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Abstract
The set of two-body reduced states of translation invariant, infinite quantum spin chains
can be approximated from inside and outside usingmatrix product states andmarginals
of finite systems, respectively. These lead to hierarchies of algebraic approximations
that become tight only in the limit of infinitely many auxiliary variables. We show that
this is necessarily so for any algebraic ansatz by proving that the set of reduced states is
not semialgebraic.We also provide evidence that additional elementary transcendental
functions cannot lead to a finitary description.
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1 Introduction

Quantum correlations become non-trivially constrained when considering parts of a
larger system that obeys symmetry rules. This fact is exhibited most prominently by
the monogamy of entanglement. More generally, it is manifestly inherent in all quan-
tum marginal problems that concern the consistency of reduced density matrices with
global, often symmetry-based, constraints. A central motivation for studying these
problems is the fact that ground-state energies in quantum chemistry [10] and con-
densedmatter physics [23] depend solely on the reduced density matrices under global
symmetry constraints. Also, phase transitions and symmetry breaking are reflected in
the geometry of the set of reduced density matrices [25].

In this paper, we consider the set of reduced two-body density matrices that arise
in translationally invariant, infinite quantum spin chains. In these systems, the ground
state energy density of a nearest-neighbor interaction Hamiltonian could in principle
be obtained by optimizing over all admissible reduced states. However, even in the
case of two-dimensional local Hilbert spaces, this set is not known exactly. There are
inner approximations based on mean-field and matrix-product techniques [23] and
outer approximations based on relaxations of constraints [5, 14, 17]. When unraveling
these approximations, which are usually expressed directly as algorithms for bounding
ground state energy densities, they all correspond to semialgebraic sets of reduced
density matrices, that is, sets that can be described by a finite number of algebraic
(in-)equalities. Our aim is to prove that the set of interest, i.e., the set of admissible
two-body reduced density matrices, is itself not semialgebraic. In the last section, we
show that the situation is most likely even worse (or more interesting) by providing
evidence that additional elementary transcendental functions are still not sufficient to
allow an explicit description by finite means.

Our work is inspired by an argument of Fannes, Nachtergaele, and Werner. In [12]
they show that the ground state of the antiferromagnetic spin 1/2 Heisenberg chain
cannot be aC∗-finitely correlated state: Its energy is transcendental,while the algebraic
ansatz can only lead to algebraic energies. This argument holds for any parameter-free
algebraic ansatz but fails as soon as transcendental parameters are allowed. For this
reason, we invoke transcendental sets and functions rather than numbers.

2 (Semi-)algebraic preliminaries

We begin with reviewing some mathematical concepts and introducing terms and
notations.

A function f : I → R on an interval I ⊆ R is called algebraic over a subfield
F ⊆ R if there is a polynomial p ∈ F[y, x] and an interval J ⊆ R s.t. y = f (x) ⇔
p(y, x) = 0 holds for all (x, y) ∈ I × J . A function that is not piecewise algebraic
over F is called transcendental over F. We emphasize the field F since these notions
are often understood with F = Q in mind, but we will need F = R.

A set A ⊆ R
n is called semialgebraic over a subring R ⊆ R if it can be defined

by a finite number of polynomial equalities and inequalities with coefficients in R. A
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powerful tool for showing that a set is semialgebraic is the Tarski-Seidenberg theorem,
which enables the use of quantifiers without leaving the semialgebraic world:

Theorem 1 (Tarski-Seidenberg quantifier elimination (cf.[6]))Let R ⊆ Rbea subring
and {p j (v, x)}lj=1 afinite set of polynomial equalities and inequalitieswith coefficients

in R and variables (v, x) ∈ Rk × Rn. If φ(v, x) is a Boolean combination (using
∧,∨,¬) of the p j ’s and

�(x) := (
Q1v1 . . . Qkvk : φ(v, x)

)
, Qi ∈ {∃,∀}, (1)

then there exists a quantifier-free formula ψ(x) consisting of a Boolean combination
of finitely many polynomial (in-)equalities with coefficients in R, s.t.

∀x : (
ψ(x) ⇔ �(x)

)
. (2)

Moreover, there exists an effective algorithm that constructs ψ from �.

In our case, Rn will be a real vector space of complex Hermitian matrices, repre-
sented in some Hermitian operator basis. The choice of the basis does not matter as
long as R = R is considered.

A function is called semialgebraic over R if its graph is a semialgebraic set. If
f : R ⊇ I → R is semialgebraic over R, then it is piecewise algebraic over R (cf.
Sec.2.5.2 in [6]).

3 Reduced density matrices

Consider a multipartite quantum system of spins aligned on a one-dimensional chain
such that each spin is assigned a Hilbert space Cd . Our interest lies in the reduced
densitymatrices of neighboring spins that are admissible under the constraint of global
translation symmetry.

Definition 1 Let Redd denote the subset of density operators onCd ⊗Cd s.t. for every
N ∈ N there is a density operator ρ(N+1) on (Cd)⊗(N+1) with the property that all its
successive bipartite reduced states are equal to ρ, i.e.,

tr¬(i,i+1)
[
ρ(N+1)] = ρ ∀i ∈ {1, . . . , N }. (3)

More informally, ρ ∈ Redd if and only if ρ can be extended in a translational
invariant way to an infinite quantum spin chain.

Proposition 1 Redd is convex and compact.

Proof Convexity follows readily from the convexity of the set of density matrices and
the linearity of the partial trace. Moreover, boundedness is inherited from the set of all
density operators. In order to see closedness, we write ρ

(N+1)
i,i+1 := tr¬(i,i+1)

[
ρ(N+1)

]

and define

123



28 Page 4 of 8 V. Blakaj, M. M. Wolf

f
(
ρ(N+1)

)
:=

N∑

i, j=1

∥∥ρ
(N+1)
i,i+1 − ρ

(N+1)
j, j+1

∥∥ (4)

on the set of (N +1)-partite density operators. Since f is continuous, the set SN+1 :=
f −1

({0}) is closed and thus compact. Hence, RN+1 := tr¬(1,2)[SN+1] is compact as
the image of a compact set under a continuous map. Finally, since RN+1 is the set of
bipartite density operators that can be extended to an (N + 1)-partite state with equal
successive bipartite marginals, we see that Redd = ⋂

N∈N RN+1 is compact as it is
an intersection of compact sets. 
�

Given a two-body Hamiltonian described by a Hermitian operator h acting on
Cd ⊗ Cd , we define hi,i+1 := 1⊗(i−1) ⊗ h ⊗ 1⊗(N−i−1) acting on (Cd)⊗N . The
corresponding ground state energy density in the thermodynamic limit (N → ∞) is
then

ε := lim
N→∞

1

N
inf
ρ(N )

N−1∑

i=1

tr
[
ρ(N )hi,i+1

]
, (5)

where the infimum is taken over all N -partite density operators ρ(N ).

The following is well known [23], but we provide proof for a more self-consistent
and coherent presentation.

Proposition 2 For every two-body Hamiltonian h the corresponding ground state
energy density in the thermodynamic limit is given by

ε = min
ρ∈Redd

tr [ρh] . (6)

Proof First note that compactness of Redd (Proposition1) guarantees the existence of
a minimizer. The r.h.s. of Eq. (6) can be seen to be an upper bound on ε by restricting
the infimum in Eq. (5) to density operators with equal bipartite marginals. This leads
to

ε ≤ lim
N→∞

N − 1

N
min

ρ∈Redd
tr [ρh] = min

ρ∈Redd
tr [ρh] .

In order to obtain an inequality in the other direction, we add an additional interac-
tion between the N ’th and the first particle so that the resulting overall Hamiltonian
becomes cyclic on a ring of size N . Since the change in energy is at most ‖h‖, we can
bound

ε ≥ lim
N→∞

1

N

[

−‖h‖ + min
ρ(N )

N∑

i=1

tr
[
ρ(N )hi,i+1

]]

(7)

= lim
N→∞

1

N

[
−‖h‖ + N min

ρ∈Redd
tr [ρh]

]
= min

ρ∈Redd
tr [ρh] . (8)

Here, we have identified the N + 1’st with the first site in Eq. (7) and used for Eq.
(8) that the energy of a translational invariant Hamiltonian with periodic boundary
condition is minimized by a translational invariant state, that is, in particular, by a
state with equal bipartite marginals. 
�
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Theorem 2 For d ≥ 2, the set Redd is not semialgebraic over R.

Proof We will show this by proof of contradiction, starting from the assumption that
Redd is semialgebraic. On an interval I ⊆ R consider a mapping I � γ �→ h(γ ) into
the set of Hermitian matrices on Cd ⊗ Cd with the property that each matrix entry
of h(γ ) is a polynomial function of γ . We may, for instance, consider a simple affine
relation of the form h(γ ) = h0 + γ h1.

Regarding h(γ ) as a parameter-dependent interaction Hamiltonian, the graph of
the corresponding ground state energy density ε(γ ) on the interval I (a semialgebraic
set) can be expressed as

{(
ε(γ ), γ

) ∣
∣ γ ∈ I

} = {
(E, γ ) | E ∈ R, γ ∈ I , (9a)

∃ρ ∈ Redd : tr
[
ρh(γ )

] = E, (9b)

∀σ ∈ Redd : tr
[
σh(γ )

] ≥ E
}
. (9c)

Under the assumptions that h is polynomial and Redd semialgebraic over R, the
Tarski-Seidenberg theorem guarantees that the set defined in Eq. (9) is semialgebraic
since all equations are polynomial and all quantifiers run over semialgebraic sets. The
fact that the quantifiers in Eq. (9) are not at the beginning is not an obstacle since every
first-order formula can be brought to prenex normal form, which is used in Theorem 1.

Consequently, I � γ �→ ε(γ ) is a semialgebraic function and therefore piecewise
algebraic over R. Hence, the proof is completed by any example whose ground state
energy density is transcendental over R (despite the fact that γ �→ h(γ ) is polyno-
mial). The next section will provide such an example for the case d = 2. This also
covers the case of higher dimensions by simply embedding smaller Hilbert spaces into
larger ones. 
�

4 Transcendental ground state energy density

As a special example for the completion of the proof of Theorem 2, we consider the
anisotropic XY-model, which is specified by the two-body Hamiltonian

h(γ ) := (1 − γ )σx ⊗ σx + (1 + γ )σy ⊗ σy, γ ∈ (−1, 1). (10)

Theorem 3 In the thermodynamic limit, the ground state energy density ε(γ ) of the
anisotropic XY-model is an analytic function that is transcendental over R.

Proof The ground state energy density in the thermodynamic limit was derived in [18]
and shown to be

ε(γ ) = − 1

4π

∫ π/2

0

[
1 − (1 − γ 2)

︸ ︷︷ ︸
=:z2

sin2(k)
]1/2

dk =: − 1

4π
E(z), (11)

where E(z) is the complete elliptic integral of the second kind. Suppose that ε is
algebraic overR in some neighborhood. Since the set of algebraic functions is closed
under composition, the same would be true for E . The function E is known to be an
analytic solution to the hypergeometric differential equation
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z(1 − z)E ′′ + (
c − (a + b + 1)z

)
E ′ = abE, (12)

for (a, b, c) = (−1/2, 1/2, 1) (see 17.3.10 and 15.5.1 in [1]). Due to the analyticity
of E , we can extend the view to the complex plane such that a supposed polynomial
relation over R would imply one over C.

Differential equations of the kind of Eq. (12) have an algebraic solution if and only
if they have a finite monodromy group (cf. Thm. 5.11 in [13]). For Eq. (12), these
cases were completely characterized by Schwarz in [22], who determined a complete
list of corresponding triples (a, b, c) (summarized, e.g., in Tab.2 of [4]), which does
not contain (a, b, c) = (−1/2, 1/2, 1). Consequently, E and therefore also ε are
transcendental functions over R. 
�

5 Extensions and implications

The fact that Redd is not semialgebraic overR implies that no algebraic ansatz (with
or without transcendental parameters) can describe the set exactly without invoking
a limit of infinitely many variables. The best-known example is the set of matrix
product states with increasing bond dimension. This raises the question of whether
supplementing algebraicmethodswith transcendental functions could enable afinitary,
explicit description ofRedd . In [11], for instance, entropy constraints,which are known
to be transcendental [3, 8], are used in addition.

Evidence against such finitary descriptions we can see from two sides: First,
functions related to elliptic integrals [as in Eq. (11)] can often be shown to be non-
elementary [15, 16] in the sense that they cannot be expressed in terms of algebraic and
elementary transcendental functions—neither explicitly nor implicitly.At themoment,
however, we do not know exactly what the implications are for Redd .Wewill therefore
pursue a second line of thought more closely.

We want to allow the additional use of the exponential function exp (and thereby
implicitly also of ln). To this end, denote by Rexp := (R,+, ·, exp ,<, 0, 1) the
ordered field of real numbers with exponentiation, and call a subset A ⊆ Rn definable
in the first-order language of Rexp if a ∈ A ⇔ 
(a) for some first-order formula 
.
That is, there is a k ∈ N and a Boolean combination φ of finitely many (in-)equalities
of polynomial1 and exponential functions in n + k real variables, s.t.


(a) = Q1b1 · · · Qkbk φ(a1, . . . , an, b1, . . . , bk), (13)

where each Qi ∈ {∃,∀} is a quantifier. Unlike forR there is no quantifier elimination
forRexp [24]. However, in [20]Macintyre andWilkie proved that the first-order theory
of Rexp is decidable conditioned on the validity of the following:

Conjecture 1 (Schanuel’s conjecture (cf. Chap.21 in [19])) If z1, . . . , zn ∈ C are
linearly independent overQ, then {z1, . . . , zn, exp z1, . . . , exp zn} contains at least n
algebraically independent numbers.2

1 with algebraic coefficients.
2 A set of numbers is called algebraically independent if there is no nonzero multivariate polynomial with
coefficients in Q that has these numbers as roots.
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Schanuel’s conjecture can be considered the central conjecture of transcendental
number theory. The best-known proven special case is the one where all zi ’s are alge-
braic numbers. Then this becomes the content of the Lindemann-Weierstrass theorem.

Returning to the set of reduced density matrices, we obtain the following:

Theorem 4 Assuming Schanuel’s conjecture, there exists a d ∈ N such that the set
Redd is not definable in the first-order language ofRexp .

Proof By the results of [2, 9] there is a d ∈ N and a family of interaction Hamiltonians
h onCd ⊗Cd with matrix entries inQ[√2] (and thus expressible inRexp ) such that
the ground state energy density problem

∀ρ ∈ Redd : tr [hρ] > 0 (14)

is undecidable. Assuming that Redd was definable in the first-order language ofRexp ,
then Eq. (14) would be expressible as a sentence in the first-order language of Rexp .
So according to the result of Macintyre and Wilkie [20], Eq. (14) would be decidable
if we assume Schanuel’s conjecture. 
�

As shown in [7], Schanuel’s conjecture in Theorem 4 can be replaced by the so-
called transfer conjecture, which also implies decidability of the first-order theory of
Rexp . Moreover, there are closely related results that do not rely on any unproven
conjecture. For instance, it was proven in [21] that sentences in the first-order theory
of Rtrans, for a transcendental function trans ∈ {exp, ln, arctan, . . .}, are decidable if
only the outermost quantified variable occurs in the transcendental function.
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