for puzzle games. Although, it is
already expected because the main purpose of NodeCanvas is to develop the AI of a character,
which these genres do not utilize.

4.6 Criticism, Suggestions & Uncovered Issues

We received some useful feedback on how to improve the system further. P6 had an issue with
getting lost between two canvas windows because one was the main canvas that they were
working on and the other was showing live preview of another user’s BT. So, P6 suggested to
fit both canvases in one window so that the user can see both at the same time and resize live
BT preview. P1 suggested adding a feature of locking a node so that the other users cannot
make any changes to them. Moreover, P1 also suggested to have some sort of visual
representation to show which node is selected or being edited by another user.

P7 suggested having an optional comment field in the BT history window beside every
state, similar to how Git [28] has the option to add a comment on a change to provide details.
P3 and P12 had a problem with instant messaging, as the messages would not wrap. So, in
order to see long messages, they had to make the window wider. P5 also noticed that they
could not press the enter key on the keyboard to send a message and was forced to click on the
send button, which slowed down their chatting experience.

5 Discussion

Here we describe and interpret the significance of our findings in the light of NCCollab.
We used the CSI survey [14] to compare the support of each interaction mode in terms of

creativity. Our hypothesis was that the scores will be significantly different between the control
condition and the two modes of collaboration, and also between the two collaborative modes.
In reality, the results were found significant only in comparison against the control condition,

4701Multimedia Tools and Applications (2023) 82:4671–4708

but not between the collaborative modes. CSI calculates the score by taking into consideration
the weighted factor scores for collaboration, enjoyment, exploration, expressiveness, immer-
sion, and results worth effort, as the dimensions of creativity support [14]. The highest possible
count for any particular factor is 5. A count of 5 means the factor is more important than
others. The maximum factor score is 20. According to Cherry and Latulipe [14], a factor count
in the range of 3.6 is an important factor, compared to an average count of 2.5. We found
significant differences within the sample that we collected only for collaboration, which is
likely the only influential factor contributing to the overall CSI score. This indicates that the
participants felt all three modes provide comparable support for creativity, collaboration aside.
However, this could be to the fact that the tasks may not have left sufficient room for creativity
and/or small sample size, see Section 5.1 (Limitations) below.

A self-developed questionnaire was created to solicit feedback on performance of each
auxiliary technique that we implemented to support collaboration when used across the
synchronous and asynchronous modes. Additionally, we used this questionnaire to learn
how participants felt about each mode in terms of confidence, efficiency, chance of future
use, and overall. For confidence, significant differences were found between the control
condition and the two collaborative modes. One interpretation could be that the participants
felt more confident when working with a partner in contrast to doing solitary work. None of
the participants had prior exposure to NCCollab, so they were still learning how to use the tool.
We speculate that this could be due to the fact that the participants felt like they can rely on
help from their partner in case they got stuck for whatever reason, which as a result, could
cause less distress. Supporting this, it is worth noting that P8 and P10 suggested that the
platform could be useful for teaching and learning due to the availability of live preview. This
is in agreement with the vision behind solutions such a Jimbo [67]. NCCollab can be found
useful in educational scenarios with its support of pair programming. For example, the
instructors can give some tasks to the students and the students can engage in pair program-
ming and the instructors can monitor their work in the live preview. This is especially useful
for distance learning. However, as P8 has mentioned, this does not always need to apply in the
situation where the skills of peer programmers differ. According to P8, collaborators with
matching skill levels can benefit from this as well.

Unsurprisingly, participants rated vanilla NodeCanvas as an unlikely tool for future
collaborative use. Interestingly, for chance of future use, significant difference was found
between the control and the synchronous modes, but not the asynchronous mode. However,
58% of participants rated the asynchronous mode favorably compared to 50% who did the
same for the synchronous mode. Furthermore, the synchronous mode was rated neutral 1.68
times more frequently than the asynchronous mode. These statistical findings aside, we think a
broader perspective at the self-developed questionnaire findings suggest that both modes of
collaboration have their applications. In particular, P4 mentioned that the synchronous mode
would be appropriate for quick prototyping.

During the study, we noted that BT history was utilized by 10 out of 12 participants. P12
was one of the participants who avoided using this feature and justified this due to the task
having a small scale. P12 mentioned that instead they relied on their ability to easily keep track
of the changes made to the BT in the mind. We speculate larger and more open-ended tasks
will end up in more use of the feature.

Three participants wanted to have instant messaging with more advanced features such as
voice chat. Other features that were suggested included referring nodes through messaging and
wrapping the messages to fit into the screen as mentioned above. In the absence of these

4702 Multimedia Tools and Applications (2023) 82:4671–4708

features, it is likely the users will resort to using business communication platforms such as
Discord [17] and Slack [66]. We also noticed that all the participants either used conflict
resolution or difference visualizations in the tree only after completing each task to check if
their own BT fully matched with their partners’ BT. 8 out of 12 participants used conflict
resolution and four participants chose to use difference visualizations. However, none of the
participants complained about difference visualizations, they just preferred to use conflict
resolution over difference visualizations. Overall, these findings may indicate that both of
these features could be disruptive to the flow, resulting in participants using them after
completing their task. This is also supported by the desire to have a voice chat, as text
messaging could be disruptive.

Similar to Nosek et al. [53], we logged how long it took the participants to complete the
tasks. Both synchronous and asynchronous modes were faster than the control and the order
effect was not significant. Our initial hypothesis was that the two collaborative modes would
be different. In particular, we thought that in the synchronous mode, since the task was done in
tandem, the completion would be faster compared to the asynchronous mode where changes
had to be integrated post-hoc at moments deemed appropriate by the participants. We also
thought by working in tandem in real time, the participants would develop better strategies to
avoid conflicts and coordinate their work better, which would expedite the completion.
However, this is not what we found, since there was no significant difference between the
collaborative modes. The unsurprising part of the findings was that both collaborative modes
were faster than the control, which is typical to expect when the work is shared. This has been
also known to be the case for code-based programming for decades [53]. It is worth
acknowledging that a limitation in the form of a possibility may exist that the task itself could
be a confounding factor since it varied across the levels of the independent variable.

P1 suggested adding a feature of locking a node so that the other users cannot make any
changes to them. This is an interesting suggestion. Arguably, it would bring NCCollab closer
to SVN [2], where users check out files and commit changes back to the server. While a file is
checked out, it cannot be modified by other users. This is one of the reasons behind SVN’s
waning popularity ever since the introduction of Git [28].

5.1 Limitations

We made an assumption that a large effect size of η2p = 0.14 or more is likely to be observed.
As a result, we targeted a sample size of 16 participants, which should have been sufficient
given a minimal statistical power of 1-β = 0.8 as recommended by Field [24]. In the end, due
to the COVID-19 pandemic, the participation of 12 participants is all we were able to secure,
which although is lower than needed, still happens to be the most common sample size within
the CHI community [10]. Nonetheless, for CSI, the sample size was sufficient to detect the
significance. However, the sample size may not have been enough for the analysis of other
data that we collected and could be the reason behind multiple insignificant findings.

Another limitation is the fact that the participants have been recruited using convenience
sampling, where their willingness to participate was prioritized over our need for random
sampling from the population. As a result, generalizations of the results to the population will
not be robust [65], p. 261. Most participants were graduate and undergraduate students. While
the study results may suggest that the proposed methods are viable approaches for AI game
development in education, including distance education, the results, at this state, cannot be
confidently generalized to professional game developers. However, it is worth noting that the

4703Multimedia Tools and Applications (2023) 82:4671–4708

solutions we arrived at were informed by the professional game developers. Also, the
participants were paid, which could potentially affect the outcomes, although counterbalancing
was employed to address this.

At last, due to the COVID-19 pandemic, we performed the study online, which resulted in
the variance between the specifications of the PCs which the participants used. Additionally,
four participants used a second monitor. As a result, due to our inability to have a full control
over the online experimental procedure and the hardware of the participants, there is a
possibility that confounding variables may have been introduced.

5.2 Generalizations

It should be noted that all the features of NCCollab can be re-implemented in other popular BT
editors with minimal changes. The two notable examples are Behavior Designer for Unity and
Behavior Trees for Unreal Engine. Both of these editors feature top-down and left-to right
order of node execution, as well as modifying node properties. As a result, difference
visualizations can be directly implemented in them with minimal changes (this also is true
for difference visualizations of priory changed nodes). Since both tools feature trees, hierar-
chical representations can be created for them as well. Likewise, there would not be any
obstacles in adapting synchronous and asynchronous collaboration modes, live previous,
history visualizations or conflict resolution.

6 Conclusion & future work

Pair programming is common in software development. In recent times due to the COVID-19
pandemic, the demand for the support of pair programming for distance learning, be it text-
based or node-based, is what we expect to increase. Game development is a collective process
where a variety of different professionals from different backgrounds cooperate. Although
solutions for distributed collaboration as standalone applications exist, few are available that
consolidate multiple collaborative features for specific tasks like game programming. Further-
more, none, to the best of our knowledge, exist for visual programming and game AI
development in particular. As a result, NCCollab is our proposed solution which aims to
shrink this gap.

Within the limitations of our study, we found that NCCollab was received favorably by the
participants, and that both modes of interaction can have their legitimate applications. It was
suggested that the synchronous collaboration could be useful for quick prototyping, while the
asynchronous collaboration could be appropriate for most other forms of collaboration. This
addresses our initial research question of how programming environments for behavior trees
can be improved with collaboration features for synchronous and asynchronous pair program-
ming, albeit with certain limitations. Some of the results we obtained were insignificant, which
we speculate could be partially attributed to the small sample size that was employed in the
study. As a result, further research is necessary to make stronger conclusions, which could be
pursued in the future work.

In our study, we focused on fixed tasks. We believe this is partially responsible for the fact
that significant differences were not found in the analysis of the creativity support of
NCCollab. In the future, longitudinal and open-ended tasks can be employed to study, e.g.,
if an interaction effect between the mode of collaboration and creativity support exists.

4704 Multimedia Tools and Applications (2023) 82:4671–4708

One participant did not find the hierarchy particularly useful because the behavior tree was
straightforward. Future investigations can look into whether this is different in more complex
behavior trees. We found that the chat system on its own may not be very useful as the users
can use other chat systems. However, future work can look into chat systems that are more
integrated with the development tool.

Although the results of our study are applicable to the educational context, they cannot be
robustly generalized to professional game development. In the future, studies can be done with
professional game developers exclusively to determine applicability of the solutions that we
provided.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11042-022-12307-2.

Acknowledgements This research was supported by NSERC Discovery.

Declarations

Conflict of interest Authors declare that they have no conflict of interest.

References

1. Alanen, M., & Porres, I. (2003). Difference and Union of Models. In P. Stevens, J. Whittle, & G. Booch
(Eds.), «UML» 2003—The Unified Modeling Language. Modeling Languages and Applications (Vol. 2863,
pp. 2–17). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-3-540-45221-8_2

2. Apache Subversion. (n.d.). Retrieved November 1, 2020, from https://subversion.apache.org/
3. Asana. (n.d.). Asana Project Management software—online tools, templates & app · asana. Asana.

Retrieved October 27, 2020, from https://asana.com/uses/project-management
4. Behavior Designer—Behavior Trees for Everyone | Visual Scripting | Unity Asset Store. (n.d.). Retrieved

July 16, 2020, from https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-
behavior-trees-for-everyone-15277?gclid=Cj0KCQjw9b_4BRCMARIsADMUIypkySxldYUkWqI-
HTUpPdYxjzc0Xy23V-YZG8x2T4mSASxIZr5LNmkaAvzIEALw_wcB

5. Behavior Trees. (n.d.). Retrieved August 4, 2020, from https://docs.unrealengine.com/en-US/Engine/
ArtificialIntelligence/BehaviorTrees/index.html

6. Berland M, Davis D, Smith CP (2015) AMOEBA: designing for collaboration in computer science
classrooms through live learning analytics. Int J Comput-Support Collab Learn 10(4):425–447. https://
doi.org/10.1007/s11412-015-9217-z

7. Blueprints Visual Scripting. (n.d.). Retrieved December 22, 2018, from https://docs.unrealengine.com/en-
us/Engine/Blueprints

8. Bolt | Visual Scripting | Unity Asset Store. (n.d.). Retrieved March 5, 2021, from https://assetstore.unity.
com/packages/tools/visual-scripting/bolt-163802

9. Bremm S, von Landesberger T, Heß M, Schreck T, Weil P, Hamacherk K (2011) Interactive visual
comparison of multiple trees. IEEE Conf Visual Analytics Sci Technol (VAST) 2011:31–40. https://doi.
org/10.1109/VAST.2011.6102439

10. Caine K (2016) Local standards for sample size at CHI. Proceed 2016 CHI Conf Human Factors Comput
Syst:981–992. https://doi.org/10.1145/2858036.2858498

11. Card SK, Sun B, Pendleton BA, Heer J, Bodnar JW (2006) Time tree: exploring time changing hierarchies.
Visual Anal Sci Technol, 2006 IEEE Symp On:3–10. https://doi.org/10.1109/VAST.2006.261450

12. Carra E, Pellacini F (2019) SceneGit: a practical system for diffing and merging 3D environments. Assoc
Comput Mach 38:1–15. https://doi.org/10.1145/3355089.3356550

13. Chen H-T, Wei L-Y, Chang C-F (2011) Nonlinear revision control for images. ACM SIGGRAPH 2011
Papers, 105:1-105:10. https://doi.org/10.1145/1964921.1965000

4705Multimedia Tools and Applications (2023) 82:4671–4708

https://doi.org/10.1007/s11042-022-12307-2
https://doi.org/10.1007/s11042-022-12307-2
https://doi.org/10.1007/978-3-540-45221-8_2
https://subversion.apache.org/
https://asana.com/uses/project-management
https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-behavior-trees-for-everyone-15277?gclid=Cj0KCQjw9b_4BRCMARIsADMUIypkySxldYUkWqI-HTUpPdYxjzc0Xy23V-YZG8x2T4mSASxIZr5LNmkaAvzIEALw_wcB
https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-behavior-trees-for-everyone-15277?gclid=Cj0KCQjw9b_4BRCMARIsADMUIypkySxldYUkWqI-HTUpPdYxjzc0Xy23V-YZG8x2T4mSASxIZr5LNmkaAvzIEALw_wcB
https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-behavior-trees-for-everyone-15277?gclid=Cj0KCQjw9b_4BRCMARIsADMUIypkySxldYUkWqI-HTUpPdYxjzc0Xy23V-YZG8x2T4mSASxIZr5LNmkaAvzIEALw_wcB
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html
https://doi.org/10.1007/s11412-015-9217-z
https://doi.org/10.1007/s11412-015-9217-z
https://docs.unrealengine.com/en-us/Engine/Blueprints
https://docs.unrealengine.com/en-us/Engine/Blueprints
https://assetstore.unity.com/packages/tools/visual-scripting/bolt-163802
https://assetstore.unity.com/packages/tools/visual-scripting/bolt-163802
https://doi.org/10.1109/VAST.2011.6102439
https://doi.org/10.1109/VAST.2011.6102439
https://doi.org/10.1145/2858036.2858498
https://doi.org/10.1109/VAST.2006.261450
https://doi.org/10.1145/3355089.3356550
https://doi.org/10.1145/1964921.1965000

14. Cherry E, Latulipe C (2014) Quantifying the creativity support of digital tools through the creativity support
index. ACM Trans Comput-Human Interaction 21(4):21:1–21:25. https://doi.org/10.1145/2617588

15. Chirigati F, Freire J, Koop D, Silva C (2013) VisTrails provenance traces for benchmarking. Proceed Joint
EDBT/ICDT 2013 Workshops:323–324. https://doi.org/10.1145/2457317.2457373

16. Dadgari D, Stuerzlinger W (2010) Novel user interfaces for Diagram versioning and differencing. British
HCI, British HCI

17. Discord—ANewWay to Chat with Friends & Communities. (n.d.). Discord. Retrieved June 23, 2020, from
https://discord.com/channels/@me/517739346602754076

18. Doboš J, Fan C, Friston S, Wong C (2018) Screen space 3D diff: a fast and reliable method for real-time 3D
differencing on the web. Proceed 23rd Int ACM Conf 3D Web Technol:1–9. https://doi.org/10.1145/
3208806.3208809

19. Doboš, J., Sons, K., Rubinstein, D., Slusallek, P., & Steed, A. (2013). XML3DRepo: a REST API for
version controlled 3D assets on the web. Proceed 18th Int Conf 3D web Technol, 47–55. https://doi.org/10.
1145/2466533.2466537

20. Doboš J, Steed A (2012a) 3D diff: an interactive approach to mesh differencing and conflict resolution.
SIGGRAPH Asia 2012 Technical Briefs:20:1–20:4. https://doi.org/10.1145/2407746.2407766

21. Doboš J, Steed A (2012b) 3D revision control framework. Proceed 17th Int Conf 3D Web Technol:121–
129. https://doi.org/10.1145/2338714.2338736

22. Dourish P, Bellotti V (1992) Awareness and coordination in shared workspaces. Proceed 1992 ACM Conf
Comput-Supported Cooperative Work:107–114. https://doi.org/10.1145/143457.143468

23. Fan H, Sun C, Shen H (2012) ATCoPE: any-time collaborative programming environment for seamless
integration of real-time and non-real-time teamwork in software development. Proceed 17th ACM Int Conf
Support Group Work:107–116. https://doi.org/10.1145/2389176.2389194

24. Field A, Miles J, Field Z (2012) Discovering statistics using R (1 edition). SAGE Publications Ltd.
25. Firebase. (n.d.). Firebase. Retrieved October 20, 2020, from https://firebase.google.com/
26. Forums—GameDev.net. (n.d.). Retrieved October 25, 2020, from https://www.gamedev.net/forums/
27. Galy E, Paxion J, Berthelon C (2018) Measuring mental workload with the NASA-TLX needs to examine

each dimension rather than relying on the global score: an example with driving. Ergonomics 61(4):517–
527. https://doi.org/10.1080/00140139.2017.1369583

28. Git. (n.d.). Retrieved December 22, 2018, from https://git-scm.com/
29. Gleicher M, Albers D, Walker R, Jusufi I, Hansen CD, Roberts JC (2011) Visual comparison for

information visualization. Inf Vis 10(4):289–309. https://doi.org/10.1177/1473871611416549
30. Goldman M, Greg D Little G, & Robert C, Miller, R (n.d.). Real-time collaborative coding in a web IDE |

Proceedings of the 24th annual ACM symposium on User interface software and technology. Retrieved
September 2, 2020, from https://doi.org/10.1145/2047196.2047215

31. Google Docs. (n.d.). Retrieved October 24, 2020, from https://docs.google.com/document/u/0/
32. Google Meet. (n.d.). Retrieved October 27, 2020, from https://meet.google.com/
33. Graham M, Kennedy J (2010) A survey of multiple tree visualisation. Inf Vis 9(4):235–252. https://doi.org/

10.1057/ivs.2009.29
34. Guerra-Gómez JA, Buck-coleman A, Pack ML, Plaisant C, Shneiderman B (2013a) TreeVersity: interactive

visualizations for comparing hierarchical datasets. Trans Res Record (TRR), J Trans Res Board (2013), 21.
https://doi.org/10.3141/2392-06

35. Guerra-Gómez JA, Buck-coleman A, Plaisant C, Shneiderman B (2012) TreeVersity: visualizing hierarchal
data for value with topology changes. Proceed Digital Res Soc 2012(2):640–653

36. Guerra-Gómez JA, Buck-Coleman A, Plaisant C, Shneiderman B (2011) TreeVersity: comparing tree
structures by topology and node’s attributes differences. IEEE Conf Visual Analytics Sci Technol
(VAST) 2011:275–276. https://doi.org/10.1109/VAST.2011.6102471

37. Guerra-Gómez JA, Pack ML, Plaisant C, Shneiderman B (2013b) Visualizing change over time using
dynamic hierarchies: TreeVersity2 and the StemView. IEEE Trans Vis Comput Graph 19(12):2566–2575.
https://doi.org/10.1109/TVCG.2013.231

38. Hart SG, Staveland LE (1988) Development of NASA-TLX (task load index): results of empirical and
theoretical research. In: Hancock PA, Meshkati N (eds) Advances in psychology (Vol. 52, pp. 139–183).
North-Holland. https://doi.org/10.1016/S0166-4115(08)62386-9

39. Hegde R, Dewan P (2008) Connecting programming environments to support ad-hoc collaboration. In:
2008 23rd IEEE/ACM international conference on automated software engineering, pp 178–187. https://
doi.org/10.1109/ASE.2008.28

40. Herman I, Melançon G, de Ruiter MM, Delest M (1999) Latour—a tree visualisation system. In:
Kratochvíyl J (ed) Graph drawing. Springer, pp 392–399. https://doi.org/10.1007/3-540-46648-7_40

41. Hoek AVD (2004) Continuous coordination: a new paradigm for collaborative software engineering tools.
ICSE 2004. https://doi.org/10.1049/IC:20040207

4706 Multimedia Tools and Applications (2023) 82:4671–4708

https://doi.org/10.1145/2617588
https://doi.org/10.1145/2457317.2457373
https://discord.com/channels/@me/517739346602754076
https://doi.org/10.1145/3208806.3208809
https://doi.org/10.1145/3208806.3208809
https://doi.org/10.1145/2466533.2466537
https://doi.org/10.1145/2466533.2466537
https://doi.org/10.1145/2407746.2407766
https://doi.org/10.1145/2338714.2338736
https://doi.org/10.1145/143457.143468
https://doi.org/10.1145/2389176.2389194
https://firebase.google.com/
https://www.gamedev.net/forums/
https://doi.org/10.1080/00140139.2017.1369583
https://git-scm.com/
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1145/2047196.2047215
https://docs.google.com/document/u/0/
https://meet.google.com/
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.3141/2392-06
https://doi.org/10.1109/VAST.2011.6102471
https://doi.org/10.1109/TVCG.2013.231
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1109/ASE.2008.28
https://doi.org/10.1109/ASE.2008.28
https://doi.org/10.1007/3-540-46648-7_40
https://doi.org/10.1049/IC:20040207

42. Java | Oracle. (n.d.). Retrieved October 28, 2020, from https://www.java.com/en/
43. Johansson A, Dell’Acqua P (2012) Comparing behavior trees and emotional behavior networks for NPCs.

In: 2012 17th international conference on computer games (CGAMES), pp 253–260. https://doi.org/10.
1109/CGames.2012.6314584

44. Kodu—Visual Programming Language for creating Xbox games. (n.d.). Microsoft Research. Retrieved
October 28, 2020, from https://www.microsoft.com/en-us/research/project/kodu/

45. Kolovos DS, Di Ruscio D, Pierantonio A, Paige RF (2009) Different models for model matching: an
analysis of approaches to support model differencing. Proceedings of the 2009 ICSE workshop on
comparison and versioning of software models, 1–6. https://doi.org/10.1109/CVSM.2009.5071714

46. Marcotte R, Hamilton HJ (2017) Behavior trees for modelling artificial intelligence in games: a tutorial.
Comput Games J 6(3):171–184. https://doi.org/10.1007/s40869-017-0040-9

47. Microsoft OneDrive | Sign In or Sign up | Free Cloud Storage. (n.d.). Retrieved October 24, 2020, from
https://www.microsoft.com/en-ca/microsoft-365/onedrive/online-cloud-storage

48. Moss R (n.d.) 7 examples of game AI that every developer should study. Retrieved October 16, 2020, from
/view/news/269634/7_examples_of_game_AI_that_every_developer_should_study.Php.

49. Munzner T, Guimbretière F, Tasiran S, Zhang L, Zhou Y (2003) TreeJuxtaposer: scalable tree comparison
using focus+context with guaranteed visibility. SIGGRAPH 2003 22(3):453–462. https://doi.org/10.1145/
882262.882291

50. Namata GM, Staats B, Getoor L, Shneiderman B (2007) A dual-view approach to interactive network
visualization. CIKM 2007:939–942. https://doi.org/10.1145/1321440.1321580

51. NodeCanvas—Asset Store. (n.d.). Retrieved July 8, 2019, from https://assetstore.unity.com/packages/tools/
visual-scripting/nodecanvas-14914

52. NodeCanvas—Behaviour Trees and State Machines for Unity Game Engine. (n.d.). Retrieved April 5,
2020, from https://nodecanvas.paradoxnotion.com/

53. Nosek JT (1998) The case for collaborative programming. Commun ACM 41(3):105–108. https://doi.org/
10.1145/272287.272333

54. Online Collaboration Tools for Modern Teams | Nulab. (n.d.). Retrieved October 29, 2020, from https://
nulab.com/

55. Online Diagram and Flowchart Software | Cacoo. (n.d.). Retrieved October 24, 2020, from https://cacoo.
com/

56. Online Project Management Software & Tools | Zoho Projects. (n.d.). Retrieved October 27, 2020, from
https://www.zoho.com/projects/

57. Pettersson I, Lachner F, Frison A-K, Riener A, Butz A (2018) A Bermuda triangle? A review of method
application and triangulation in user experience evaluation. Proceedings of the 2018 CHI conference on
human factors in computing systems, 1–16. https://doi.org/10.1145/3173574.3174035

58. Programming and Web Development Help | DreamInCode.net. (n.d.). Retrieved October 25, 2020, from
https://www.dreamincode.net/

59. Project Management Software by ClickUp™. (n.d.). Retrieved October 27, 2020, from https://clickup.com/
teams/project-management

60. Rasmussen, J. (n.d.). Are Behavior Trees a Thing of the Past? Retrieved April 4, 2020, from https://www.
gamasutra.com/blogs/JakobRasmussen/20160427/271188/Are_Behavior_Trees_a_Thing_of_the_Past.php

61. Renger M, Kolfschoten GL, de Vreede G-J (2008) Challenges in collaborative modeling: a literature review.
In: Dietz JLG, Albani A, Barjis J (eds) Advances in Enterprise engineering I (pp. 61–77). Springer. https://
doi.org/10.1007/978-3-540-68644-6_5

62. Santoni C, Salvati G, Tibaldo V, Pellacini F (2018) LevelMerge: collaborative game level editing by
merging labeled graphs. IEEE Comput Graph Appl 38(4):71–83. https://doi.org/10.1109/MCG.2018.
042731660

63. Schmeil A, Eppler M, Gubler M (2009) An experimental comparison of 3D virtual environments and text
chat as collaboration tools. Electronic J Knowledge Manag (EJKM) 7(5):637–646

64. Scratch—Imagine, Program, Share. (n.d.). Retrieved October 28, 2020, from https://scratch.mit.edu/
65. Sharp H, Preece J, Rogers Y (2019) Interaction design: beyond human-computer interaction. Wiley
66. Slack. (n.d.). Welcome to your new HQ. Slack. Retrieved October 27, 2020, from https://slack.com/intl/en-

ca/
67. Soroush Ghorashi, S. & Jensen Carlos. (n.d.). Jimbo | Proceedings of the 9th International Workshop on

Cooperative and Human Aspects of Software Engineering. Retrieved September 2, 2020, from https://doi.
org/10.1145/2897586.2897613

68. Tanimoto SL (1990) VIVA: a visual language for image processing. J Visual Languages Comput 1(2):127–
139. https://doi.org/10.1016/S1045-926X(05)80012-6

69. Team collaboration software | Backlog. (n.d.). Backlog (English). Retrieved October 27, 2020, from https://
backlog.com/lp/team-collaboration/

4707Multimedia Tools and Applications (2023) 82:4671–4708

https://www.java.com/en/
https://doi.org/10.1109/CGames.2012.6314584
https://doi.org/10.1109/CGames.2012.6314584
https://www.microsoft.com/en-us/research/project/kodu/
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.1007/s40869-017-0040-9
https://www.microsoft.com/en-ca/microsoft-365/onedrive/online-cloud-storage
https://doi.org/10.1145/882262.882291
https://doi.org/10.1145/882262.882291
https://doi.org/10.1145/1321440.1321580
https://assetstore.unity.com/packages/tools/visual-scripting/nodecanvas-14914
https://assetstore.unity.com/packages/tools/visual-scripting/nodecanvas-14914
https://nodecanvas.paradoxnotion.com/
https://doi.org/10.1145/272287.272333
https://doi.org/10.1145/272287.272333
https://nulab.com/
https://nulab.com/
https://cacoo.com/
https://cacoo.com/
https://www.zoho.com/projects/
https://doi.org/10.1145/3173574.3174035
https://www.dreamincode.net/
https://clickup.com/teams/project-management
https://clickup.com/teams/project-management
https://www.gamasutra.com/blogs/JakobRasmussen/20160427/271188/Are_Behavior_Trees_a_Thing_of_the_Past.php
https://www.gamasutra.com/blogs/JakobRasmussen/20160427/271188/Are_Behavior_Trees_a_Thing_of_the_Past.php
https://doi.org/10.1007/978-3-540-68644-6_5
https://doi.org/10.1007/978-3-540-68644-6_5
https://doi.org/10.1109/MCG.2018.042731660
https://doi.org/10.1109/MCG.2018.042731660
https://scratch.mit.edu/
https://slack.com/intl/en-ca/
https://slack.com/intl/en-ca/
https://doi.org/10.1145/2897586.2897613
https://doi.org/10.1145/2897586.2897613
https://doi.org/10.1016/S1045-926X(05)80012-6
https://backlog.com/lp/team-collaboration/
https://backlog.com/lp/team-collaboration/

70. The Total Beginner’s Guide to Game AI. (n.d.). GameDev.Net. Retrieved October 16, 2020, from https://
gamedev.net/tutorials/programming/artificial-intelligence/the-total-beginners-guide-to-game-ai-r4942

71. TIGSource Forums—Index. (n.d.). Retrieved October 25, 2020, from https://forums.tigsource.com/
72. Twiddla. (n.d.). Retrieved October 24, 2020, from https://www.twiddla.com/
73. Unity Forum. (n.d.). Retrieved October 25, 2020, from https://forum.unity.com/
74. Unity Technologies. (n.d.). Unity Real-Time Development Platform | 3D, 2D VR & AR Engine. Retrieved

March 5, 2021, from https://unity.com/
75. Unreal Engine. (n.d.). Retrieved August 4, 2020, from https://www.unrealengine.com/
76. Valsamakis Y, Savidis A, Agapakis E, Katsarakis A (2020) Collaborative visual programming workspace

for Blockly. IEEE Symposium Visual Languages Human-Centric Comput (VL/HCC) 2020:1–6. https://doi.
org/10.1109/VL/HCC50065.2020.9127253

77. Video Conferencing, Web Conferencing, Webinars, screen sharing—zoom. (n.d.). Retrieved October 27,
2020, from https://zoom.us/

78. Zacharis NZ (2011) Measuring the effects of virtual pair programming in an introductory programming Java
course. IEEE Trans Educ 54(1):168–170. https://doi.org/10.1109/TE.2010.2048328

79. Zaman L, Kalra A, Stuerzlinger W (2011) The effect of animation, dual view, difference layers, and relative
re-layout in hierarchical diagram differencing. Graphics Interface 2011:183–190 http://portal.acm.org/
citation.cfm?id=1992917.1992947

80. Zaman L, Stuerzlinger W, Neugebauer C (2017) MACE: a new Interface for comparing and editing of
multiple alternative documents for generative design. Proceedings of the 2017 ACM symposium on
document engineering, 67–76. https://doi.org/10.1145/3103010.3103013

81. Zaman L, Stuerzlinger W, Neugebauer C, Woodbury R, Elkhaldi M, Shireen N, Terry M (2015) GEM-NI: a
system for creating and managing alternatives in generative design. Proceedings of the 33rd annual ACM
conference on human factors in computing systems, 1201–1210. https://doi.org/10.1145/2702123.2702398

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

4708 Multimedia Tools and Applications (2023) 82:4671–4708

https://gamedev.net/tutorials/programming/artificial-intelligence/the-total-beginners-guide-to-game-ai-r4942
https://gamedev.net/tutorials/programming/artificial-intelligence/the-total-beginners-guide-to-game-ai-r4942
https://forums.tigsource.com/
https://www.twiddla.com/
https://forum.unity.com/
https://unity.com/
https://www.unrealengine.com/
https://doi.org/10.1109/VL/HCC50065.2020.9127253
https://doi.org/10.1109/VL/HCC50065.2020.9127253
https://zoom.us/
https://doi.org/10.1109/TE.2010.2048328
http://portal.acm.org/citation.cfm?id=1992917.1992947
http://portal.acm.org/citation.cfm?id=1992917.1992947
https://doi.org/10.1145/3103010.3103013
https://doi.org/10.1145/2702123.2702398

	NCCollab: collaborative behavior tree authoring in game development
	Abstract
	Introduction
	Related work
	Collaboration in programming environments
	Collaboration in non-programming environments
	Collaboration in game development
	Communication features in collaborative tools
	Versioning
	Difference visualizations of graphs and trees

	NODECANVAS collaboration
	Pre-development requirements gathering
	Results of pre-development requirements gathering
	Question 1
	Question 2
	Question 3
	Question 4
	Summary and implications for interaction design in NCCollab

	Introduction of NodeCanvas collaboration
	Support for alternatives

	Asynchronous collaboration
	Synchronous collaboration
	Live preview of BT canvas
	Conflict resolution
	Difference visualizations of BTs
	Not added nodes
	Deleted nodes
	Added nodes
	Modified nodes

	BT history
	Hierarchical BT representation
	Instant messaging

	User study
	Participants
	Apparatus
	Procedure
	Tutorials and tasks
	Experimental design, Independent & Dependent Variables, and data collection

	Quantitative results
	Creativity support index
	Weighted factor scores
	Self-developed questionnaire
	Task completion time

	Qualitative results
	Live preview
	BT history
	BT hierarchy
	Collaboration
	Instant messaging
	Usefulness of NCCollab
	Game genres

	Criticism, Suggestions & Uncovered Issues

	Discussion
	Limitations
	Generalizations

	Conclusion & future work
	References

