Skip to main content
Log in

Salient object detection using the phase information and object model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

A Correction to this article was published on 11 March 2019

This article has been updated

Abstract

One of the most important features of saliency detection algorithms is to reduce the size of processing data for algorithms with higher processing size such as object detection algorithms. A main condition for algorithms of saliency detection to be used in detecting the object in the image is their low processing size and broadness of the application extent while having acceptable precision. In this article we introduce a Salient Object Detection method using Task Simulation (SOD-TS). This method has a low processing size and wide functional domain using task simulation (object model). Our proposed method has a wide range of application including ship detection, words and letter detection in texts, etc. Relying on the task simulation (object model), SOD-TS method detects the salient object which is the best response to the current task. It uses the information of the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 11 March 2019

    The article Salient object detection using the phase information and object model, written by Hooman Afsharirad and Seyed Alireza Seyedin, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on February 7, 2019 with open access.

References

  1. Achanta R, Susstrunk S (2010) Saliency detection using maximum symmetric surround. IEEE ICIP: 2653–2656

  2. Achanta R, Estrada F, Wils P, Susstrunk S (2008) Salient region detection and segmentation. Comp Vis Sys

  3. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. IEEE CVPR

  4. Aiger D, Talbot H (2010) The phase-only transform for unsupervised surface defect detection. Computer Vision and Pattern Recognition (CVPR) IEEE Conference

  5. Aytekin C, Kiranyaz S, Gabbouj M (2014) Automatic object segmentation by quantum cuts. IEEE ICPR: 112–117

  6. Bhatnagar G, Wu QMJ, Raman B (2013) Discrete fractional wavelet transform and its application to multiple encryption. Inf Sci 223:297–316

    Article  MathSciNet  MATH  Google Scholar 

  7. Borji A et al (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12)

  8. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1)

  9. Borji A, Sihite DN, Itti L (2013) What stands out in a scene? A study of human explicit saliency judgment. Vis Res 91(0):62–77

    Article  MATH  Google Scholar 

  10. Chang K-Y, Liu T-L, Chen H-T, Lai S-H, (2011) Fusing generic objectness and visual saliency for salient object detection. IEEE ICCV: 914–921

  11. Chen T, Lin L, Liu L, Luo X, Li X (2016) Deep image saliency computing via progressive representation learning. IEEE Trans Neural Netw Learn Syst 27(6):1135

    Article  MathSciNet  Google Scholar 

  12. Cheng M-M, Warrell J, Lin W-Y, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. IEEE ICCV: 1529–1536

  13. Cheng M-M et al. (2015) Global contrast based salient region detection. IEEE TPAMI

  14. Cheng M-M, Mitra NJ, Huang X, Torr PHS, Hu S-M (2015) Global contrast based salient region detection. IEEE TPAMI

  15. Duan L, Wu C, Miao J, Qing L, Fu Y (2011) Visual saliency detection by spatially weighted dissimilarity. IEEE CVPR: 473–480

  16. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE TPAMI 34(10):1915–1926

    Article  Google Scholar 

  17. Gue C, Ma Q, Zhang L (2008) Spatiotemporal saliency detection using phase spectrum of quaternion Fourier transform. Proc IEEE Int Conf Comput Vision Pattern Recogn

  18. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. Proc IEEE Int Conf Comput Vision Pattern Recogn,: 1–8

  19. Jiang H, Wang J, Yuan Z, Liu T, Zheng N, (2011) Automatic salient object segmentation based on context and shape prior. BMVC

  20. Jiang B, Zhang L, Lu H, Yang C, Yang M-H (2013) Saliency detection via absorbing markov chain. IEEE ICCV

  21. Jiang P, Ling H, Yu J, Peng J (2013) Salient region detection by ufo: uniqueness, focusness and objectness. IEEE ICCV

  22. Kim J, Han D, Tai Y-W, Kim J (2014) Salient region detection via high-dimensional color transform. IEEE CVPR

  23. Lee G, Tai YW, Kim J (2016) Deep saliency with encoded low level distance map and high level features. 2016 IEEE Conf Comput Vision Pattern Recognition (CVPR): 660–668

  24. Li G, Yu Y (2015) Visual saliency based on multiscale deep features. Computer Vision and Pattern Recognition: 5455–5463

  25. Li J, Levine MD, An X (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence. Class files 6(1)

  26. Li X, Li Y, Shen C, Dick AR, van den Hengel A (2013) Contextual hypergraph modeling for salient object detection. IEEE ICCV: 3328–3335

  27. Li X, Lu H, Zhang L, Ruan X, Yang M-H (2013) Saliency detection via dense and sparse reconstruction. IEEE ICCV

  28. Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010

    Article  Google Scholar 

  29. Liu N, Han J (2018) A deep spatial contextual long-term recurrent convolutional network for saliency detection. IEEE Trans. Image Process

  30. Liu Z, Zou W, Le Meur O (2013) Saliency tree: a novel saliency detection framework. IEEE TIP

  31. Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct?. IEEE CVPR: 1139–1146

  32. Margolin R, Zelnik-Manor L, Tal A (2013) Saliency for image manipulation. Vis Comput: 1–12

  33. Movahedi V, Elder JH (2010) Design and perceptual validation of performance measures for salient object segmentation. IEEE CVPRW

  34. Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. IEEE CVPR: 733–740

  35. Rahtu E, Kannala J, Salo M, Heikkila J (2010) Segmenting salient objects from images and videos. ECCV

  36. Siva P, Russell C, Xiang T, Agapito L (2013) Looking beyond the image: unsupervised learning for object saliency and detection. IEEE CVPR: 3238–3245

  37. Tavakoli HR, Rahtu E, Heikkila J (2011) Fast and efficient saliency detection using sparse sampling and kernel density estimation. Scandinavian conference on image analysis: 666–675

  38. Tong N, Lu H, Ruan X, Yang M-H (2015) Salient object detection via bootstrap learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 1884–1892

  39. Tong N, Lu H, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern Recogn 48(10):3258–3267

    Article  Google Scholar 

  40. Wang J, Lu H, Li X, Tong N, Liu W (2015) Saliency detection via background and foreground seed selection. Neurocomputing 152:359–368

    Article  Google Scholar 

  41. Wang L, Lu H, Xiang R, Yang MH (2015) Deep networks for saliency detection via local estimation and global search. Comput Vision Pattern Recogn: 3183–3192

  42. Wang J, Jiang H, Yuan Z, Cheng M-M, Hu X, Zheng N (2017) Salient object detection: a discriminative regional feature integration approach. Int J Comput Vis 123(2):251–268

    Article  Google Scholar 

  43. Xie Y, Lu H, Yang M-H (2013) Bayesian saliency via low and mid-level cues. IEEE TIP 22(5)

  44. Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency detection via graph-based manifold ranking. IEEE CVPR

  45. Yang C, Zhang L, Lu H (2013) Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process Lett 20(7):637–640

    Article  Google Scholar 

  46. You X, Du L, Cheung Y-m, Chen Q (2010) A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans Image Process 19(12):3271–3284

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang J et al (2018) Top-down neural attention by excitation backprop. Int J Comput Vis 126:1084–1102

    Article  Google Scholar 

  48. Zhu D (2018) Salient object detection via a local and global method based on deep residual network. J Vis Commun Image Represent 54

  49. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. IEEE CVPR

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Afsharirad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to retrospective open access.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsharirad, H., Seyedin, S.A. Salient object detection using the phase information and object model. Multimed Tools Appl 78, 19061–19080 (2019). https://doi.org/10.1007/s11042-019-7255-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7255-7

Keywords

Navigation