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Abstract
The bifunctional formalism presents an alternative how to obtain the functional
value from its functional derivative by exploiting homogeneous density scaling. In
the bifunctional formalism the density dependence of the functional derivative is
suppressed. Consequently, those derivatives have to be treated as formal functional
derivatives. For a pointwise correspondence between the true and the formal functional
derivative, the bifunctional expression yields the same value as the density functional.
Within the bifunctional formalism the functional value can directly be obtained from its
derivative (while the functional itself remains unknown). Since functional derivatives
are up to a constant uniquely defined, this approach allows for a pointwise compari-
son between approximate potentials and reference potentials. This aspect is especially
important in the field of orbital-free density functional theory, where the burden is
to approximate the kinetic energy. Since in the bifunctional approach the potential
is approximated directly, full control is given over the latter, and consequently over
the final electron densities obtained from variational procedure. Besides the bifunc-
tional formalism itself another concept is introduced, dividing the total non-interacting
kinetic energy into a known functional part and a remainder, calledPauli kinetic energy.
Only the remainder requires further approximations. For practical purposes sufficiently
accurate Pauli potentials for application on atoms, molecular and solid-state systems
are presented.

Keywords Density functional theory · Bifunctional formalism · Formal functional
derivatives · Non-interacting kinetic energy
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1 Introduction

Density functional theory (DFT) [33] has probably become the most popular work-
horse for quantum mechanical calculations among chemists and physicists with a
wide application on molecular and solid-state systems [4,7]. On one side, nowadays
density functional theory is understood to be Kohn–Sham DFT (KS-DFT) [36], a
variant of DFT where some amount of the electron–electron interaction is approxi-
mated by the so-called exchange-correlation functional, while the kinetic energy is
obtained from the eigenfunctions of a fictitious system of N non-interacting particles
having the same electron density like the system of interest. Consequently, the KS
method requires solving a system of N coupled differential equations similar to the
wavefunction-based Hartree-Fock method [50]. On the other side, the Hohenberg-
Kohn theorems [33] provide the theoretical foundation for a purely density-based
quantum mechanical treatment of matter, circumventing the need of solving for the
KS eigenfunctions. Instead, in an orbital-free density functional formalism, a single
equation, the so-called Euler equation [43], yields the minimizing electron density via
functional differentiation of the total energy under the constraint that the density stays
normalized to the number of electrons N .

This method, however, requires the knowledge of the electronic kinetic energy as
a functional of the electron density or at least some reasonable approximation to it.
Unlike the exchange-correlation energy, being roughly 10% of the total energy, the
kinetic energy is of the order of magnitude as the total energy itself. Thus, reliable
approximations for the kinetic energy are the crucial point in orbital-free density func-
tional theory (OF-DFT). The most well-known kinetic energy functional is probably
the Thomas–Fermi approximation, derived independently by Thomas [51] and Fermi
[12] in 1927 and 1928, respectively. However, conventional density-gradient expan-
sions do not form a convergent series [11]. Therefore, empirical convergence studies,
known under the term generalized-gradient expansion (GGA), emerged as a rapidly
evolving research field among theoretical physicists and chemists. While success-
ful in case of approximations for the electron–electron interaction, a straightforward
application in case of the kinetic energy seems to be more difficult. An elusive study
about the compatibility of various constraints in the design ofGGA-type kinetic energy
approximations can be found here [34]. Other types of functional approximations have
been developed and tested, among them functional approximations that are based on
information theoretical aspects [29,30] or expansions in terms of density moments [3].
While special model cases, like for example one-dimensional systems [8,47], allow
for analytic expressions for the electronic kinetic energy, a general analytic treatment
for three-dimensional Coulomb systems is still out of reach. Note that, applications
within the field of chemistry and material science require correct treatment of atomic,
molecular and solid-state systems, which all fall under the latter category. The lack
of sufficiently accurate functional approximations for the kinetic energy has been the
major drawback within the last fifty years, preventing realistic applications in the field
of OF-DFT [34]. The problem here is not to properly model the kinetic energy for a

123



The bifunctional formalism: an alternative treatment... Page 3 of 27 4

given system of interest (what can always be achieved numerically by inversion of the
KS equations or by a convenient choice of suitable parameters), but to properly model
kinetic energy differences, e.g., for a molecule with varying nuclear coordinates or
differentmolecular/solid-state systems. However, providing sufficiently accurate bond
distances is a mandatory prerequisite in quantum chemical modeling.

Lately, it has been shown that the recently introduced bifunctional formalism
together with the subsequently applied atomic fragment approximation yields suf-
ficiently accurate kinetic energies (and energy differences) able to properly model
chemical bonding [20,21,24].Note that the bifunctional formalismemployed, here, has
to be distinguished from the bifunctional construction of Lieb [44]. The bifunctional
formalism employed, in the present work, is an exact reformulation of the respective
density functional formalism and allows to extract the functional value with the help
of its respective functional derivative, the potential. While this part of the formalism
is, in principle, exact, realistic applications in chemistry require sufficiently accurate
potential approximations. It has been shown lately that based on chemical reason-
ing numerically accurate approximations can be generated in order to model chemical
bonding in molecules [20,21,24]. Further development of kinetic energy functionals is
an active research topic for theoretical chemists and physicists in the field of OF-DFT
for either puristic reasons and ongoing interest in the original variant of DFT or for
the promising computational benefit in large-scale applications. Besides that, a reli-
ably working OF-DFT scheme provides considerable conceptual benefit as it allows
to treat solid-state calculations within a pure real-space approach and, thus, permits to
treat real crystals by omitting the requirement of fully obeying translational symmetry,
and therefore, without the concept of bandstructures. The recently introduced bifunc-
tional approach would certainly benefit from further mathematical investigations and
hopefully attracts interest from mathematically inclined researchers as there remain a
number of open questions due to the nature of the introduced bifunctional expression
while still being close to the conventional density functional formalism.

The paper is organized as follows: Sects. 2 and 3 briefly review the KS and
the OF-DFT method, respectively. In Sect. 3.1 a few problems of conventional
gradient expansion techniques are addressed. A less conventional splitting of the non-
interacting kinetic energy into a bosonic and a fermionic term is, therefore, presented
in Sect. 3.2. The method allows to split the kinetic energy into a known density func-
tional, the von Weizsäcker kinetic energy, and a remainder, the so-called Pauli term,
that—in general—needs further approximations. After a detailed introduction of the
bifunctional formalism in Sect. 4, the method is applied to the von Weizsäcker term
and the Pauli kinetic energy in Sects. 4.1 and 4.2, respectively. Since the Weizsäcker
term is known analytically in terms of the electron density, while the Pauli kinetic
energy is not, Sect. 4.1 is meant to demonstrate the numerical equivalence of the
Weizsäcker kinetic energy in the density functional formalism and the bifunctional
formalism. It is shown that the ambiguity of the kinetic energy density, see Sect. 2,
is transferred to the bifunctional kernel. The functional derivative, however, is up to
a constant [41] uniquely defined, and thus, the bifunctional approach allows for a
direct comparison of approximate and KS-based potentials. This advantage is espe-
cially helpful when addressing the Pauli kinetic energy, see Sect. 4.2. Approximate
numerical Pauli potentials for atoms, molecules, and extended systems are given in
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Sects. 4.2.1, 4.2.2, and 4.2.3, respectively. Finally, a discussion section compiling the
advantages of the approach and the remaining open questions are given in Sects. 5.1
and 5.2, respectively, before the concluding remarks concerning the bifunctional for-
malism are shortly summarized in Sect. 6.

2 Kohn–Sham density functional theory

The currently used form of density functional theory for molecular and solid-state
applications is Kohn–Sham density functional theory (KS-DFT) [36]. In KS-DFT the
electron density of the real system ρ(r) (a scalar function representing the distribution
of electrons in position space r) is represented by a set of N quasiparticles, the so-
called non-interacting electrons, given in terms of KS orbitals {φi }, such that the
corresponding Slater determinant:

|Ψ 〉 = 1√
N !det{φ1 . . . φN } (1)

yields the exact energy E from:

Ĥeff|Ψ 〉 = E |Ψ 〉 (2)

with the effective Hamiltonian (given in atomic units):

Ĥeff =
N∑

i

p̂i
2

2
+ heff(r) (3)

which accounts for the kinetic energy of the non-interacting electrons Ts through the
impulsoperator p̂i = ∇i/i and all Coulomb interactions between the particles through
the help of a local effective Hamiltonian heff(r) given in position space r that acts as
multiplicative operator.

The KS orbitals are obtained as eigenfunctions from:

− 1

2
∇2φi (r) + heff(r)φi (r) = εiφi (r) (4)

and εi are the corresponding eigenvalues. In the KS formalism the non-interacting
kinetic energy is directly evaluated from the orbitals of the KS Slater determinant:

Ts = 〈Ψ |
N∑

i

p̂i
2

2
|Ψ 〉. (5)
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There are two natural choices for the kinetic energy density, namely the so-called
Schrödinger form ts(r):

ts(r) = −1

2

N∑

i

φi (r)∇2φi (r) (6)

and the positive kinetic energy τ(r):

τ(r) = 1

2

N∑

i

|∇φi (r)|2 , (7)

depending on the fact whether the impulsoperator acts twice on the right-hand side or
once on the right-hand side and its complex conjugate on the left-hand side. Notably,
the non-interacting kinetic energy is the same in both cases. The kinetic energy den-
sities differ by a fraction of the density Laplacian:

ts(r) = τ(r) − 1

4
∇2ρ(r) , (8)

which itself integrates to zero:

∫
∇2ρ(r) dr = 0 . (9)

and thus, the integral over ts(r) and τ(r) yields the same expectation value for the
kinetic energy. This aspect is known as ambiguity of the kinetic energy density, and it
additionally complicates the procedure of finding approximations (approximate func-
tionals are labeled with tilde) for the non-interacting kinetic energy T̃s in form of:

T̃s[ρ(r)] =
∫

t̃([ρ(r)]; r) dr . (10)

Due to the ambiguity of t̃(r) a pointwise comparison between KS data and proposed
approximations is somewhat awkward (although it might be of some use in practice).
As will shown later, the bifunctional formalism resolves this problem.

Since the KS wavefunction is actually eigenfunction to the effective Hamiltonian
Ĥeff and heff is a multiplicative operator, the non-interacting kinetic energy obeys:

Ts[ρλ(r)] = λ2Ts[ρ(r)] (11)

for the homogeneously scaled electron density ρλ(r) = λ3ρ(λr), where λ is a param-
eter [42]. This scaling property applies to the non-interacting kinetic energy Ts of
Kohn–Sham theory, but not to the exact kinetic energy T . Their difference Tc:

Tc = T − Ts (12)
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is always non-negative [11] andhas shown tobeofmarginalmagnitude [32]. In practice
the correlation part of the kinetic energy Tc is always merged with the functional
approximations of the local effective Hamiltonian.

3 Orbital-free density functional theory

Orbital-free density functional theory aims to circumvent the need of solving for the
KS eigenfunctions, cf. Eq. 4. According to the Hohenberg-Kohn (HK) theorems [33],
the total electronic energy E[ρ(r)] of a system can be expressed as a functional of the
electron density ρ(r):

E[ρ(r)] = Ts[ρ(r)] + EH[ρ(r)] + EXC [ρ(r)] + EZ [ρ(r)]. (13)

For a condensed writing the explicit position dependence is omitted from now on. As
given in Eq. 13, the total electronic energy is usually divided into four components,
where Ts[ρ] is the non-interacting kinetic energy, EH[ρ] is the classical part of the
electron–electron repulsion, the so-called Hartree term, EXC [ρ] is the non-classical
part of the electron–electron repulsion, called exchange-correlation energy, and EZ [ρ]
is the electron-nuclear attraction. In the above equation the energy terms EH[ρ] and
EZ [ρ] are known exactly in terms of the electron density, while for Ts[ρ] and EXC [ρ]
sufficiently accurate approximations have to be found.

Once those approximations are chosen, minimizing the energy under the constraint
that the electron density integrates to N electrons yields:

0 = δ
(
E[ρ] − μ

(
N − ∫

ρ(r) dr
))

δρ
(14)

the Euler equation [43], written explicitly:

0 = vT([ρ]; r) + vH([ρ]; r) + vXC ([ρ]; r) + vZ ([ρ]; r) − μ, (15)

where vT([ρ]; r), vH([ρ]; r), vXC ([ρ]; r), and vZ ([ρ]; r) are the kinetic energy poten-
tial, theHartree potential, the exchange-correlationpotential, and thenuclear-attraction
potential, respectively, andμ is the Lagrangemultiplier originating from the constraint
of a normalized density.

For functional expressions given analytically in terms of ρ solving the Euler equa-
tion, cf. Eq. 15, or minimizing the total energy, cf. Eq. 13, finally, yields the same
results.

In contrast to KS theory, where a system of N coupled differential equations must
be solved, a single equation, the so-called Euler equation, cf. Eq. 15, allows to access
the minimizing electron density within OF-DFT. However, this procedure requires
knowing the kinetic energy as a functional of the electron density in order to obtain
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the kinetic energy potential vT([ρ]; r), cf. Eq. 15, as functional derivative:

vT([ρ]; r) = δTs[ρ]
δρ

(16)

of the respective energy Ts .
The availability of exact or sufficiently accurate approximations of the kinetic

energy crucially depend on the nature of the particles and the system under con-
sideration. As will be shown later, the kinetic energy for a bosonic groundstate can be
expressed analytically and, thus, is known for any density. However, since electrons
are fermions, it is necessary to find approximations that account for the fermionic
nature of the wavefunction in order to compute the full kinetic energy. Special cases
allow for an analytical treatment of the electronic kinetic energy, like for example for
a uniform electron density distribution [12,51] or in case of one-dimensional systems
[8,47].

3.1 Gradient expansions of the kinetic energy

Since the kinetic energy for a uniform electron density distribution is known exactly,
systematic density-gradient expansion series were among the first studied functional
approximations [11]:

Ts[ρ] ≈ T0[ρ] + T2[ρ] + T4[ρ] + · · · . (17)

The first terms are [11]:

T0[ρ] = TTF[ρ] =
∫

3

10

(
3π2

) 2
3
ρ

5
3 (r) dr, (18)

T2[ρ] =
∫

1

72

(∇ρ(r))2

ρ(r)
dr, (19)

and:

T4[ρ] = 1

540
(
3π2

) 2
3

∫
ρ

1
3 (r)

[(∇2ρ(r)
ρ(r)

)2

− 9

8

(∇2ρ(r)
ρ(r)

) (∇ρ(r)
ρ(r)

)2

+ 1

3

(∇ρ(r)
ρ(r)

)4
]
dr

(20)

The first term T0 is identical to the Thomas–Fermi approximation TTF [12,51], and
the second term T2 equals up to a factor the functional approximation first introduced
by von Weizsäcker [52]:

TW[ρ] =
∫

1

8

(∇ρ(r))2

ρ(r)
dr. (21)
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Series involving the fourth-order term T4 are called Laplacian-level functional approx-
imations. Higher-order terms diverge when exponentially decaying electron densities
are inserted [11]. Therefore, gradient expansion series including higher-order terms
are not suitable for applications on molecular and solid-state systems.While truncated
series up to fourth order provide kinetic energies close to Ts when the corresponding
KS electron densities are inserted in the functional approximation, those series do not
yield reasonable electron densities from the variational procedure, as those densities
do not exhibit proper atomic shell structure [11].

Interestingly, themodulating function f1(r) that locally corrects the Thomas–Fermi
contribution to the full vonWeizsäcker term, such that the exact positive kinetic energy
density is represented by this ansatz:

τ [ρ] = f1(r)tTF[ρ] + tW[ρ] (22)

displays the proper atomic shell structure throughout the whole periodic table. The
modulating function f1(r) displayed in the above equation is actually the kernel of the
electron localization function (ELF) [5,48]. Moreover, any ansatz for τ(r) in terms of
the Thomas–Fermi energy density and the von Weizsäcker contribution times a local
correction

τ [ρ] = tTF[ρ] + f2(r)tW[ρ] (23)

τ [ρ] = f3(r) (tTF[ρ] + tW[ρ]) (24)

τ [ρ] = f4(r)tTF[ρ] (25)

τ [ρ] = f5(r)tW[ρ] (26)

provides modulating functions fi (r), which display proper atomic shell structure [15].
Note that, the shell structure of an atom is a rather specific function. For example it
can be shown that for any set of orthonormal 1s and 2s functions being eigenfunctions
of the bare Coulomb Hamiltonian, the function τ(r)/ρ(r), which is close to f4(r),
exhibits one single shell-separator no matter of the eigenfunctions and eigenvalues
that enter τ(r) and ρ(r). Therefore, the atomic shell structure can solely be attributed
to the Pauli exclusion principle [17]. Given this, modeling the local kinetic energy
τ(r) via a purely density-based ansatz for ELF or its kernel, cf. Eq. 22, seemed to
be a promising ansatz. Indeed, such density-based indicators displaying the atomic
shell structure in close relation to ELF exist [28,53]. The so-called charge sampling
functionalsCp sample the amount of electronic chargewithin a region of given electron
density inhomogeneity Ip(Ωi ):

Ip(Ωi ) =
∫

Ωi

p
√|ρ(r) − ρ̄i |p dr (27)

with the averaged electron density within that region:

ρ̄i = 1/Vi

∫

Ωi

ρ(r) dr. (28)
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The inhomogeneity Ip clearly depends on the decay of the electron density and the
regionΩi . Now, imagine such a space-filling, mutually exclusive, compact division of
space into so-called microcells [37,38], that each microcell is described by the same
amount of inhomogeneity ωIp , and integrate the electron density within those regions.
This procedure yields the number of electrons in regions of same electron density inho-
mogeneity. Those charges, of course, depend on the chosen amount of inhomogeneity
ωIp . The limes after rescaling (dividing by the proper amount of restriction value ωIp )
finally yields a quasi-continuous function revealing the dependence between the num-
ber of electrons and the inhomogeneity of the electron density within certain region.
The final result are the charge sampling functionals:

Cp(r) = ρ(r)

[
2 (p + 1)

1
p

|∇ρ(r)|

] 3p
(3+p)

, (29)

which display atomic shell structure [28,53]. Of course, the inhomogeneity Ip depends
on the measure of p applied to the so-called ω-restricted space partitioning (ω-RSP).
One is free to choose an appropriate measure p that is convenient for a given pur-
pose. Thus, one could search for an optimal p-value such that the charge sampling
functional mimics the electron localization function (ELF), which involves the local
kinetic energy τ(r). Indeed, such an optimal choice is possible for all atomic species
within the periodic table [14]. The resulting indicator Cp with p = 0.6 is the closest
density-based representation of ELF within this ansatz. Consequently, C0.6 can be
used in order to design a density-based approximation to τ . While this is possible and
provides good agreement of total kinetic energies as well as good agreement between
local kinetic energy densities [16], the presented approach fails to provide reasonable
electron densities from variational procedure, and thus, confronts with the same issues
as the conventional gradient expansion series. It is, thus, desirable to search for pro-
cedures that provide control over the functional derivative rather than the functional
itself. One such possibility of designing functionals with specific functional deriva-
tives is given here [25]. However, the functional construction of the ansatz reported
in this work [25] is still approximate. The bifunctional formalism circumvents this
problem and provides a direct path to the functional value by exploiting the scaling
behavior of the (otherwise unknown) functional. Before introducing the bifunctional
formalism itself, it is useful to be familiar with another approach how to divide the
kinetic energy.

3.2 Kinetic energy in terms of bosonic and fermionic contributions

The density-gradient expansion for the non-interacting kinetic energy given in Eq. 17
is not free of mathematical problems concerning the justification of central arguments
leading to the generalKirzhnits formalism [35] and, thus, does not provide a convergent
series [11].
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No matter whether a given object can be expressed as a convergent series or not, it
can—for sure—be divided into separate pieces. In the previous section a division:

Ts[ρ] = TModel[ρ] + TRest[ρ] (30)

was presented. In case of the gradient expansion series:

TModel[ρ] = T0[ρ] + T2[ρ] + T4[ρ] (31)

and

TRest[ρ] = Ts[ρ] − (T0[ρ] + T2[ρ] + T4[ρ]) . (32)

The question remains how to model the remainder TRest[ρ] of such a decomposition.
Any decomposition into somemodel and a rest is equally valid. In the following a sep-
aration with appealing interpretation in terms of a bosonic and fermionic contribution
is presented.

Following the idea of March [45], it is possible to divide the total non-interacting
kinetic energy Ts[ρ] into a bosonic term, the von Weizsäcker part TW[ρ] (with known
density functional dependence) [52] and a fermionic part TP[ρ], the so-called Pauli
kinetic energy [45]:

Ts[ρ] = TW[ρ] + TP[ρ]. (33)

Since the Pauli kinetic energy is actually defined as the remainder:

TP[ρ] = Ts[ρ] − TW[ρ], (34)

it captures—by definition—all necessary contributions in order to provide the full non-
interacting kinetic energy. Thus, the Pauli kinetic energy is not of empirical origin,
but results from the choice of decomposition for the non-interacting kinetic energy.
However, in most cases functional approximations for TP[ρ] are of empirical nature,
as there is no formal expansion series for this splitting.

The von Weizsäcker kinetic energy may be regarded as the kinetic energy of a
bosonic system in its groundstate having the same density as the actual fermionic
system. In a bosonic groundstate all particles occupy the same orbital φB(r) being
proportional to the square root of the density

φB(r) = 1√
N

√
ρ(r). (35)

Inserting Eq. 35 into Eq. 7 immediately yields:

τ(r) = 1

2

N∑

i

|∇ 1√
N

√
ρ(r)|2
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= 1

8

(∇ρ(r))2

ρ(r)
= tW([ρ]; r) (36)

the von Weizsäcker kinetic energy. The formal connection between the gradient cor-
rection and the kinetic energy of a bosonic groundstate has already been noticed by
von Weizsäcker in his original work [52].

Dividing the non-interacting energy into the von Weizsäcker term and the Pauli
kinetic energy, cf. Eq. 33 is—by definition—an exact ansatz. Moreover, both terms
can be access analytically, TW in terms of ρ and TP in terms of KS orbitals, cf. Eq. 34.
This allows a direct comparison between an approximate model for the Pauli kinetic
energy and thePauli kinetic energy from the respectiveKScalculation.As stated before
the local kinetic energy is not uniquely defined, which renders a direct comparison
between the KS data and the approximate model somewhat arbitrary. Thus, it would
be of great advantage to have access to the functional value from a procedure that
allows a one-to-one comparison between the approximate ansatz and the respective
KS calculation. Such a procedure is presented in the next section.

4 The bifunctional formalism

For a density functional F[ρ] which obeys homogeneous scaling behavior:

F[ρλ] = λk F[ρ] (37)

with the homogeneously scaled electron densityρλ(r) = λ3ρ(λr), whereλ is a param-
eter, k is the respective scaling constant, and r are the three-dimensional coordinates,
the functional value can equally be obtained from [42]:

F[ρ] = −1

k

∫
ρ(r) r · ∇v([ρ]; r) dr (38)

where v([ρ]; r) is the functional derivative of F :

v([ρ]; r) = δF[ρ]
δρ

. (39)

Note the explicit functional dependence of the functional derivative on the density.
Therefore, F[ρ] from Eq. (38) is considered to be a density functional. In contrast,
F[ρ, v] is a bifunctional:

F[ρ, v] = −1

k

∫
ρ(r) r · ∇v(r) dr (40)

since the density dependence of the potential v(r) is suppressed, therefore, being a for-
mal functional derivative in this context. While the bifunctional yields the same value
as the density functional, for a pointwise correspondence of the functional derivative
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v([ρ]; r) and the formal functional derivative v(r):

v([ρ]; r) = v(r) ∀r, (41)

the corresponding parent functional F[ρ] can only be obtained from Eq. (38). Thus,
the bifunctional F[ρ, v] given by Eq. (40) provides the functional value, but not the
functional dependence in terms of the density ρ.

This subtle difference is actually the key issue in the bifunctional formalism. Since
the density dependence of the formal functional derivative is suppressed (or simply
unknown), the potential can be approximated by models having any density depen-
dence (or no density dependence at all), which seems profitable to model certain
physical tasks. For a density functional, there is no such freedom, as the density
functional must obey various mathematical constraints like for example proper homo-
geneous scaling law [41,42]. This renders the bifunctional approach an exact and
flexible formalism able to match results from KS-DFT but from formal functional
derivatives.

Note that only the interpretation of the formulas in terms of the bifunctional
approach, cf. Eq. 40, is a recent development, while the formulas themselves derived
for the corresponding density functionals go back to the prominent work of Mel Levy
in 1982 and his application of the Feynman theorem [13] in density functional theory
[39]. Explicit expressions can also be found in the work of Levy and Perdew [42],
Levy and Ou-Yang [41] as well as in the work of Levy and Ayers [40]. A detailed
derivation of Eq. 38 can also be found in the work of Ghosh and Parr [31].

4.1 The vonWeizsäcker kinetic energy as a bifunctional

The bifunctional formalism described in the previous section can be applied to any
functional that obeys homogeneous density scaling, e.g., the exchange energy as
applied here [27]. However, the most prominent applications of the bifunctional for-
malism lie in the field of orbital-free density functional theory, where the burden is
to find reliably working approximate kinetic energy functionals [20,21,24]. In case of
the von Weizsäcker kinetic energy the bifunctional as well as the corresponding den-
sity functional are known exactly, and thus, both formalisms can be compared directly.
Additionally, an alternative bifunctional expression yielding the same functional value
but from another kernel is presented.

For one and closed-shell two-electron systems the Pauli kinetic energy is zero;
consequently, the total kinetic energy is given by the von Weizsäcker term TW alone.
The von Weizsäcker term can be seen as the kinetic energy of a bosonic groundstate
having the same density as the actual fermionic system. In a bosonic groundstate all
particles occupy the lowest orbital, which is proportional to the square root of the
density. Thus, an analytical formula for the von Weizsäcker kinetic energy can easily
be derived, cf. Eq. 36 [45,52]. Consequently, the corresponding functional derivative
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is also known analytically in terms of the electron density:

vW([ρ]; r) = δTW[ρ]
δρ

= 1

8

(∇ρ(r))2

ρ(r)2
− 1

4

∇2ρ(r)
ρ(r)

. (42)

In the bifunctional formalism, introduced in Sect. 4, the von Weizsäcker kinetic
energy is obtained from:

TW[ρ, vW] = −1

2

∫
ρ(r) r · ∇vW(r) dr (43)

since the non-interacting kinetic energy (as well as its components) scale with a factor
of two for homogeneous density scaling [42].

Another, but equivalent bifunctional expression can be obtained by combining
Eqs. (7) and (8) from reference [40], where the non-interacting kinetic energy is
expressed with the help of the Kohn–Sham potential vs(r) (defined by Eq. (2) in
reference [40]):

Ts[ρ, vs] = −1

2

∫
vs(r) [3ρ(r) + r · ∇ρ(r)] dr. (44)

Depending on the nature of vs the above equation can be considered a bifunctional (in
case of unknown density dependence of vs) or a density functional expression (for vs
with analytically known density dependence). Observe that for one and closed-shell
two electron systems:

vs = −vW([ρ]; r) + ε , (45)

where ε is the eigenvalue of the occupied eigenfunction. This, finally, yields another
bifunctional expression for the von Weizsäcker kinetic energy:

TW[ρ, vW] = 1

2

∫
[vW([ρ]; r) − ε] [3ρ(r) + r · ∇ρ(r)] dr. (46)

Although both expressions for the von Weizsäcker kinetic energy, cf. Eqs. (43) and
(46), look quite different, theymust represent an identity, since both were derived from
the virial theorem [39,40,42] and the von Weizsäcker potential vW([ρ]; r) is known
analytically in terms of the electron density. The integral kernels of those bifunctional
expressions may, of course, differ from one another, as any function that integrates to
zero may be added to a given integral kernel without changing the integral itself. In the
community of theoretical chemists and physicists, this aspect is especially known in
connectionwith the ambiguity of the kinetic energy (although it applies to other energy
densities as well). While all kinetic energy densities yield the same expectation value
from the wavefunction Ψ when integrated over all space, their local representations
(when integrated over all particle coordinates but one) differ and there is no a priori
choice for a particular expression for a joint distribution of position and momentum
and hence, for a specific local kinetic energy [9,10].
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In case of the kinetic energy, a given kinetic energy density corresponds to a specific
choice of operators (or joint distribution of position and momentum), see references
[9,10] for more details. How does this aspect relate to the bifunctional formalism—
especially to the two expressions given in Eqs. (43) and (46), in which case the integral
kernels also just differ by a fraction of the density Laplacian?

While a general proof is not part of this work, the issue can be illustrated by a simple
example. Consider the hydrogen atom with nuclear charge Z = 1, having a only a
single electron, in which case the Schrödinger equation [50] can be solved exactly:

ĤφH (r) = εφH (r) (47)

with the Hamilton operator Ĥ (in atomic units) [50]:

Ĥ = −1

2
∇2 − Z

r
(48)

The lowest hydrogen eigenvalue ε and eigenfunction φH (r) are:

ε = −1

2
α2, (49)

φH (r) = N0e
−αr , (50)

where α is a parameter (that equals the nuclear charge Z = 1 for the minimizing
eigenfunction, but will be kept as a general parameter here) and N0 is a normalization
constant such that the spherically electron density ρH (r):

ρH (r) = φH (r)2 = N 2
0 e

−2αr , (51)

1 =
∫

ρH (r) dr, (52)

integrates to the number of particles (being one here).
The density gradient in the direction of r is:

∇rρH (r) = −2αρH (r), (53)

the density Laplacian is given by:

∇2ρH (r) =
[
4α2 − 4α

r

]
ρH (r), (54)

and the von Weizsäcker potential reduces to:

vW([ρH ]; r) = −1

2
α2 + α

r
. (55)
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For the hydrogen atom the von Weizsäcker kinetic energy as given by the density
functional expression from Eq. (21), is:

TW[ρ] =
∫

1

8

[−2αρH (r)]2

ρH (r)
dr = 1

2
α2

∫
ρH (r) dr = 1

2
α2 . (56)

In case of the density functional expression the integral kernel td fW (r):

td fW (r) = 1

2
α2ρH (r) (57)

is positive everywhere and can be associated with the positive kinetic energy density
τ , as given in Eq.( 7).

The bifunctional expression as given by Eq. 43 yields the same integral:

TW[ρ, vW] = −1

2

∫
ρH (r)

[
−α

r

]
dr = 1

2
α2

=
∫

α

2r
ρH (r) dr + 1

8

∫
∇2ρH (r) dr, (58)

what is easily noticed by adding a fraction of the density Laplacian to the integral
kernel. The integral kernel of the bifunctional, given in Eq. (43) tbi1W (r):

tbi1W (r) = α

2r
ρH (r) (59)

is positive in case that the nucleus is located at the origin of the coordinate system.
However, the integral kernel does not directly correspond to the positive kinetic energy
density and does, of course, depend on the choice of the coordinate system, while the
integral itself does not.

Equally, the bifunctional expression for the vonWeizsäcker kinetic energy as given
by Eq. 46:

TW[ρ, vW] = 1

2

∫ [
−1

2
α2 + α

r
+ 1

2
α2

]
[3ρH (r) − 2αrρH (r)] dr = 1

2
α2

=
∫ [

3α

2r
− 2α2

]
ρH (r) dr + 3

8

∫
∇2ρH (r) dr (60)

yields the same integral value TW = 1/2α2, but from another kernel:

tbi2W (r) =
[
3α

2r
− 2α2

]
ρH (r). (61)

In the present example, both bifunctional expressions are evaluated from integral
kernels that differ only by a given amount of the density Laplacian. Since the density
Laplacian integrates to zero, both kernels provide the same integral value. Here, those
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observations are based on a simplemodel, and a general proof for TW (and possibly Ts)
is desirable. Another question relates to the choice of origin. As easily noticed by the
reader, integral kernels of the proposed bifunctional expressions are origin dependent.
However, the integrals themselves are not. Thus, the ambiguity of the kinetic energy
density is transferred to the integral kernel of the bifunctional formalism, while the
formal functional derivative allows for a one-to-one-comparison between analytical
expression and approximate models. While for the von Weizsäcker kinetic energy
no such approximations are necessary (since the functional is known analytically in
terms of the electron density), this procedure is of great importance when designing
approximations for the Pauli kinetic energy.

4.2 The Pauli kinetic energy as a bifunctional

The Pauli kinetic energy, cf. Eq. 34, remains the only unknown part of the non-
interacting kinetic energy, from which a large part, the kinetic energy of a bosonic
system in its groundstate with the density of the actual fermionic system, namely the
von Weizsäcker kinetic energy, has been subtracted. Consequently, the Pauli kinetic
energy captures allmany-body effects of the kinetic energy that are due to the fermionic
nature of the electrons. The Pauli kinetic energy is known exactly in terms of the KS
orbitals, cf. Eq. 34, and so is its formal functional derivative, thePauli potential [26,41]:

vP(r) = δTP
δρ

= tP(r)
ρ(r)

+
∑

i

(εM − εi )
|φi (r)|2
ρ(r)

(62)

with εM being the highest occupied eigenvalue and tP being the Pauli kinetic energy
density:

tP(r) = 1

2

∑

i

|∇φi (r)|2 − tW(r). (63)

In the spirit of the local effective Hamiltonian from the KS procedure, the Pauli poten-
tial may be seen as a local effective multiplicative potential that acts on the fictitious
bosonic system in order to enforce the minimizing density to be the same as for the
real fermionic system and, thus, providing an eigenvalue equation for the square root
of the electron density [43,45] (being proportional to the minimizing orbital of the
bosonic system):

− 1

2
∇2

√
ρ(r) + [vP(r) + heff(r)]

√
ρ(r) = εM

√
ρ(r). (64)

As such the Pauli potential is a rigorously defined quantity (for an auxiliary system of
bosonic quasiparticles), that can be expressed analytically via the KS eigenfunctions
and eigenvalues, cf. Eq. 62. In contrast to the kinetic energy density, the Pauli potential
is (up to a constant [41]) uniquely defined and, thus, can be compared pointwise in
space. While for some model cases the Pauli potential can be expressed analytically
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[45], in general vP(r) is unknown in terms of the electron density alone. Therefore,
sufficiently accurate approximations have to be found.

Once a sufficiently accurate approximate Pauli potential ṽP(r) is generated, the
approximative Pauli kinetic energy T̃P is evaluated via the bifunctional formalism:

T̃P[ρ, ṽP] = −1

2

∫
ρ(r) r · ∇ṽP(r) dr. (65)

Individual physical tasks demand for individual specific properties of the Pauli poten-
tial. In principle, it is always possible to reach the exact KS limit by inserting
appropriate functions into Eq. 62. This, however, would result in some sort of com-
plicated KS procedure, since the Euler equation is nonlinear with respect to linear
expansion of orbitals in terms of basis functions (like this is usually done in the con-
ventional KS procedure). Still an extension toward the KS system is possible within
this ansatz as vP(r) is known analytically in terms of theKS eigenfunctions. In practice,
however, one would like to avoid the necessity of calculating KS orbitals. Therefore,
sufficiently accurate approximation to vP(r) is needed that still capture the relevant
physical aspects of the problem. In the following approximate Pauli potentials for
three different physical tasks are presented.

4.2.1 Atomic systems: preserving the atomic shell structure

While vP(r) obtained from a previous KS calculation via Eq. 62 clearly yields the
KS density from Eq. 64 and the corresponding Pauli kinetic energy from Eq. 65,
it is desirable to reveal the connection between the atomic shell structure and the
Pauli potential from an orbital-free ansatz. It is indeed possible to design approximate
Pauli potentials—in form of formal functional derivatives ṽP(r) as well as in the form
of ṽP([ρ(r)]; r)—that provide properly structured electron densities from variational
procedure via Eq. 64 [18]. In both cases T̃P has to be accessed via the bifunctional
formalism, cf. Eq. 65, because those approximative Pauli potentials violate certain
scaling rules and, thus, cannot be regarded as true functional derivatives [18]. The latter
approximations of the Pauli potential require careful parameterization and previous
knowledge of the atomic shell structure. Note that, the atomic shell structure and
respective radii can indeed be approximatively expressed analytically in terms of the
nuclear charge Z [19] and thus, such a parameterization is possible for all atoms in
the periodic table. While the above-mentioned approach is empiric, it shows that a
purely density-based method within density functional theory preserving the atomic
shell structure is possible.

Lately, another—less empiric—orbital-free approach preserving the atomic shell
structure was presented [22]. It attempts to approximate the KS eigenfunctions and
eigenvalues via node-less Slater functions and the one-electron model (which is exact
for the H atom), respectively. Node-less Slater functions χi are given by: [49,54]

χi (r) = N0r
ai e−αi r (66)
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with:

N0 =
√

(2αi )2ai+3

4π(2ai + 2)! , (67)

ai = n∗ − 1 and αi = Z − s/n∗, whereby Z is the nuclear charge, n∗ is an effective
quantum number, and s is the so-called shielding constant [49]. Furthermore the KS
eigenvalues are approximated by ηi :

ηi = −1

2
α2
i . (68)

Replacing εi byηi andφi byχi inEq. 62, respectively, yields the desired approximation
for the Pauli potential. The Pauli kinetic energy is evaluated from the bifunctional
formalism, cf. Eq. 65, and the electron density is given by:

ρ(r) =
∑

i

niχ
2
i (r). (69)

with ni being the occupation numbers for the respective atomic shells. The above
approach allows for a minimization of the total energy with respect to the exponents
αi . Those approximate functions and related energy states allow to construct a model
for the Pauli potential that is able to respond to the actual density changes—like this
is true for the KS Pauli potential. This model is still considered to be an orbital-free
method, since no eigenvalue equation, cf. Eq. 4, is ever solved. The model works
fine for light atoms (from hydrogen till carbon) and allows to access a bosonic-like
as well as a fermionic-like energy minimum separately from variational procedure
[22]. Exemplarily, results are shown for the carbon atom. Figure 1b depicts the energy
landscape as a functional of the two exponents for the core α1s and valence region α2s.
As can be seen from the data, the energy landscape exhibits two separate minima, one
deep energy minimum with similar exponents (α1s ≈ α2s), this minimum is called
bosonic-like energy minimum, and a second shallow energy minimum in the region
where the core exponent is much higher than the valence exponent (α1s > α2s), which
is considered to be a fermion-like energy minimum. The respective radial densities
are depicted in Fig. 1a, c, respectively. The radial electron density from the fermionic
minimum displays proper atomic shell structure, whereas one maximum is found for
the bosonic-like solution.

4.2.2 Molecular systems: accurate modeling of chemical bonding

Obtaining properly structured electron densities from an OF-DFT ansatz is an impor-
tant issue in the field of physics, e.g., for the simulation of processes where electrons
change their state with time. For most of the chemical processes, however, like for
example molecular bonding, changes of the inner atomic shell structure are not
expected. For this reason, the concept of core-valence-separation is employed suc-
cessfully for questions that handle problems of molecular bonding processes. The
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Fig. 1 Radial electron densities and energy landscape for the carbon atom. aMinimizing radial density for
the fermionic-like minimum. Core and valence electron densities, shown in blue and green, respectively, are
clearly separated. Electronic states are well separated and ordered (α1s > α2s). b Total energy as a function
of the two exponents of the first (α1s) and second atomic shell (α2s). Ten equally spaced isolines are drawn
from -35 hartree to -34 hartree in order to reveal the minimum in the fermionic-like region. c Minimizing
radial density for the bosonic-like minimum. Both functionals occupy the same region. Electronic states
are of similar magnitude (α1s ≈ α2s)

core-valence-separation does not alter due to different chemical environments and,
thus, can be attributed to the atom itself. Consequently, a simple superposition of
atomic Pauli potentials may serve as a first approximation for the molecular Pauli
potential. Indeed this simple ansatz, the so-called atomic fragment approach, yields a
qualitatively correct description of chemical bonding [20]. Later it was found that equi-
librium bond lengths depend on the electronic state of the employed atomic fragments.
Within the molecular environment the atomic fragment resembles more an artificial
closed-shell atom that its atomic groundstate. Consequently, molecular Pauli poten-
tials build from the superposition of artificial closed-shell atomic fragments perform
better with respect to the equilibrium bond length compared to the initial approach
using groundstate atoms [21].

The reason why the atomic fragment approach works so well for molecular systems
lies in the form of the Pauli potential. Within an atom, the Pauli potential exhibits its
highest values close to the nucleus. At each shell boundary the Pauli potential displays
a sharp peak, which is responsible for the change of sign of the curvature of the radial
electron density [18]. After the last boundary (the core-valence-separation) the Pauli
potential falls off rapidly with r−2. Thus, in the valence region itself the Pauli potential
is marginal. During the process ofmolecular bonding atomic fragments tend to overlap
only with their valence regions. For this reason the atomic superposition provides a
good approximation to the molecular Pauli potential in most cases.

However, in cases where the number of shared electrons exceeds a certain amount,
antibonding orbitals are populated. In a certain sense, this can be seen as build-up of a
new shell since the penultimate shell is already full. The most prominent case of such
an example is the Neon dimer. TheNeon atom has already a fully filled valence shell. It
electronic configuration is Ne:1s22s8 with two electrons in the core and eight electrons
in the valence region. Adding further electrons would demand for the creation of the
third atomic shell. Thus, when two Ne atoms approach, this process must be visible in
the pattern of the molecular Pauli potential. Indeed, the build-up of such a shell border
in between the atoms is observed for the Neon dimer. The molecular Pauli potential
evaluated from KS orbitals for the Ne dimer at equilibrium distance is depicted in

123



4 Page 20 of 27 K. Finzel

(a) (b) (c)-41.00
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Fig. 2 Pauli potentials for the Neon dimer. a obtained from KS orbitals (computed with ADF [1] using
LDA Xonly and the QZ4P basis set), b atomic fragment ansatz (fragments computed with ADF [1] using
LDA Xonly and the QZ4P basis set), c: atomic fragment ansatz plus the deformation potential (for details
see references [24])

Fig. 2a. The prominent regions of high values, shown in white, are circled around
the nuclei and correspond to the core-valence-separation. Those signatures are well
captured by the atomic fragment ansatz depicted in Fig. 2b. In contrast, the shallow
maximum in between the atoms, indicating the shell boundary due to the filling of
antibonding states, is not captured by the simple superposition.

It has been shown, lately, that even those signatures, that arise during the molec-
ular formation, can approximately be modeled by purely density-based ansatzes, see
Fig. 2c. In the present case this is achieved by adding a deformation potential that
accounts for the constructive and destructive electron sharing in the valence region
via a sort of electronic two-level system build from the constructive (plus sign) or the
destructive (minus sign) combination of the individual atomic density contributions:

Φ±(r) = 1√
2(1 ± S)

(ΦA(r) ± ΦB(r)) (70)

with the help of their respective atomic shape functions [2]:

ΦA(r) =
√

ρA(r)
NA

, (71)

whereby NA and ρA(r) are the number of electrons and the electron density of atom
A, respectively. This procedure is similar to the construction of molecular orbitals.
However, no eigenvalue equation is ever solved and thus, the model is considered to
be an OF-DFT approach. Here, as in the case of the atomic approach that preserves
the shell structure, the aim is to incorporate those aspects of the orbital picture that
are necessary for handling the actual physical problem, not to reproduce the orbitals
themselves, although this is in principle possible and thus, allows for a systematic
interpolation between the simplest fragment ansatz and the KS data.

4.2.3 Extended systems: the pathway beyond translational symmetry

Besidesmolecules, extended systems are in the focus of chemists, physicists, andmate-
rial engineers. Nowadays, solid-state systems are usually described by bandstructure
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calculations and related concepts. The concept of bandstructures allows to describe
the whole extended material via a small region, the so-called unit cell, that is the
smallest unit obeying translational symmetry in space. The so-called Bloch theorem
allows to significantly reduce the computational effort by a multiplicative ansatz of
the one-particle eigenfunctions into a part that accounts for the symmetry in space and
a part that describes the respective eigenfunction within the unit cell. This leads to a
set of symmetry-dependent (usually labeled with k) eigenvalue equations, and their
solution is the well-known bandstructure. This procedure allows to handle the whole
extended system by the help of its unit cell—if and only if the extended system obeys
translational symmetry. Therefore, defects or amorphous systems cannot be described
by this ansatz.

In principle the extended system can be treated like a molecule. It, just, has an
incredible huge number of one-electron eigenfunctions to be computed within the
KS approach. Within an orbital-free approach, however, the whole procedure scales
with the physical system size, the volume—and not with the number of electrons.
Moreover, a purely density-based formulation of quantum mechanics would allow for
a purely local treatment, which could be handled in real space only. There would be no
requirement for the Bloch theorem—since no one-particle eigenfunctions have to be
computed. Consequently, there is no requirement for obeying translational symmetry.
Therefore, all condensed matter (amorphous and crystalline) could be handled by the
same ansatz. The key point for such a development is actually a correct treatment of
the Pauli potential within the bifunctional formalism. The key issue is, thus, to develop
sufficiently accurate models for the Pauli potentials for extended systems.

Exemplarily, such an ansatz is presented for aluminum. Aluminum is a prototype
of a metal, its structure is periodic, and it crystallizes in face-centered cubic (fcc)
structure-type. The orbital-based KS Pauli potential (computed using FHI-aims [6],
the PBE functional [46], and a tight basis set) in the xy plane of an 8*2*1 supercell
for conventional fcc-Al is depicted in Fig. 3a. As can be seen from the data, the Pauli
potential of extended aluminum exhibits sharp peaks at the atomic nuclei, indicating
the core region, and falls off rapidly in a sort of step-like structure. Note that, as in
the case of molecules the Pauli potential is marginal in the region in between the
atoms. Thus, the atomic fragment approach may serve as a reasonable approximation
to the Pauli potential of the extended system. The Pauli potential evaluated as simple
superposition of artificial closed-shell Al atoms (computed using the ADF program
[1], using LDA-Xonly [36] and the QZ4P basis set) is depicted in Fig. 3b. Indeed, by
comparing the orbital-based KS Pauli potential and the fragment model, the proposed
ansatz seems to provide a reasonable model.
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0.0

75.0

Fig. 3 Pauli potentials for an 8*2*1 supercell of conventional fcc aluminum (a = 7.6534 bohr) in the xy
plane (z = 0 bohr). a Obtained from KS orbitals, b atomic fragment ansatz

5 Discussion

5.1 Advantages of the formalism

While the general aim of this work is to promote the field of orbital-free density
functional theory, it specifically addresses two separate topics. The first issue is the
bifunctional formalism itself, which allows to access the value of a functional while
keeping its functional dependence unrevealed. The bifunctional formalism is an exact
reformulation of the density functional formalism and can be applied to any functional
that obeys homogeneous scaling. This formalism is the key concept that allows to
address the problem of functional design from a completely different viewpoint. In the
bifunctional formalism the potential being the formal functional derivative is regarded
as being independent from the electron density (and thus being a formal functional
derivative). This is in contrast to other approaches in functional design, which—based
on the one-to-one correspondence [33]—usually expressed the functional derivative
in terms of the electron density. Note that, the bifunctional formalism does not conflict
with the one-to-one correspondence. It simply resigns on the possibility of an analytical
expression (in terms of a sufficiently simple formula). The approach allows to address
the problem of functional design via their respective formal functional derivatives, the
potentials. Unlike, kinetic energy densities, those potentials are (up to a constant [41])
uniquely defined. This aspect substantially facilitates functional design, as orbital-
based potentials and their respective approximate models can be compared pointwise
in space. This, actually, is themajor advantage of the bifunctional formalism compared
to traditional functional approximations within the field of OF-DFT. However, the new
formalism is not free of additional mathematical subtleties. A list of open questions
is, therefore, compiled in the next section.

The second part of this work deals with the practical approximation of the Pauli
potential.While the numerically good results of those approximations, hopefully, stim-
ulate further development in this direction, those approximationsmust be distinguished
from the formalism itself. The bifunctional formalism is an exact reformulation for
density functionals obeying homogeneous scaling law [42]. The concept of dividing
the non-interacting kinetic energy into a bosonic and a fermionic contribution is—by
definition—also exact, since the Pauli kinetic energy is defined as the remainder. Up
to here, the procedure can be applied to any quantum mechanical task and for some

123



The bifunctional formalism: an alternative treatment... Page 23 of 27 4

model cases even analytical expressions can be found for the Pauli potential [45].
However, quantum mechanical calculations that treat problems within chemistry and
material science require approximations for the Pauli potential for three dimensional
Coulomb systems in order to handle atoms, molecules, and solid-state materials. At
present there is still no systematic analytical approach to the Pauli potential of such
systems. However, sufficiently accurate models (based on empirical reasoning) have
been proposed, that are able to preserve the atomic shell structure, correctly predict
chemical bonding, and provide numerically reasonable models for the Pauli potentials
in extended systems.

5.2 Open questions

The bifunctional formalism, introduced in Sect. 4, allows to obtain the functional value
(for a homogeneously scaling functional) with the help of the minimizing electron
density and the formal functional derivative, the potential, while keeping the functional
dependence of the parent functional unrevealed since the functional dependence of
the potential is suppressed (or simply unknown). This formalism allows to address
the problem of functional design via their respective formal functional derivatives,
instead of the functionals themselves, an aspect that has been shown to be quite useful
for physical applications as it provides the possibility of directly approximating those
potentials, and thus, a better control of the latter. Additionally, in contrast to the
functionals themselves where any function integrating to zero may be added to the
integral kernel, potentials are (up to a constant [41]) unambiguously defined and thus,
may be compared pointwise. The latter point is of extreme importance for practical
functional design. The advantage, here, is that the approximate potentials may be
directly compared and adjusted to their KS counterparts.

As illustrated in the previous section, bifunctionals are equivalent to density func-
tionals when the functional dependence is known analytically. Moreover, since the
bifunctional expression holds for any trial density and its functional derivative [42]
(not just the groundstate density), direct minimization of the bifunctional expression
is possible. Consequently, a direct minimization of the total energy including some
energy terms originating from the bifunctional expression leads to the same results as
when solving the Euler equation directly (as it is for density functionals). However,
does this remain true for bifunctionals involving approximate potentials? At this stage
it has to be distinguished between different scenarios.

1. The potential corresponds pointwise to the true functional derivative at the solu-
tion point (the minimizing KS density), cf. Eq. 41. This for example would be the
case when the formal functional derivative is obtained numerically by inversion
of the KS equations. In this case solving the Euler equation directly will for sure
yield the same minimizing density as it would be obtained from the KS procedure,
since the potentials numerically correspond to each other. However, in case that
this numerical potential is kept fixed and inserted into the bifunctional expression
with subsequent minimization of the total energy, is it guaranteed that the optimiza-
tion procedure will yield the same minimizing density? The question, here, arises
because the numerical potential for sure corresponds to the functional derivative of
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the final minimizing electron density. However, this numerical potential certainly
does not correspond to the functional derivative of any prior trial density. Thus, is
it guaranteed that the minimizing point will be reached via direct optimization of
the bifunctional?

2. The potential is a reasonably accurate approximation to the true functional deriva-
tive at the solution point. This will be the most prominent case, where a suitable
model for the potential is proposed and its performance tested. Since the potential
is approximate, it will not yield the same minimizing density as a comparable KS
procedure. To what extend do the final electron densities differ from each other
when determined via the Euler equation? This is equivalent to the question to
what extent a given functional derivative influences the minimizing electron den-
sity. However, the final solution may also be obtained by minimization of the total
energy, which involves the bifunctional expression. The approximate potential does
not correspond to the minimizing KS density, but to the electron density obtained
by directly solving the Euler equation (with that approximate potential). In this
case, is it guaranteed that a direct optimization of the total energy involving the
bifunctional expression will yield the same density?

3. Regardless of whether the potential corresponds to the trueKS functional derivative
or to some approximation to it, the basis set representation or equally the density
representation on grid will certainly influence the results. In other words to what
extent does a finite basis set representation influence the final electron densities
obtained from the Euler equation or by minimizing the total energy?

Recent applications show that meaningful results can be obtained via both routes:
either by direct minimization of the total energy or by solving the Euler equation
directly. Both approaches yield bound molecular systems when reasonably accurate
potential approximations are employed [21,23,24].

6 Conclusion

The bifunctional approach introduced in this work presents an alternative to the con-
ventional density functional formalism. In contrast to density functional theory, where
(due to the one-to-one correspondence proved by Hohenberg and Kohn) the energy
is regarded as density functional and, thus, depends on one single variable, namely
the electron density, the bifunctional approach formally deals with two separate vari-
ables, which are the electron density and the potential, in this context being a formal
functional derivative. As in density functional theory, the functional value of a homo-
geneously scaling functional can be obtained as a spatial integral over a kernel function
that involves the electron density and the functional derivative (multiplied with a factor
that depends on the actual scaling of the functional). As such the functional value is
determined as a spatial integral with the help of the functional derivative. In case that
the functional dependence of the derivative in terms of the electron density is known
analytically, the respective expression is treated as a density functional and belongs to
its analytically given parent functional (from which equally the functional value can
be obtained). However, in case of a formal functional derivative the functional value
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can only be obtained from the integral kernel originating from the scaling law. The
parent functional remains unrevealed as the functional dependence of the formal func-
tional derivative is suppressed (or simply unknown). This offers the pathway to design
functional approximations based on their formal derivatives. Unlike the functionals
constructed from the respective energydensities,where any function integrating to zero
may be added to the initial kernel, potentials are up to a constant uniquely defined, as
they determine the minimizing electron density via the Euler equation and, thus, may
be compared pointwise. The bifunctional approach thus offers a more flexible route
in functional design, while still being able to exactly match the results from density
functional theory for a pointwise correspondence of the formal and true functional
derivatives.

In case of analytically known density functionals, minimizing the total energy or
solving the Euler equation yields the same results, and so does the energy optimization
involving the bifunctional. In case of approximate potentials, however, this issue is
still unresolved and may be worth further mathematical investigations.
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