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Abstract
A quantum channel is sufficient with respect to a set of input states if it can be reversed
on this set. In the approximate version, the input states can be recovered within an
error bounded by the decrease of the relative entropy under the channel. Using a
new integral representation of the relative entropy in Frenkel (Integral formula for
quantum relative entropy implies data processing inequality,Quantum 7, 1102 (2023)),
we present an easy proof of a characterization of sufficient quantum channels and
recoverability by preservation of optimal success probabilities in hypothesis testing
problems, equivalently, by preservation of L1-distance.
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1 Introduction

One of the fundamental properties of quantum relative entropy is monotonicity under
quantum channels, or the data processing inequality (DPI):

D(�(ρ)‖�(σ)) ≤ D(ρ‖σ) (1)

for any pair of quantum states ρ, σ and any completely positive trace preserving map,
[32, 52]. The DPI implies other important quantum entropic inequalities, such as
the Holevo bound [18], strong subadditivity of von Neumann entropy (SSA) [31] or
the joint convexity of relative entropy. In fact, SSA, joint convexity and DPI are all
equivalent, see [44] and the proof of DPI in [32] is based on the SSA.
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The question when the data processing inequality becomes an equality for a com-
pletely positive map and a pair of states was first answered by Petz [38, 39], who
proved that, provided the relative entropy D(ρ‖σ) is finite, equality occurs if and only
if the two states can be fully recovered. This means that there exists a channel � such
that � ◦�(ρ) = ρ and � ◦�(σ) = σ . In this case, we say that the channel � is suffi-
cient with respect to the pair of states {ρ, σ }, in analogy with the classical notion of a
statistic sufficient with respect to a family of probability distributions. Moreover, Petz
proved that there exists a universal recovery channel �σ , such that �σ ◦ �(σ) = σ

and we have �σ ◦ �(ρ) = ρ if and only if the channel � is sufficient with respect to
{ρ, σ }.

Sufficiency, or sometimes called reversibility, of channels was studied in a number
of subsequent works and several characterizations and applications were found, [17,
20, 24, 25, 33, 35, 46]. In particular, equality conditions for various forms of DPI were
studied, e.g. [27, 30, 44], and their relation to sufficiency were examined for other
information theoretic or statistical quantities, such as different versions of quantum
f -divergences [15, 16], quantumRényi relative entropies [15, 21–23], Holevo quantity
[45], Fisher information and L1-distance [20].

An approximate version of sufficiency, called (approximate) recoverability is a
much stronger result stating that if the decrease in the relative entropy is small, there
exists a channel that recovers σ perfectly while ρ is recovered up to a small error. First
result of this form was proved in the work of Fawzi and Renner [8], who considered
approximate quantum Markov chains. This was soon extended to more general chan-
nels [28, 48, 49, 53] and a variety of quantities such as f -divergences [4, 5], optimized
f -divergences [11] and Fisher information [12]. An important result in this context
is existence of an universal recovery channel �u

σ depending only on the state σ such
that [28]

D(ρ‖σ) − D(�(ρ)‖�(σ)) ≥ −2 log F(ρ,�u
σ ◦ �(ρ)) ≥ ‖ρ − �u

σ ◦ �(ρ)‖21,

here ‖ · ‖1 denotes the trace norm and F(ρ, σ ) = ‖ρ1/2σ 1/2‖1 is the fidelity. See also
[6, 7, 11] for the respective results for normal states of von Neumann algebras.

In the simplest setting of quantum hypothesis testing, the null hypothesis H0 = σ is
tested against the alternative H1 = ρ. The tests are represented by operators 0 ≤ M ≤
I , with the interpretation that Tr [ωM] is the probability of rejecting the hypothesis
if the true state is ω. For the test represented by M , the Bayes error probability for
λ ∈ [0, 1] is expressed as

Pe(λ, ρ, σ, M) = λTr [σM] + (1 − λ)Tr [ρ(I − M)]

and the test is Bayes optimal for λ if this error probability is minimal over all possible
tests. It is quite clear that if we replace the states by �(σ) and �(ρ), the achievable
error probabilities cannot be decreased. It is a natural question when the optimal
error probabilities are preserved under �, which is equivalent to preservation of the
L1-norm:

‖ρ − sσ‖1 = ‖�(ρ) − s�(σ)‖1, ∀s. (2)
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In classical statistics, the theorem of Pfanzagl [40, 47] states that if the achievable
error probabilities for a pair of probability measures {P0, P1} do not increase after
transformation by a statistic T , then T must be sufficient with respect to {P0, P1}.
The corresponding result for quantum channels was investigated in [20, 26], and
in [34] where more general risk functions for decision problems were considered.
The equivalent question of preservation of the L1-distance, with applications to error
correction,was studied in [2, 50]. In all theseworks, additional conditionswere needed,
such as the equalities have to be assumed either for larger sets of states with a special
structure, or for any number of copies of ρ and σ . The case when ρ and σ commute,
or the channel � has commutative range, was solved in [20].

Many of the results on recoverability of channels rely on an integral representation
of the relative entropies or other quantities in question such as f -divergences. These
formulas are based on integral representation of operator convex functions. Recently,
a new integral formula for the relative entropy of positive semidefinite matrices was
proved in [9]. This formula can be easily extended to infinite dimensional Hilbert
spaces and rewritten in terms of the optimal Bayes error probabilities. We use this
formula for simple proofs of a characterization of recoverability of quantum chan-
nels by preserving hypothesis testing error probabilities, or equivalently L1-distances,
without any additional assumptions needed in the previous works.

2 Preliminaries

Throughout this paper, H is a Hilbert space and we denote by T (H) the set of oper-
ators with finite trace and by S(H) the set of states (density operators) on H, that is,
positive operators of trace 1. For a self-adjoint operator A ∈ B(H), A± denotes the
positive/negative part of A and for A ≥ 0, we denote the projection onto the support
of A by supp(A). The L1-distance in T (H) is defined as

‖S‖1 := sup
‖A‖≤1

Tr [AS] = Tr |S|, S ∈ T (H).

If S ∈ T (H) is self-adjoint, then we have

Tr [S+] = sup
0≤M≤I

Tr [MS], Tr [S−] = − inf
0≤M≤I

Tr [MS]

and Tr [S±] = 1
2 (‖S‖1 ± Tr [S]).

A quantum channel � is a completely positive trace preserving map T (H) →
T (K). The adjoint of � is the map �∗ : B(K) → B(H), defined by

Tr [�∗(A)ρ] = Tr [A�(ρ)], A ∈ B(H), ρ ∈ S(H).

It is easily seen that �∗ is completely positive and unital.
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For positive operators ρ, σ ∈ T (H), the quantum relative entropy is defined as

D(ρ‖σ) =
{
Tr [ρ(log(ρ) − log(σ ))], supp(ρ) ≤ supp(σ )

∞, otherwise.

Relative entropy satisfies the data processing inequality (1) which holds for any pair
of states ρ, σ and any quantum channel � : T (H) → T (K).

2.1 Quantum hypothesis testing and L1-distance

In the problem of hypothesis testing, the task is to test the hypothesis H0 = σ against
the alternative H1 = ρ. Any test is represented by an effect onH, that is, an operator
0 ≤ M ≤ I , corresponding to rejecting the hypothesis. For a test M , the error
probabilities are

α(M) = Tr [σM], β(M) = Tr [ρ(I − M)].

For λ ∈ (0, 1), we define the Bayes optimal test as the minimizer of

Pe(λ, σ, ρ, M) := λα(M) + (1 − λ)β(M) = (1 − λ)(1 − Tr [(ρ − sσ)M]),
s = λ

1 − λ
.

The proof of the following description of the Bayes optimal tests can be found in [26].

Lemma 1 (QuantumNeyman-Pearson)Letρ, σ be states,λ ∈ (0, 1) and put s = λ
1−λ

.
A test M is a Bayes optimal test for λ, σ, ρ if and only if

M = Ps,+ + Xs, 0 ≤ Xs ≤ Ps,0,

where Ps,± = supp((ρ − sσ)±) and Ps,0 = I − Ps,+ − Ps,−. The optimal error
probability is then

Pe(λ, σ, ρ) := max
M

Pe(λ, σ, ρ, M) = (1 − λ)(1 − Tr [(ρ − sσ)+])
= (1 − λ)(s − Tr [(ρ − sσ)−])
= 1

2
(1 − (1 − λ)‖ρ − sσ‖1).

It is easily seen that the error probabilities and the related quantities in the above
lemma are monotone under channels, in particular,

Pe(λ,�(σ),�(ρ)) ≥ Pe(λ, σ, ρ),

‖�(ρ) − s�(σ)‖1 ≤ ‖ρ − sσ‖1,
Tr [(�(ρ) − s�(σ))−] ≤ Tr [(ρ − sσ)−].
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In fact, monotonicity holds if � is a positive trace preserving map, so complete posi-
tivity is not needed.

2.2 Integral formula for the relative entropy

The followingnew integral representationof the relative entropywasprovedbyFrenkel
in [9], in the case dim(H) < ∞.

Theorem 1 Let ρ, σ be positive operators in T (H). Then

D(ρ‖σ) = Tr [ρ − σ ] +
∫ ∞

−∞
dt

|t |(1 − t)2
Tr [((1 − t)ρ + tσ)−].

Proof By [9, Theorem 6], the equality holds if dim(H) < ∞.Wewill now prove that it
can be extended to the casewhen dim(H) = ∞. Assume first that supp(ρ) ≤ supp(σ ),
so that wemay assume that σ is faithful andH is separable by restriction to the support
of σ . We will use a standard limiting argument to extend the finite dimensional result
to the separable case.

Let Pn be an increasing sequence of finite rank projections such that ∨n Pn = I .
Put ρn = PnρPn , σn = Pnσ Pn . Then restricted to the finite dimensional space PnH,
ρn and σn are positive semidefinite operators with supp(ρn) ≤ supp(σn). Moreover,
limn Tr [ρn] = Tr [ρ], limn Tr [σn] = Tr [σ ] and by [14, Theorem 4.5] we have
D(ρ‖σ) = limn D(ρn‖σn).

For t ∈ R and n ∈ N, put

fn(t) := Tr [((1 − t)ρn − tσn)−], f (t) := Tr [((1 − t)ρ − tσ)−].

Then

fn(t) = Tr [(tσn − (1 − t)ρn)+] = sup
0≤Mn≤Pn

Tr [Mn(tσ − (1 − t)ρ)]

≤ sup
0≤Mn+1≤Pn+1

Tr [Mn+1(tσ − (1 − t)ρ)] = Tr [((1 − t)ρn+1 − tσn+1)−]

= fn+1(t),

where the inequality follows from 0 ≤ Mn ≤ Pn ≤ Pn+1. Furthermore, since Pn → I
in the strong operator topology, we have using [13, Theorem 1] that

‖Pn((1 − t)ρ − tσ)Pn‖1 → ‖(1 − t)ρ − tσ‖1.

It follows that

fn(t) = 1
2 (‖(1 − t)ρn − tσn‖1 − Tr [(1 − t)ρn − tσn])

→ 1
2 (‖(1 − t)ρ − tσ‖1 − Tr [(1 − t)ρ − tσ))

= f (t).
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Hence fn is an increasing sequence of positive integrable functions converging point-
wise to f . Since the integral formula holds in finite dimensions, we see using the
Lebesgue monotone convergence theorem that

D(ρ‖σ) = lim
n

D(ρn‖σn) = lim
n

(
Tr [ρn − σn] +

∫ ∞

−∞
dt

|t |(1 − t)2
fn(t)

)

= Tr [ρ − σ ] +
∫ ∞

−∞
dt

|t |(1 − t)2
f (t).

If supp(ρ) �≤ supp(σ ), then there is some projection Q such that Tr [σQ] = 0 and
c := Tr [ρQ] > 0. Then for any t > 1 we have

Tr [((1 − t)ρ − tσ)−] ≥ Tr [Q(tσ − (1 − t)ρ)] = (t − 1)c

and hence

∫ ∞

−∞
dt

|t |(t − 1)2
Tr [((1 − t)ρ − tσ)−] ≥ c

∫ ∞

1

dt

t(t − 1)
= ∞.

In this case we also have D(ρ‖σ) = ∞ by definition. �

The integral formula leads to an easy proof of the fact that DPI for the relative
entropy holds for all positive trace preserving maps. This fact was first proved in [36],
using interpolation techniques.

For our purposes, the following form of the integral formula will be useful.

Corollary 1 Let ρ, σ ∈ S(H). Then for any λ,μ ≥ 0 such that μσ ≤ ρ ≤ λσ , we
have

D(ρ‖σ) =
∫ λ

μ

ds

s
Tr [(ρ − sσ)−] + log(λ) + 1 − λ.

Proof Since ((1 − t)ρ + tσ)− = 0 for t ∈ [0, 1], the integral splits into two parts,
integrating over t ≤ 0 and t ≥ 1. For the first integral, since 1 − t > 0, we have
((1 − t)ρ + tσ)− = (1 − t)(ρ − t

t−1σ)− and

∫ 0

−∞
dt

−t(1 − t)2
Tr [(1 − t)ρ + tσ ]− =

∫ 0

−∞
dt

t(t − 1)
Tr [(ρ − t

t − 1
σ)−]

=
∫ 1

0

ds

s
Tr [(ρ − sσ)−]

=
∫ 1

μ

ds

s
Tr [(ρ − sσ)−].
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For t ≥ 1, we use ((1 − t)ρ + tσ)− = ((t − 1)ρ − tσ)+ = (t − 1)(ρ − t
t−1σ)+

and inserting into the integral, we obtain

∫ ∞

1

dt

t(t − 1)2
Tr [((1 − t)ρ + tσ)−] =

∫ ∞

1

ds

s
Tr [(ρ − sσ)+]

=
∫ λ

1

ds

s
Tr [(ρ − sσ)+].

The proof is finished by using the equality Tr [(ρ − sσ)+] = 1− s +Tr [(ρ − sσ)−].
�

Remark 1 The smallest value of λ in the above expression is related to the quantum
max-relative entropy defined as

Dmax(ρ‖σ) := logmin{λ, ρ ≤ λσ }.

Similarly, the largest value of μ is e−Dmax(σ‖ρ). An important related quantity is the
Hilbert projective metric [3]

D
(ρ‖σ) := Dmax(ρ‖σ) + Dmax(σ‖ρ).

See [41–43] for more details and interpretations in the context of quantum information
theory.Note also thatwemay always putμ = 0 and if dim(H) < ∞, then the condition
that ρ ≤ λσ for some λ > 0 is equivalent to supp(ρ) ≤ supp(σ ), so it holds whenever
D(ρ‖σ) is finite. In infinite dimensions, this condition is much more restrictive.

2.3 Sufficiency and recoverability for quantum channels

The following definition first appeared in [39] and can be seen as a quantum general-
ization of the classical notion of a sufficient statistic.

Definition 1 We say that a channel � : B(H) → B(K) is sufficient with respect to a
set of states S ⊆ S(H) if there exists a channel � : B(K) → B(H) such that

� ◦ �(ρ) = ρ, ∀ρ ∈ S.

For a state σ ∈ S(H), we define an inner product 〈 ·, · 〉σ in B(supp(σ )) by

〈 A, B 〉σ := Tr [A∗σ 1/2Bσ 1/2], A, B ∈ B(supp(σ )).

It was proved in [39] that the (unique) linear map �σ : T (supp(�(σ))) →
T (supp(σ )) determined by

〈�∗(B), A 〉σ = 〈 B,�∗
σ (A) 〉�(σ), A ∈ B(supp(σ )), B ∈ B(supp(�(σ)))

is a channel, called the Petz dual of � with respect to σ (or the Petz recovery map).
Note that we always have �σ ◦ �(σ) = σ and as it was further proved in [39], if
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both σ and �(σ) are faithful, then � is sufficient with respect to S if and only if
�σ ◦ �(ρ) = ρ for all ρ ∈ S, so that �σ is a universal recovery channel.

Remark 2 If dim(H) < ∞, we obtain the familiar form of the Petz recovery channel:

�σ (·) = σ 1/2�∗(�(σ)−1/2 · �(σ)−1/2)σ 1/2.

We also define

�σ,t (·) = σ−i t�σ (�(σ)i t · �(σ)−i t )σ i t , t ∈ R

and

�σ,μ(·) =
∫ ∞

−∞
�σ,t (·)dμ(t),

for a probability measureμ onR. Clearly, all these maps are channels T (supp(�(σ)))

→ T (supp(σ )) that recover the state σ .

Theorem 2 Assume that ρ, σ ∈ S(H) are such that D(ρ‖σ) < ∞. Then the following
are equivalent.

(i) � is sufficient with respect to {ρ, σ };
(ii) D(�(ρ)‖�(σ)) = D(ρ‖σ);
(iii) �σ,t ◦ �(ρ) = ρ, for some t ∈ R;
(iv) �σ,t ◦ �(ρ) = ρ, for all t ∈ R;
(v) �σ,μ ◦ �(ρ) = ρ for some probability measure μ.

Proof In finite dimensions the proof follows from [53, Theorem 3.3]. The proof in the
general case will be given in the Appendix. �

The following is an approximate version of sufficiency of channels, called recov-
erability of �.

Theorem 3 [28] Let σ ∈ S(H). Then for any channel� : T (H) → T (K) there exists
a channel �u

σ : T (K) → T (H) such that �u
σ ◦ �(σ) = σ and for any ρ ∈ S(H) we

have

D(ρ‖σ) ≥ D(�(ρ)‖�(σ)) − 2 log F(ρ,�u
σ ◦ �(ρ))

≥ D(�(ρ)‖�(σ)) + 1

4
‖ρ − �u

σ ◦ �(ρ)‖21.

In the above theorem, F(ρ0, ρ1) is the fidelity

F(ρ0, ρ1) = ‖ρ1/2
0 ρ

1/2
1 ‖1.

The second inequality in Theorem 3 is obtained using the inequality− log(x) ≥ 1− x
for x ∈ (0, 1) and the Fuchs-van de Graaf inequality, [10].
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The universal recovery channel �u
σ can be chosen as

�u
σ (·) = �σ,β0(P · P) + Tr [(I − P)·], (3)

here P = supp(�(σ)) and β0 is the probability density function

β0(t) = π

cosh(2π t) + 1
.

Note that if supp(ρ) ≤ supp(σ ), then supp(�(ρ)) ≤ supp(�(σ)), so that
�u

σ (�(ρ)) = �σ,β0(�(ρ)) and the statement in this case followsby [28,Theorem2.1].
If supp(ρ) �≤ supp(σ ), then D(ρ‖σ) = ∞ and the inequality holds trivially.

3 Sufficiency and recoverability by hypothesis testing

The characterization in Theorem 2 and the integral formula in Corollary 1 now give an
easy proof of characterization of sufficiency and recoverability by quantities related
to hypothesis testing. Note that here we do not have to make any further assumptions
about the states.

Theorem 4 Let � : T (H) → T (K) be a channel and let ρ, σ ∈ S(H). Then the
following are equivalent.

(i) Pe(λ,�(ρ),�(σ)) = Pe(λ, ρ, σ ), for all λ ∈ [0, 1];
(ii) ‖�(ρ) − s�(σ)‖1 = ‖ρ − sσ‖1, for all s ≥ 0;
(iii) Tr [(�(ρ) − s�(σ))+] = Tr [(ρ − sσ)+], for all s ≥ 0;
(iv) Tr [(�(ρ) − s�(σ))−] = Tr [(ρ − sσ)−], for all s ≥ 0;
(v) � is sufficient with respect to {ρ, σ }.

Proof The equivalences between (i)-(iv) are clear from Lemma 1. Assume that (iv)
holds. Suppose first that ρ ≤ λσ for some λ > 0. Then also �(ρ) ≤ λ�(σ) and we
have by Corollary 1

D(�(ρ)‖�(σ)) =
∫ λ

0

ds

s
Tr [(�(ρ) − s�(σ))−] + log(λ) + 1 − λ

=
∫ λ

0

ds

s
Tr [(ρ − sσ)−] + log(λ) + 1 − λ = D(ρ‖σ).

By Theorem 2, this implies (v). In the general case, let σ0 = 1
2 (ρ + σ), then ρ ≤ 2σ0

and it is easily seen that the equality (ii) implies a similar equality with σ replaced
by σ0. It follows that � is sufficient with respect to {ρ, σ0}, which implies (v). The
implication (v) �⇒ (ii) follows from monotonicity of the L1-distance. �

We are now interested in a similar result for recoverability. Assume first that there
is a channel � : T (K) → T (H) such that � ◦ �(σ) = σ and ‖� ◦ �(ρ) − ρ‖1 ≤ ε.
We then have

‖ρ−sσ‖1 = ‖ρ−�◦�(ρ)+�◦�(ρ)−s�◦�(σ)‖1 ≤ ‖�(ρ)−s�(σ)‖1+ε. (4)
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Using Lemma 1, we see that the resulting inequality in (4) is equivalent to any of the
following inequalities

Tr [(�(ρ) − s�(σ))+] ≥ Tr [(ρ − sσ)+] − ε

2
, s ≥ 0 (5)

Tr [(�(ρ) − s�(σ))−] ≥ Tr [(ρ − sσ)−] − ε

2
, s ≥ 0 (6)

Pe(λ,�(σ),�(ρ)) ≤ Pe(λ, σ, ρ) + 1 − λ

2
ε, λ ∈ [0, 1]. (7)

The following result gives the converse statement. Note that here we will need
the assumption that the Hilbert projective metric D
(ρ‖σ) is finite, equivalently, that
μσ ≤ ρ ≤ λσ for some μ, λ > 0 (see Remark 1), to get a nontrivial result.

Theorem 5 Let ρ, σ ∈ S(H) and let � : T (H) → T (K) be a quantum channel. If

‖�(ρ) − s�(σ)‖1 ≥ ‖ρ − sσ‖1 − ε, ∀s ≥ 0

holds for some ε ≥ 0, then there exists a channel � : T (K) → T (H) such that
� ◦ �(σ) = σ and

‖� ◦ �(ρ) − ρ‖1 ≤ √
2εD
(ρ‖σ)1/2.

Moreover, we may take � = �u
σ as in (3).

Proof The statement is trivial if D
(ρ‖σ) = ∞, so assume that μσ ≤ ρ ≤ λσ for
μ, λ > 0,μ = e−Dmax(σ‖ρ) and λ = eDmax(ρ‖σ). Then alsoμ�(σ) ≤ �(ρ) ≤ λ�(σ).
By the assumptions, inequality (6) holds. Using Corollary 1, we get

D(ρ‖σ) − D(�(ρ)‖�(σ)) =
∫ λ

μ

ds

s

(
Tr [(ρ − sσ)−] − Tr [(�(ρ) − s�(σ))−])

≤ ε

2

∫ λ

μ

1

s
ds = ε

2

(
log(λ) − log(μ)

) = ε

2
D
(ρ‖σ).

The statement now follows by Theorem 3. �
Remark 3 The recoverability result can be also formulated in the setting of com-
parison of statistical experiments, which is an extension of the classical theory of
Blackwell [1], Törgersen [51] and Le Cam [29]. A (quantum) statistical experiment
is any parametrized family of (quantum) states. For two experiments E and E0 with
the same parameter set (not necessarily living on the same Hilbert space), we say that
E0 is (2, ε)-deficient with respect to E if the error probabilities of testing problems
involving elements of E0 are up to ε not worse than those of corresponding testing
problems for E . See [19] for a more precise definition. In particular, for E0 = {ρ0, σ0}
and E = {ρ, σ }, this amounts to the condition

Pe(λ, ρ0, σ0) ≤ Pe(λ, ρ, σ ) + ε, ∀λ ∈ [0, 1].
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Using Lemma 1, we see that this is equivalent to any of the inequalities

‖ρ0 − sσ0‖1 ≥ ‖ρ − sσ‖1 − 2ε(1 + s), s ≥ 0

Tr [(ρ0 − sσ0)+] ≥ Tr [(ρ − sσ)+] − ε(1 + s), s ≥ 0

Tr [(ρ0 − sσ0)−] ≥ Tr [(ρ − sσ)−] − ε(1 + s), s ≥ 0.

It is easily seen that this is true if there is some channel � such that ‖�(ρ0)−ρ‖1 ≤ ε

and ‖�(σ0) − σ‖1 ≤ ε. In the classical case the converse holds, but in the quantum
case this is not true. We can obtain some form of the converse statement if ρ0 = �(ρ)

and σ0 = �(σ), in a similar way as in Theorem 5.

A Appendix: Proof of Theorem 2

The implication (i) �⇒ (ii) follows by the data processing inequality (1), (ii) �⇒
(iii) (with t = 0) was proved in [24, 39]. The implications (iii) �⇒ (i) and (iv) �⇒
(v) �⇒ (i) are easy, so the only thing left to prove is (i) �⇒ (iv).

By the assumption D(ρ‖σ) < ∞, we have that supp(ρ) ≤ supp(σ ) and also
supp(�(ρ)) ≤ supp(�(σ). We may therefore assume that both σ and �(σ) are
faithful, by restriction to the respective supports.

With this assumption,wewill also need to recall some further properties of sufficient
channels from [24, 39]. Let us denote by ut and vt the Connes cocycles

ut = ρi tσ−i t , vt = �(ρ)i t�(σ)−i t , t ∈ R,

then ut and vt are one-parameter families of isometries satisfying the conditions

σ isutσ
−is = u∗

s ut+s, �(σ)isvt�(σ)−is = v∗
s vt+s, s, t ∈ R.

By the results of [24, 39], we can see that if� is sufficientwith respect to {ρ, σ }, then ut
is in the multiplicative domain of the unital completely positive map�∗

σ and similarly
vt is in the multiplicative domain of �∗, see [37, Theorem 3.18] for the definition and
properties of multiplicative domains. Moreover, �∗(vt ) = ut and �∗

σ (ut ) = vt . It
follows that for any s, t ∈ R,

�∗(�(σ)i tvs�(σ)−i t ) = �∗(v∗
t vs+t ) = u∗

t us+t = σ i t usσ
−i t

and similarly �∗
σ (σ i t usσ−i t ) = �(σ)i tvs�(σ)−i t . Let now A ∈ B(H), we have for

all s, t ∈ R,

〈 σ i t us A
∗σ−i t , σ i t usσ

−i t 〉σ = 〈 us A∗, us 〉σ = Tr [Aρisσ 1/2−isρis
s σ 1/2−is]

and the analytic continuation to s = − 1
2 i of the last expression becomes Tr [Aρ].

On the other hand, using the above properties of the cocycles and of multiplicative
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domains, we get by the definition of the Petz dual

〈 σ i t us A
∗σ−i t , σ i t usσ

−i t 〉σ
= 〈 σ i t us A

∗σ−i t ,�∗(�(σ)i tvs�(σ)−i t ) 〉σ
= 〈�∗

σ (σ i t us A
∗σ−i t ),�(σ)i tvs�(σ)−i t 〉�(σ)

= 〈�(σ)i tvs�(σ)−i t�∗
σ (σ i t A∗σ−i t ),�(σ)i tvs�(σ)−i t 〉�(σ)

= Tr [�∗
t,σ (A)�(ρ)is�(σ)1/2−is�(ρ)is�(σ)1/2−is],

here the analytic continuation to s = − 1
2 i equals

Tr [�∗
t,σ (A)�(ρ)] = Tr [A�t,σ (�(ρ))].

Since A and t were arbitrary, this finishes the proof of (i) �⇒ (iv).
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