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Abstract
The partition function of the Symmetric Matrix Ensemble is identified with the τ -
function of a particular solution of the Pfaff Lattice. We show that, in the case of
even power interactions, in the thermodynamic limit, the τ -function corresponds to the
solution of an integrable chain of hydrodynamic type.We prove that the hydrodynamic
chain so obtained is diagonalisable and admits hydrodynamic reductions in Riemann
invariants in an arbitrary number of components.

Keywords Random matrices · Hydrodynamic integrable systems · Hydrodynamic
reductions · Gibbons–Tsarev systems

Mathematics Subject Classification 37K10 · 35F50 · 82B20 · 60B99

1 Introduction

RandomMatrix Ensembles appear in relation to a variety of problems in mathematics
andphysics, often showing intriguing andunexpected connections. Symmetric,Hermi-
tian andSymplecticEnsembles have been introduced to describe the statistics of energy
levels of heavy nuclei and complex systems [13,29,36]; the Circular Unitary Ensemble
and the zeros of the Riemann zeta function, respectively, in the thermodynamic limit
and in the far limit on the critical line appear to follow the same statistics [18]; the Her-
mitian Matrix Ensemble (HME) arises from discrete approximations of Topological
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Field Theory [10,11,20,37]; the partition function of the orthogonal ensemble appears
in the calculation of the generating function for specific subsequences of permutations
[4]. In addition to the above-mentioned connections, a remarkable result is the identifi-
cation of the partition function of RandomMatrix Ensembles with particular solutions
of nonlinear integrable systems [2,20,34,37]. For example, the partition function for
the HME can be identified simultaneously with the τ -function of a particular solution
of the Toda Lattice hierarchy and of the Kadomtsev–Petviashvili hierarchy [1].

In the present paper, we propose an approach to the study of the Symmetric Matrix
Ensemble (SME) based on the method of differential identities developed and effec-
tively applied to a variety of statistical mechanical models (see, e.g. [7,8,21,23]). In
the case of SMEs, the method relies on its underlying integrable structure realised by
the Pfaff Lattice [5,6,17,31,32]. In the thermodynamic limit, such integrable structure
allows the derivation of a system of partial differential equations (PDEs) of disper-
sionless type for the order parameters. We note that a first direct connection between
the dispersionless limit of the Pfaff hierarchy and the thermodynamic limit of matrix
models has been studied in [19]. In this paper, we prove that for the SME with even
interactions, the order parameters satisfy an integrable hydrodynamic chain of PDEs.
Integrable hydrodynamic chains, of which the moments Benney chain is the prototyp-
ical example [9], represent an important class of integrable systems of dispersionless
type that has attracted a great deal of interest over the last two decades in relation to
their classification, construction of new integrable systems via reductions and asso-
ciated Hamiltonian structures [15,24,26–28]. We find, at the best of our knowledge,
a new example of integrable hydrodynamic chain and prove its integrability via the
method of hydrodynamic reductions [14,15].

The SME is characterised by the partition function of the form

Zn(t) =
∫
Sn

e−H(M) dM, (1.1)

where dM is the Haar measure, i.e. dM := ∏
1≤i≤ j≤n dMi j , and Sn is the set of real

symmetric matrices. The function H(M), chosen as

H(M) = −Tr

⎛
⎝− M2

2
+

∑
k≥1

tkM
k

⎞
⎠ ,

is referred to as theHamiltonian and parameters t = {tk}k≥1 are the coupling constants.
This terminology refers to Matrix Models of interest in Quantum Field Theory where
H(M) is interpreted as the Hamiltonian of the system and tk are the coupling constants
associated with different degrees of interaction [37]. Hence, the free particle theory
corresponds to the case where all coupling constants tk vanish. Notice that for t = 0,
the expression (1.1) reduces to the partition function of the Gaussian Orthogonal
Ensemble (GOE).

Based on a classical result by Weyl [35], observing that H(M) depends on the
eigenvalues {zk}nk=1 of M only, the integral (1.1) can be reduced to an integral over
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the eigenvalues of the form

Zn(t) = Cn

∫
Rn

|�n(z)|
n∏

i=1

e− z2i
2 +∑

k≥1 tk z
k
i dzi (1.2)

where Cn is a constant obtained from the integration over the remaining degrees of
freedom, and �n(z) denotes the Vandermonde determinant �n(z) = ∏

1≤i< j≤n(zi −
z j ). A fundamental result by Adler and van Moerbeke [5] establishes that for 2n× 2n
symmetric matrices, the function

τ2n(t) := 1

(2n)!C2n
Z2n(t) = 1

(2n)!
∫
R2n

|�2n(z)|
2n∏
i=1

e− z2i
2 +∑

k≥1 tk z
k
i dzi (1.3)

is the Pfaffian of the moments matrix

m2n(t) =
(
〈xi , y j 〉t

)
0≤i, j<2n−1

where 〈 · , · 〉t is a skew-symmetric scalar product induced by the measure on the SME.
More specifically, τ2n(t) = pf (m2n) is a particular solution of the Pfaff Lattice, an
integrable system arising in relation to the algebra splitting of gl(∞) into sp(∞) and
the algebra of 2×2 blocks lower triangularmatrices [5]. The Pfaff Lattice equations are
constructed based on the following unique factorisation of the semi-infinite moments
matrix

m∞(t) =
(
Q(t)−1

)
J

(
Q(t)−1

)�
(1.4)

where J is the semi-infinite skew-symmetric matrix such that J 2 = −I and Q is a
semi-infinite lower triangular matrix. The Lax matrix of the form

L(t) = Q(t)�Q(t)−1, (1.5)

where � = {δi, j−1}∞i, j=1 is the shift matrix with δi, j the Kronecker delta, satisfies the
Lax equation [5]

∂L

∂tk
=

[
−(Lk)t , L

]
. (1.6)

The projection (A)t for a given matrix A is defined as follows

At := A− − J (A+)� J + 1

2

(
A0 − J (A0)

� J ,
)

(1.7)

with A± denoting, respectively, the upper and lower triangular part of A, with all
2 × 2 diagonal blocks equal to zero, and A0 the block diagonal part of A with 2 × 2
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diagonal blocks. The entries of the Laxmatrix L depend on the sequence of τ -functions
{τ2n(t)}n≥1 and their derivatives with respect to the coupling constants tk . The Lax
matrix associatedwith the SMEpartition function is a solution of theLax equationwith
initial condition specified by τ2n(t) and its derivatives evaluated at t = 0. It is important
to note that in this case the integrals are specified by the Gaussian measure and can be
evaluated using Selberg’s theorem (see, e.g. [22]). The study of the form of the Lax
equation (1.6) and its asymptotic properties in the large n limit provides important
information on the generic properties of solutions, as for example their singularities
and breaking mechanisms, independently of the particular initial condition. More
specifically, we observe that the components of the Lax equation (1.6) can be organised
as two coupled systems of ODEs, a double chain in infinite components, of the form

∂tkvn = Fk[v,w]
∂tkwn = Gk[v,w] (1.8)

where vn and wn are the entries of the Lax matrix L suitably recast in the form of
infinite vectors, e.g. vn = (. . . , v−k

n , . . . , v−1
n , v0n, v

1
n, . . . , v

k
n, . . . )

�, each associated
with a position n on the lattice. Fk and Gk are nonlocal functions on the lattice,
evaluated on specific subsets of sites that depend on the chosen tk-flow.

We then proceed with the study of the Lax equations for SMEs with even power
interactions such that the partition function is of the form

Z2n(t) =
∫
S2n

e
Tr

(
− M2

2 +∑
k≥1 t2k M

2k
)
dM . (1.9)

The above choice automatically selects a reduction of the even Pfaff Lattice given by
the hierarchy (1.6) restricted to the even times t2k . Hence, the system (1.8) is replaced
by a single chain of the form

∂t2kwn = Hk[w] (1.10)

where, similarly to the more general case (1.8), Hk[w] is a nonlocal function on the
lattice. Introducing the variable x = εn and the interpolation function

u(x) := w
( x

ε

)

such that u(x ± jε) = wn± j for some integer j , the thermodynamic limit of the
matrix ensemble, i.e. the limit for n → ∞, corresponds to the continuum limit of
the reduced even Pfaff hierarchy (1.10) obtained by taking ε → 0 such that x = εn
remains finite and u(x) is an infinite component vector field of the continuous variable
x . Substituting the interpolating function in (1.10) and expanding in Taylor series for
ε → 0, at the leading order, one obtains a hierarchy of compatible partial differential
equations. A direct calculation performed for the first flows associatedwith t2, t4 and t6
shows that the equations so obtained constitute an infinite system of first-order PDEs
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of hydrodynamic type, referred to as hydrodynamic chains, of the form

uT2k = A(2k)(u)ux (1.11)

where T2k corresponds to the time variable t2k suitably rescaled, e.g. T2 = εt2. A(2k)(u)

is a sparse matrix where each row contains a finite number of elements depending on a
finite number of components of the vector field u(x). Infinite matrices of this type are
referred to as class C (chain-class) matrices [15]. We conjecture that the form (1.11)
holds for all k = 1, 2, . . . . We do not have at the moment a proof of this conjecture.

We prove that the hydrodynamic chain so obtained passes the diagonalisability test
(see Proposition 5) introduced in [15] and is integrable in the sense of hydrodynamic
reductions (Theorem 7) [14,15]. As the compatibility of the hierarchy (1.11) implies
that the matrices A(2k) commute, it is sufficient to perform the diagonalisability test
for the first flow of the hierarchy only. The test establishes that a hydrodynamic chain
of class C defined by the infinite matrix A(u) = {aij }∞i, j=−∞ is diagonalisable if and
only if all components of the Haantjes tensor

Hi
jk = Ni

pr a
p
j a

r
k − N p

jr a
i
p a

r
k − N p

rk a
i
p a

r
j + N p

jk a
i
r a

r
p, (1.12)

where Ni
jk is the Nijenhuis tensor

Ni
jk = a p

j ∂u paik − a p
k ∂u paij − aip

(
∂u j a

p
k − ∂uk a

p
j

)
, (1.13)

vanish identically. The notion of integrability in the sense of hydrodynamic reductions
for a hydrodynamic chain extends the similar concept introduced in the context of finite
component systems [14] and characterises the chain under consideration as integrable
if it admits N -phase solutions of the form u(R1, . . . , RN ) for any integer N , where
Ri = Ri (x, t) (Riemann invariants) satisfy the semi-Hamiltonian diagonal system of
hydrodynamic type

Ri
t = λi

(
R1, . . . , RN

)
Ri
x i = 1, . . . , N . (1.14)

The time t can be identified, subject to a suitable re-scaling, with any of the “times”
t2k and λi

(
R1, . . . , RN

)
are the characteristic speeds of the corresponding flow. The

system for Riemann invariants (1.14) is required to fulfill the semi-Hamiltonian prop-
erty which can be expressed in terms of the following differential constraint on the
characteristic speeds

∂k

(
∂ jλ

i

λ j − λi

)
= ∂ j

(
∂kλ

i

λk − λi

)
, i 	= j 	= k, (1.15)

with the notation ∂i = ∂/∂Ri . The condition (1.15) guarantees that equation (1.14)
constitutes a system of conservation laws [30]. A classical result by Tsarev establishes
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that the system (1.14) is completely integrable by the generalised hodograph method
([33], see also [12]) and the solution is given by the following equation

x + λi
(
R1, . . . , RN

)
t = μi

(
R1, . . . , RN

)
i = 1, . . . , N

where the functions μi
(
R1, . . . , RN

)
satisfy the system of linear PDEs of the form

∂ jλ
i

λi − λ j
= ∂ jμ

i

μi − μ j
. (1.16)

The solution to the system (1.16) is parametrised via N functions of one variable that
can be fixed by the initial conditions on the functions Ri .

The paper is organised as follows. In Sect. 2, we review some results regarding
SMEs and their relationship with the Pfaff Lattice (see, e.g. [5,34]). In Sect. 3, we
study the structure of the Lax matrix (1.5) and write the explicit evolution equations
for the first flow of the Pfaff Lattice. Section 4 is devoted to the SME with even degree
interactions and its relation with the even Pfaff hierarchy. In Sect. 5, we study the
thermodynamic limit and show that the resulting hydrodynamic chain is diagonalisable
and integrable. We then conclude with some final remarks in Sect. 6. Appendices
provide some additional technical details as well as elements that are subject of further
studies. The expressions for the second flow of the Pfaff Lattice with odd and even
times are provided in Appendix A; the explicit form of the coupled system (1.8) and
its higher order corrections are given in Appendix B; higher order corrections to the
hydrodynamic chain (1.10) are reported in Appendix C; Appendix D lists nonzero
entries of the Nijenhuis tensor (1.13) for the hydrodynamic chain (1.10).

2 Symmetric Matrix Ensemble and Pfaff Lattice

In this section, we briefly review definitions and properties of the SME and its connec-
tion with the Pfaff Lattice with a focus on aspects that are relevant for the purposes of
this paper [3,5,34]. As mentioned above, the partition function (1.1) can be reduced,
up to a proportionality constant, to the integral over the eigenvalues of the form

τ2n(t) := 1

(2n)!
∫
R2n

|�2n(z)|
2n∏
i=1

e− z2i
2 +∑

k≥1 tk z
k
i dzi ,

where τ2n is referred to as Pfaffian τ -function. The function τ2n is in fact the Pfaffian
of the t-dependent moment matrix m2n(t) = (

μi j (t)
)
0≤i, j<2n−1, i.e.

τ2n(t) = pf(m2n(t)) = (detm2n(t))1/2 (2.1)
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where entries of m2n(t) are constructed via the skew-symmetric inner product 〈· , ·〉t

μi j (t) = 〈xi , y j 〉t :=
∫ ∫

R2
xi y j σ(x − y) e− 1

2 (x2+y2)+∑
k tk (xk+yk ) dx dy

(2.2)

with σ(x) = sign(x). Noting that μi j = −μ j i , the moments matrix m2n is skew-
symmetric and takes the form

m2n = (
μi j

)
0≤i, j≤2n−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ0 1 μ0 2 μ0 3 μ0 4 μ0 5 . . .

−μ0 1 0 μ1 2 μ1 3 μ1 4 μ1 5 . . .

−μ0 2 −μ1 2 0 μ2 3 μ2 4 μ2 5 . . .

−μ0 3 −μ1 3 −μ2 3 0 μ3 4 μ1 5 . . .

−μ0 4 −μ1 4 −μ2 4 −μ3 4 0 μ4 5 . . .

−μ0 5 −μ1 5 −μ2 5 −μ3 5 −μ4 5 0 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.3)

The evolution equations of matrix elements μi j with respect to the coupling constants
{tk}k∈N follow from the direct differentiation from the definition (2.2) and read as

∂μi j

∂tk
= μi+k, j + μi, j+k . (2.4)

Therefore, the semi-infinite moment matrix m∞ satisfies the equation

∂m∞
∂tk

= �k m∞ + m∞ �k , (2.5)

where � is the shift matrix

� =

⎛
⎜⎜⎜⎝

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ . (2.6)

As mentioned above regarding Eq. (1.4), the matrix m∞ admits the unique factorisa-
tion [1,3,34]

m∞(t) =
(
Q(t)−1

)
J

(
Q(t)−1

)�
(2.7)
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where J is the semi-infinite skew-symmetric matrix such that J 2 = −I and Q is a
semi-infinite lower triangular matrix of the form

Q(t) =

. . . 0 0 0 0 . . .

Q2n,2n 0 0 0 . . .

0 Q2n,2n 0 0 . . .

∗ ∗ Q2n+2,2n+2 0 . . .

∗ ∗ 0 Q2n+2,2n+2 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.8)

Due to the factorisation (2.7), elements of the matrix Q depend on the moments
μi j as well as the Pfaffian τ -function τ2n . From Eq. (2.4), it follows that the evolution
of the Pfaffian τ -function with respect to the k-th time can be written as

∂τ2n

∂tk
=

2n−1∑
i, j=0

∂τ2n

∂μi, j

∂μi, j

∂tk
=

2n−1∑
i, j=0

∂τ2n

∂μi, j

(
μi+k, j + μi, j+k

)
. (2.9)

Therefore, elements of the decomposition matrix Q are expressed in terms of τ2n and
suitable combinations of its derivatives with respect to the times {tk}k∈N determined
by the Schur’s polynomials of the differential operators {∂tk }k∈N [34].

The factorisation of the moments matrix allows to define the Lax matrix

L(t) = Q(t)�Q(t)−1 (2.10)

for which the following theorem holds:

Theorem 1 ([5]) The function τ2n is a τ -function for the Pfaff Lattice, i.e. the following
operator
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L(t) = Q(t)�Q(t)−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 . . .

∗ ∂t1 log τ2

(
τ4 τ0

τ 22

)1/2

0 0 0
. . .

∗ ∗ −∂t1 log τ2 1 0 0
. . .

∗ ∗ ∗ ∂t1 log τ4

(
τ6 τ2

τ 24

)1/2

0
. . .

∗ ∗ ∗ ∗ −∂t1 log τ4 1
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.11)

satisfies the commuting equations

∂L

∂tk
=

[
−(Lk)t , L

]
k ∈ N, (2.12)

Eq. (2.12) is referred to as the Lax equation of the Pfaff Lattice.

The star symbols ∗ in the expression of the Lax matrix (2.11) stand for suitable
differential expressions of the τ -functions τ2k and At is the projection defined in (1.7).
This follows from the splitting of the Lie algebra gl(∞)

gl(∞) = t ⊕ n

{
t = {lower triangular matrices of the form (2.8)}
n = sp(∞) = {A such that J A� J = A} (2.13)

which yields the unique decomposition

A = At + An

= A− − J (A+)� J + 1

2

(
A0 − J (A0)

� J
)

+ A+ + J (A+)� J

+1

2

(
A0 + J (A0)

� J
)

(2.14)

where A± denote, respectively, the upper and lower triangular part of A, with all 2×2
diagonal blocks equal to zero, and A0 the block diagonal part of A with 2×2 diagonal
blocks.

3 Lattice equations and initial conditions for the Pfaff hierarchy

In this section, we further investigate the structure of the Lax equation (2.12). Our
main observation is that the Lax equation can be recast in the form of a two-component
infinite chain.
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Let us introduce the following notation for the Lax matrix (2.11)

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 . . .

w−1
1 v01 w0

1 0 0 0 0 0 0 . . .

v−1
1 w1

1 −v01 1 0 0 0 0 0 . . .

w−2
1 v11 w−1

2 v02 w0
2 0 0 0 0 . . .

v−2
1 w2

1 v−1
2 w1

2 −v02 1 0 0 0 . . .

w−3
1 v21 w−2

2 v12 w−1
3 v03 w0

3 0 0 . . .

v−3
1 w3

1 v−2
2 w2

2 v−1
3 w1

3 −v03 1 0 . . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.1)

The variables {w0
n}n≥1 constitute the non-constant entries in the first upper diagonal

(even positions) of L , and {v0n}n≥1 the entries in the main diagonal of L . In the lower
triangular part, for any k > 0, {w−k

n }n≥1 and {wk
n}n≥1 occupy, respectively, odd and

even positions on the (2k − 1)-th diagonal. Similarly, the variables {v−k
n }n≥1 and

{vkn}n≥1 occupy odd and even positions on the 2k-th diagonal. The evolution equations
for the variables vkn and wk

n follow from the Lax equation (2.12). For instance, the t1-
flow for the variables v±k

n and w±k
n , respectively, is given by following equations

∂t1v
k
n = 1

2

(
v0n−1 + v0n − v0n−k−1 − v0−k+n

)
vkn + wk−1

n − w0
nw

−(k+1)
n+1

− w−1
n w−k

n − w0
n−1w

−(k−1)
n−1 , k < −1

∂t1v
−1
n = 1

2

(
v0n−1 − v0n+1

)
v−1
n + w−2

n − w0
n − w−1

n w1
n − w0

n−1w
2
n−1

∂t1v
0
n = w0

nw
1
n

∂t1v
1
n = 1

2

(
v0n+1 − v0n−1

)
v1n − w−2

n + w0
n + w−1

n+1w
1
n + w0

n+1w
2
n

∂t1v
k
n = 1

2

(
v0k+n + v0k+n−1 − v0n − v0n−1

)
vkn + w0

n+k−1w
k−1
n + w−1

n+kw
k
n

+ w0
n+kw

k+1
n − w−(k+1)

n , k > 1

(2.2)

and

∂t1w
k
n = 1

2

(
v0n−k−1 + v0n−k−2 + v0n + v0n−1

)
wk
n + w0

n−k−2v
k+2
n − w0

nv
−(k+2)
n+1

+ w−1
n−k−1v

k+1
n − w−1

n v−(k+1)
n + w0

n−k−1v
k
n − w0

n−1v
−k
n−1, k < −1

∂t1w
−1
n = w0

nv
−1
n − w0

n−1v
1
n−1 (2.3)

∂t1w
0
n = 1

2

(
v0n+1 − 2v0n + v0n−1

)
w0
n

∂t1w
k
n = − 1

2

(
v0n+k + v0n+k−1 + v0n + v0n−1

)
wk
n + vkn − v−k

n , k > 0.
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To give an idea of the increasing complexity of higher flows, the t2-flows for both
variables v±k

n and w±k
n are also reported in Appendix A.

We now consider the initial condition for the Lax matrix L . From (2.11), we have
that the component w0

n(t) can be expressed in terms of τ2n(t) as follows (see [34])

w0
n(t) =

(
τ2n+2(t) τ2n−2(t)

τ 22n(t)

)1/2

. (2.4)

The function τ2n(0) is given by a Selberg’s integral which can be evaluated explicitly
so that

τ2n(0) = πn/2
n−1∏
k=0

2−2k(2k)!. (2.5)

Therefore, Eqs. (2.4) and (2.5) imply

w0
n(0) = 2

√
π

√
2n(2n − 1). (2.6)

Similarly, using the expression for v0n(t) obtained in [34], i.e.

v0n(t) = ∂t1 log τ2n(t). (2.7)

one can evaluate the initial datum v0n(0). Hence, from the definition of τ2n(t) given in
(1.3), and due to the skew symmetry of the integration measure we have

v0n(0) = 0. (2.8)

In general, the variables v±k
n are represented as suitable combinations of integrals of

odd functions and therefore v±k
n (0) = 0. We conclude that the Lax matrix L evaluated

at t = 0 takes the following form

L(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 . . .

w−1
1 (0) 0 w0

1(0) 0 0 0 0 0 . . .

0 w1
1(0) 0 1 0 0 0 0 . . .

w−2
1 (0) 0 w−1

2 (0) 0 w0
2(0) 0 0 0 . . .

0 w2
1(0) 0 w1

2(0) 0 1 0 0 . . .

w−3
1 (0) 0 w−2

2 (0) 0 w−1
3 (0) 0 w0

3(0) 0 . . .

0 w3
1(0) 0 w2

2(0) 0 w1
3(0) 0 1 . . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.9)
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4 The reduced even Pfaff hierarchy

In this section, we consider the SME with even power interactions specified by the
partition function (1.9) and show that it provides a solution to it provides a solution
to a reduction of the even Pfaff hierarchy, i.e. the commuting flows (2.12) associated
with the even times t2k only.

In this case, Eq. (2.1), i.e. τ2n(t) = pf(m2n(t)), still holds with m2n =
(μi j )0≤i, j≤2n−1 and

μi j (t) = 〈xi , y j 〉t
=

∫ ∫
R2

xi y j σ(x − y) e
∑

k≥1 t2k (x2k+y2k )e− 1
2 (x2+y2) dx dy. (2.1)

Hence, the moments matrix m2n(t) reads as

m2n = (
μi j

)
0≤i, j≤2n−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ0 1 0 μ0 3 0 μ0 5 . . .

−μ0 1 0 μ1 2 0 μ1 4 0 . . .

0 −μ1 2 0 μ2 3 0 μ2 5 . . .

−μ0 3 0 −μ2 3 0 μ3 4 0 . . .

0 −μ1 4 0 −μ3 4 0 μ4 5 . . .

−μ0 5 0 −μ2 5 0 −μ4 5 0 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.2)

The moments (2.1) satisfy the evolution equations

∂μi j

∂t2k
= μi+2k, j + μi, j+2k (2.3)

which imply

∂m∞
∂t2k

= �2k m∞ + m∞ �2k . (2.4)

We consider the reduction of the Lax equation (2.12) of the form

∂L

∂t2k
=

[
−(L2k)t , L

]
, (2.5)
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with

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 . . .

w−1
1 0 w0

1 0 0 0 0 0 0 . . .

0 w1
1 0 1 0 0 0 0 0 . . .

w−2
1 0 w−1

2 0 w0
2 0 0 0 0 . . .

0 w2
1 0 w1

2 0 1 0 0 0 . . .

w−3
1 0 w−2

2 0 w−1
3 0 w0

3 0 0 . . .

0 w3
1 0 w2

2 0 w1
3 0 1 0 . . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.6)

that is the Laxmatrix associatedwith the SMEwith even power interactions is obtained
from the general one by setting the variables v0n , v

±k
n identically equal to zero for any

tk . In other words, the partition function gives a solution to a reduction of the even
Pfaff hierarchy which preserves the zeros of the initial Lax matrix L(0) given by the
expression (2.9).

The first non-trivial flow of the reduced even Lax hierarchy (2.5) provides the
following evolution equations for the variables wk

n

∂t2w
k
n = 1

2

(
wk
nw

0
nw

1
n + wk

nw
0
n−k−1w

1
n−k−1 − wk

nw
0
n−1w

1
n−1 − wk

nw
0
n−k−2w

1
n−k−2

)

+ wk+1
n+1w

0
n + wk−1

n w0
n−k−1 − wk−1

n−1w
0
n−1 − wk+1

n w0
n−k−2, k < −1

∂t2w
−1
n = w0

n

(
w−1
n w1

n + w−2
n + w0

n

)
− w0

n−1

(
w−1
n w1

n−1 + w−2
n−1

)
−

(
w0
n−1

)2

∂t2w
0
n = 1

2

(
w0
n+1w

1
n+1 − w0

n−1w
1
n−1

)
w0
n +

(
w−1
n+1 − w−1

n

)
w0
n

∂t2w
1
n = 1

2

(
w0
n−1w

1
n−1w

1
n − w0

n+1w
1
nw

1
n+1

)
+ w0

n+1w
2
n − w0

n−1w
2
n−1

∂t2w
k
n = 1

2

(
w0
n−1w

1
n−1w

k
n + w0

n+k−1w
1
n+k−1w

k
n − w0

nw
1
nw

k
n − w0

n+kw
1
n+kw

k
n

)

+ w0
nw

k−1
n+1 + w0

n+kw
k+1
n − w0

n−1w
k+1
n−1 − w0

n+k−1w
k−1
n , k > 1.

(2.7)

The derivation described above naturally compares with the case of the HME, as
studied in [8], where the partition function corresponds to a particular solution of the
Toda Lattice and the reduction of even power interactions provides a solution to the
Volterra Lattice. The Volterra Lattice is effectively an independent integrable system
as it arises from a reduction in the even Toda hierarchy and it is not compatible with the
odd flows of the Toda hierarchy. Similarly, the reduction of the even Pfaff hierarchy
obtained from the SME with even interactions is not compatible with the odd flows of
the Pfaff hierarchy.
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5 Thermodynamic limit and integrable hydrodynamic chain

We study the large n asymptotic properties of the SME via the continuum limit of the
Pfaff Lattice equations. In particular, we focus on the case of even power interactions
(1.9) described by the Lax matrix (2.6) which satisfies the Lax equations (2.5).

As observed above, the lattice equations for the reduced even Pfaff hierarchy (2.7)
constitute an infinite chain for the variableswk

n , where k ∈ Z labels the components of
the chain andn ∈ N labels points on the lattice. InSect. 3,wenoted that the variableswk

n
can be expressed in terms of suitable elements of the sequence of τ -functions {τ2n}n≥1
and their derivatives. As n → ∞, for the variables wk

n we have wk
n+1 − wk

n = O(ε),
with ε → 0 such that x = εn remains finite. In the following, we derive the continuum
limit equations for the chain and study the integrability at the leading orderwith respect
to the ε expansion. We illustrate the result for the first equation of the hierarchy given
by the t2-flows. As mentioned in Sect. 1, our considerations extend to the t4- and
t6-flows as well, and we conjecture they hold for any equation of the hierarchy.

Let us introduce the interpolation function wk(x/ε) with x = εn so that wk(n) =
wk
n , and define

uk(x) := wk
( x

ε

)

with uk(x ± ε) = wk
n±1. Substituting u

k(x) into Eq. (2.7), expanding in Taylor series
for ε → 0 and setting t = ε t2, at the leading order O(ε0)we get the following system
of PDEs

ukt =
(
(k + 2)uk+1 − kuk−1 + u1uk

)
u0x + u0uku1x + u0uk−1

x + u0uk+1
x , k < 0

u0t = u0u1u0x +
(
u0

)2
u1x + u0u−1

x

u1t =
(
2u2 −

(
u1

)2)
u0x − u0u1u1x + u0u2x

ukt =
(
(k + 1)uk+1 − (k − 1)uk−1 − u1uk

)
u0x − u0uku1x + u0uk−1

x + u0uk+1
x , k > 1

(2.1)

with the notation ft = ∂t f , fx = ∂x f . In particular, we note that the system (2.1) is
an infinite chain of quasilinear PDEs of hydrodynamic type. In fact, the equations of
the chain are of the form

ukt = ak0 u
0
x + ak1 u

1
x + akk−1 u

k−1
x + akk+1 u

k+1
x (2.2)

or equivalently

ut = A(u)ux (2.3)
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where A(u) = {akj }+∞
j,k=−∞ is an infinitematrix such that akj = 0 if /∈ {0, 1, k−1, k+1}

and

ak0 =

⎧⎪⎨
⎪⎩

(k + 2)uk+1 − kuk−1 + u1uk if k < 0

u0u1 if k = 0

(k + 1)uk+1 − (k − 1)uk−1 − u1uk if k ≥ 1

ak1 =
{

u0uk if k ≤ 0

−u0uk if k ≥ 1

akk−1 =
{

u0 if k 	= 1(
2u2 − (u1)2

)
if k = 1

akk+1 =
{

u0 if k 	= 0

(u0)2 if k = 0

(2.4)

By applying the same procedure, one can construct a hierarchy of infinitely many
commuting flows, each of them in the form of a hydrodynamic chain (1.11) from the
thermodynamic limit of the higher flows of the hierarchy (2.5). The hydrodynamic
chain (2.1) is integrable as it possesses an infinite hierarchy of commuting flows. In
the following, we show that the hydrodynamic chain (2.1) is diagonalisable and inte-
grable according to the criterion introduced in [15], namely the existence of integrable
hydrodynamic reductions in an arbitrary number of components.

Following [15], the diagonalisability of the hydrodynamic chain is established by
studying the Haantjes tensor

Hi
jk = Ni

pr a
p
j a

r
k − N p

jr a
i
p a

r
k − N p

rk a
i
p a

r
j + N p

jk a
i
r a

r
p (2.5)

where Ni
jk is the Nijenhuis tensor

Ni
jk = a p

j ∂u paik − a p
k ∂u paij − aip

(
∂u j a

p
k − ∂uk a

p
j

)
. (2.6)

In the case of infinite matrices, both Nijenhuis and Haantjes tensors are well defined
for the so-called matrices of chain class.

Definition 2 (Chain class matrices [15]) An infinite matrix A(u) is said to belong to
the class C (chain class) if it satisfies the following two properties:

(a) each row of A(u) contains finitely many nonzero elements;
(b) each matrix element of A(u) depends on finitely many variables uk .

Bearing inmind the formof thematrix A(u) as specified in (2.4), we have the following

Proposition 3 Given the chain (2.1), the associated matrix A(u) in (2.3) belongs to
the chain class.

Moreover, based on the Haantjes theorem given in [16], the following definition
extends the concept of diagonalisability to the case of infinite matrices:
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Definition 4 (Diagonalisable hydrodynamic chains [15])A hydrodynamic chain from
the classC is said to be diagonalisable if all components of the correspondingHaantjes
tensor are zero.

We show that our chain fulfils the definition above.

Proposition 5 Given the chain (2.1), theHaantjes tensor of the associatedmatrix A(u)

vanishes.

Proof The proof proceeds by direct inspection. Observing that by definition Ni
jk is

antisymmetric under exchange of j and k, i.e. Ni
jk = −Ni

k j , a direct calculation shows

that N 0
jk = 0 for any j and k. Similarly, for i 	= 0 the only nonzero elements of Ni

jk
are

Ni
0±1, Ni

0 i , Ni
0 i±1, Ni

1 i±1 N
i
−1 i±1, Ni−1+1 (2.7)

and their counterparts with the lower indices exchanged. The above components can
be computed for a generic value of i , and their explicit expressions are listed in
Appendix D. The structure of Ni

jk and A(u) induces constraints on the range of
values the indices p and r can take in the expression of the Haantjes tensor (2.5),
and consequently on potential nonzero elements. Indeed, the form of Ni

jk , specified

by the elements (2.7), implies that for any fixed i the only components of Hi
jk which

are not trivially zero are those for j, k ∈ {0,±1,±2, 3, i, i ± 1, i ± 2, i ± 3}. Given
the explicit expressions for akj in (2.4) and Ni

jk in Appendix D, a direct calculation

demonstrates that Hi
jk = 0 for the listed values of the lower indices. This proves the

statement. ��
We now study the integrability of the chain (2.3) by following the approach based

on the method of hydrodynamic reductions applied to the system (2.1). We look for
solutions of the form

uk = uk(R1, R2, . . . , RN ) (2.8)

for an arbitrary number N of components Ri = Ri (x, t). The functions {Ri }Ni=1 are
the Riemann invariants and satisfy by definition the diagonal system

Ri
t = λi (R1, . . . , RN )Ri

x (2.9)

where the characteristic speeds λi are such that the system (2.9) possesses the semi-
Hamiltonian property, that is

∂k

(
∂ jλ

i

λ j − λi

)
= ∂ j

(
∂kλ

i

λk − λi

)
, (2.10)

with the notation ∂i = ∂Ri . The diagonal form of the system (2.9) and the condition
(2.10) guarantee that Eq. (2.9) constitute a system of conservation laws [30] which
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is integrable via the generalised hodograph method [33]. Substituting the assump-
tion (2.8) into the system (2.3) and using (2.9), we obtain the equations of the form

λi ∂iu = A(u) ∂iu, i = 1, 2, . . . N (2.11)

where we used the fact that Ri
x for i = 1, . . . , N are independent.We observe that, due

to the specific sparse structure of the matrix A(u), the components of the eigenvectors
∂iu can be parametrised in terms of the components ∂i u0 and ∂i u1.

Let us consider, for example, the equations for ∂i u−2, ∂i u−1, ∂i u2 and ∂i u3:

∂i u
−2 = 1

(u0)2

(
(λi )2 − u0u1λi − u0(2u0 + u−2 + u−1u1)

)
∂i u

0 −
(
λi + u−1

)
∂i u

1

∂i u
−1 =

(
λi

u0
− u1

)
∂i u

0 − u0∂i u
1

∂i u
2 = 1

u0

(
(u1)2 − 2u2

)
∂i u

0 + 1

u0

(
λi + u0u1

)
∂i u

1

∂i u
3 = 1

(u0)2

((
(u1)2 − 2u2

)
λi + u0

(
u1(1 + u2) − 3u3

))
∂i u

0

+ 1

(u0)2

(
(λi )2 + u0u1λi + (u0)2(u2 − 1)

)
∂i u

1 , i = 1, . . . , N .

The compatibility conditions

∂ j∂i u
−2 = ∂i∂ j u

−2 ∂ j∂i u
−1 = ∂i∂ j u

−1 ∂ j∂i u
2 = ∂i∂ j u

2 ∂ j∂i u
3 = ∂i∂ j u

3

lead to a so-called Gibbons–Tsarev system. For our chain, this takes the form

∂ jλ
i = 4(u0)2 − λiλ j

u0(λi − λ j )
∂ j u

0

∂iλ
j = 4(u0)2 − λiλ j

u0(λ j − λi )
∂i u

0

∂i∂ j u
0 = (λi )2 + (λ j )2 − 8(u0)2

u0(λi − λ j )2
∂i u

0∂ j u
0

∂i∂ j u
1 = − (λ j − 2λi )λ j + 4(u0)2

u0(λi − λ j )2
∂i u

0∂ j u
1 − (λi − 2λ j )λi + 4(u0)2

u0(λi − λ j )2
∂ j u

0∂i u
1.

(2.12)

A direct calculation shows that the system of Eq. (2.12) is in involution, i.e. compati-
bility conditions of the form

∂k∂ jλ
i = ∂ j∂kλ

i ∂k∂i∂ j u
0 = ∂i∂k∂ j u

0 ∂k∂i∂ j u
1 = ∂i∂k∂ j u

1

are satisfied modulo the equations (2.12) for all permutations of the derivatives with
respect to Ri , R j , Rk . A first classification of Gibbons–Tsarev systems has been
provided by Odesskii and Sokolov [24,25]. We note that, at the best of our knowledge,
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the system (2.12) has not appeared before in the literature and it is not included in the
class considered in [24,25].

The compatibility of the Gibbons–Tsarev system (2.12) guarantees that for any
solution of the Riemann invariants system (2.1) it is possible to construct a solu-
tion of the hydrodynamic chain. This property was proposed in [15] as definition of
integrability of a hydrodynamic chain:

Definition 6 (Integrable hydrodynamic chains [15]) A hydrodynamic chain of class
C is integrable if it admits N -phase solutions of the form (2.8) for arbitrary N .

Therefore, the above calculations prove the following

Theorem 7 The hydrodynamic chain (2.1) is integrable in the sense of the hydrody-
namic reductions.

6 Concluding remarks

Extensive studies of Random Matrix Ensembles and their connection with the theory
of integrable systems (see, e.g. [34] and references therein) show that the order param-
eters, defined as derivatives of the partition function, and their suitable combinations
appear as entries of the Lax matrix and the associated Lax equation. For example, in
the case of HME, one has the Lax equations for the Toda Lattice. The matrix ensemble
of interest is specified by a particular solution of the hierarchy, obtained from a suit-
able initial condition. Such initial condition is evaluated by considering the partition
function and its derivatives in the case where all coupling constants tk vanish. Simi-
larly, in the case of SMEs the underlying integrable system is constituted by the Pfaff
Lattice and the equations of its hierarchy. These equations specify the behaviour of the
order parameters, namely the entries of the Lax matrix, as functions of the coupling
constants.

For even power interactions, the thermodynamic limit of the HME is constituted by
an order parameter that evolves according to a scalar integrable hierarchy (the Hopf
hierarchy) [8]. On the other hand, in the n → ∞ limit, the even SME is specified by
infinitely many order parameters that satisfy an integrable hydrodynamic chain. This
result follows from the key observation that the components of the reduced even Pfaff
Lattice can be rearranged in the form of a chain of equations, where the state of each
site is given by a vector of infinitely many components. From this point of view, the
SME reveals a higher level of complexity compared to the HMEdue to the existence of
integrable reductions in any number of components and associated critical scenarios.

It is indeed well known that, for generic initial conditions, solutions of systems
of hydrodynamic type break down in finite time, namely, in the context of SME,
for finite values of the coupling constants tk . In the case of the HME, the critical
behaviour of the order parameter at the leading order is described by the Whitney
cusp and, as observed in [8], finite size corrections resolve the singularity via the onset
of a modulated highly oscillating quasi-periodic wave, known as dispersive shock.
The dispersive shock characterises a new type of phase transition where asymptotic
stable states are connected by an intermediate state where order parameters develop
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fast oscillations induced by the dispersive nature of finite size corrections. The case
of SME presents a similar scenario with a potentially richer variety of behaviours
due to the higher number of components. Further studies in this direction will entail
the detailed analysis of the solution with the specific initial condition induced by the
partition function (1.9) calculated at t = 0.

The application of the Haantjes tensor test and the method of hydrodynamic reduc-
tions allow to prove the integrability of the hydrodynamic chain by considering the first
nontrivial flow only. Integrability implies the existence of infinitely many commuting
flows which describe the evolution of the order parameters in the space of coupling
constants.

We finally note that above considerations are concerned with a direct comparison
between HME and SME when restricted to even power interactions. It is important to
note that, with the given scaling, the hydrodynamic chain arises in the case of even
power interactions only. As mentioned earlier and further specified in Appendix B,
the first flow (B.1) associated with t1 does not lead to an infinite chain of quasilinear
PDEs. The system (B.1) and its relation with the large n scaling properties of the initial
condition will be analysed in detail in a separate work. The previously unseen con-
nection between matrix ensembles and hierarchies of hydrodynamic chains discussed
in this paper, together with the aforementioned results for the HME discussed in [8],
suggests that the study of random matrix models may lead to the discovery of new
interesting integrable hydrodynamic PDEs. The study of the PDEs so obtained arises
as a general framework and a new methodology to classify and describe asymptotic
properties of complex systems.
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Appendix A. t2-flow of the Pfaff Lattice

We provide the expressions for the second flow of the Pfaff Lattice with both even and
odd times. By direct inspection, the evolution equations for vkn and wk

n with respect to
t2 read, respectively,

∂t2v
k
n = −1

2
vkn

(
(v0n−k)

2 − (v0n−k−1)
2 − (v0n)

2 + (v0n−1)
2 + w0

n−k w1
n−k − w0

n−k−1 w1
n−k−1

−w0
n w1

n + w0
n−1 w1

n−1

) + w0
n−k vk−1

n − w0
n−k−1 vk+1

n + w0
n vk+1

n+1
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−w0
n−1 vk−1

n−1 + (
v0n−k − v0n−k−1

)
wk−1
n − (

v0n − v0n−1

)
w−1
n w−k

n

−
(
w0
n vk+1

n − w0
n−1 v

−(k+1)
n−1

)
w−k
n , k < 0

∂t2v
0
n = w0

n

(
v1n + v−1

n

)

∂t2v
k
n = 1

2
vkn

(
(v0n+k)

2 − (v0n+k−1)
2 + (v0n)

2 − (v0n−1)
2 + w0

n+k w1
n+k − w0

n+k−1 w1
n+k−1

+w0
n w1

n − w0
n−1 w1

n−1

) + w0
n+k vk+1

n − w0
n+k−1 vk−1

n + w0
n vkn+1 − w0

n−1 vk+1
n−1

+ (
v0n+k − v0n+k−1

)
w−1
n+k wk

n − (
v0n − v0n−1

)
w−(k+1)
n

+
(
w0
n+k v

−(k−1)
n+k − w0

n+k−1 vk−1
n+k−1

)
wk
n , k > 0

(A.1)

∂t2w
k
n = 1

2
wk
n

(
(v0n−k−1)

2 − (v0n−k−2)
2 + (v0n)

2 − (v0n−1)
2

+w0
n−k−1 w1

n−k−1 − w0
n−k−2 w1

n−k−2 + w0
n w1

n − w0
n−1 w1

n−1

)
+w0

n−k−1 wk−1
n − w0

n−k−2 wk+1
n + w0

n wk+1
n+1

−w0
n−1 wk−1

n−1 + (
v0n−k−1 − v0n−k−2

)
w−1
n−k−1 vk+1

n − (
v0n − v0n−1

)
w−1
n v−(k+1)

n

+
(
w0
n−k−1 vk+2

n−k−1 + w0
n−k−2 v

−(k+2)
n−k−2

)
vk+1
n

−
(
w0
n vk+2

n + w0
n−1 v

−(k+2)
n−1

)
v−(k+1)
n , k < 0

∂t2w
0
n = 1

2
w0
n

(
(v0n+1)

2 − (v0n−1)
2 + w0

n+1 w1
n+1 − w0

n−1 w1
n−1

) + w0
n

(
w−1
n+1 − w−1

n−1

)

∂t2w
1
n = −1

2
w1
n

(
(v0n+1)

2 − (v0n−1)
2 + w0

n+1 w1
n+1 − w0

n−1 w1
n−1

) + w0
n+1 w2

n − (w0
n)

2

+w0
n w0

n+1 − w0
n−1 w2

n−1 + (
v0n+1 − v0n

)
v1n − (

v0n − v0n−1

)
v−1
n

∂t2w
k
n = −1

2
wk
n

(
(v0n+k)

2 − (v0n+k−1)
2 + (v0n)

2 − (v0n−1)
2 + w0

n+k w1
n+k

−w0
n+k−1 w1

n+k−1 + w0
n w1

n − w0
n−1 w1

n−1

) + w0
n+k wk+1

n − w0
n+k−1 wk−1

n

+w0
n wk−1

n+1 − w0
n−1 wk+1

n−1 + (
v0n+k − v0n+k−1

)
vkn − (

v0n − v0n−1

)
v−k
n , k > 1.

(A.2)

Appendix B. Continuum limit of the Pfaff Lattice: t1-flow and higher
order corrections

We provide the continuum limit of Eqs. (2.2), (2.3) constituting the t1-flow of the
Pfaff Lattice. Using the same approach described in Sect. 5 for the reduced even Pfaff
Lattice, we introduce interpolating functionswk(x/ε) and vk(x/ε), with finite x = εn,
in the limit n → ∞ and ε → 0. Hence, given wk(n) = wk

n , v
k(n) = vkn we define

uk(x) := wk
( x

ε

)

zk(x) := vk
( x

ε

)
.
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Therefore, at x = εn, we have uk(x ± ε) = wk
n±1 and zk(x ± ε) = vkn±1. Using the

above substitution into Eqs. (2.2) and (2.3) and expanding in Taylor series for ε → 0,
the evolution equations for vkn (2.2) give, up to O(ε3)

zkt1 = −u0
(
u−(k+1) + u−(k−1)

)
− u−1u−k + uk−1

+ε
(
u−(k−1)u0x + k zkz0x − u0u−(k+1)

x + u0u−(k−1)
x

)

−ε2

2

(
(u−(k−1)u0)xx + u0u−(k+1)

xx + (k + 1)k zkz0xx
)

+O(ε3), k < −1

z−1
t1 = u−2 − u0 − u−1u1 − u0u2 + ε

(
u0xu

2 + u0u2x − z−1z0x
)

− ε2

2

(
u0u2

)
xx

+O(ε3)

z0t1 = u0u1

z1t1 = −u−2 + u0 + u−1u1 + u0u2 + ε
(
z0x z

1 + u−1
x u1 + u0xu

2
)

+ε2

2

(
u1u−1

xx + u2u0xx
)

+ O(ε3)

zkt1 = u0
(
uk−1 + uk+1

)
+ u−1uk − u−(k+1)

+ε
(
k z0x z

k + (k − 1)uk−1u0x + ku−1
x uk + ku0xu

k+1
)

+ε2

2

(
k2(uku−1

xx + uk+1u0xx ) + (k − 1)2uk−1u0xx + k(k − 1)zk z0xx
)

+O(ε3), k > 1. (B.1)

Observe that at the leading order O(ε0), zkt1 = −z−k
t1 for any value of k 	= 0.Moreover,

as the lattice equation for v0n from (2.2) depends only on the site n, the correspond-
ing equation for z0 does not carry higher order corrections in ε. From the evolution
equations (2.3) for wk

n , we find

ukt1 = 2z0uk + u0
(
zk+2 − z−(k+2) + zk − z−k

)
+ u−1

(
zk+1 − z−(k+1)

)

+ ε
(
−(k + 1)(zk+1u−1

x + zku0x ) − (k + 2)(zk+2u0x + ukz0x )

−u0z−(k+2)
x + (u0z−k)x

)
+ ε2

2

(
(k + 1)2(zk+1

x u−1
xx + zku0xx )

+(k + 2)2z(k+2)u0xx + (3 + k(k + 3))ukz0xx − u0z−(k+2)
xx − (u0z−k)xx

)

+ O(ε3), k < −1

u−1
t1 = u0(z−1 − z1) + ε

(
u0z1

)
x

− ε2

2

(
u0z1

)
xx

+ O(ε3)

u0t1 = ε2

2
z0xxu

0 + O(ε4)
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ukt1 = − 2z0uk + zk − z−k − ε(k − 1)z0xu
k − ε2

2
(1 + k(k − 1))ukz0xx + O(ε3), k ≥ 1.

(B.2)

Notice that Eqs. (B.1) and (B.2), unlike their counterpart in the reduced even Pfaff
Lattice (2.1), are not quasilinear and do not constitute a hydrodynamic chain.

Appendix C. Continuum limit of the even Pfaff hierarchy: t2-flow and
higher order corrections

We provide, for the reduced even Pfaff hierarchy, the corrections to the leading order
of Eq. (2.1) up to O(ε3):

ukt =
((

(k + 2)uk+1 − kuk−1 − u1u0xu
k
)
u0x − u0u1xu

k + u0uk−1
x + u0uk+1

x

)

+ 1

2

(
k2u0xx (−uk−1) + (k2 + 2k)u0xxu

k+1 − kuk
(
2u0xu

1
x + u1u0xx + u0u1xx

)

−2u0xu
k+1
x + u0

(
uk−1
xx − uk+1

xx

))
ε

+ 1

12

(
2

(
u0xxx

(
((k + 1)3 + 1)uk+1 − k3uk−1

)
+ 3u0xxu

k+1
x + 3u0xu

k+1
xx

+u0
(
uk−1
xxx + uk+1

xxx

))

−uk
(
3k2 + 3k + 2

) (
3u1xu

0
xx + 3u0xu

1
xx + u1u0xxx + u0u1xxx

))
ε2

+ O
(
ε3

)
, k < 0

u0t = u0
(
u−1
x + u1u0x + u0u1x

)
+ 1

2

(
u0u−1

xx

)
ε

+ 1

6
u0

(
3u1xu

0
xx + 3u0xu

1
xx + u−1

xxx + u1u0xxx + u0u1xxx
)

ε2 + O
(
ε3

)

u1t =
(
2u2u0x − u1

(
u1u0x + u0u1x

)
+ u0u2x

)
+

(
−u0xu

2
x − 1

2
u0u2xx

)
ε

+ 1

6

(
−u0xxx (u

1)2 − (
3u1xu

0
xx + 3u0xu

1
xx + u0u1xxx

)
u1

+3u2xu
0
xx + 3u0xu

2
xx + 2u2u0xxx + u0u2xxx

)
ε2 + O

(
ε3

)

ukt =
((

(k + 1)uk+1 − (k − 1)uk−1 + u1uk
)
u0x + u0u1xu

k + u0uk−1
x + u0uk+1

x

)

+ 1

2

(
u0xx

(
(k2 − 1)uk+1 − (k2 − 2k + 1)uk−1) − 2u0xu

k+1
x

+(k − 1)
(
2u0xu

1
x + u1u0xx + u0u1xx

)
uk + u0uk−1

xx − u0uk+1
xx

)
ε

+ 1

12

(
2

(
u0xxx

(
(k3 + 1)uk+1 − (k − 1)3uk−1

)
+ 3u0xxu

k+1
x
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+3u0xu
k+1
xx + u0

(
uk−1
xxx + uk+1

xxx

))
+ (

3k2 − 3k + 2
) (

3u1xu
0
xx

+3u0xu
1
xx + u1u0xxx + u0u1xxx

)
uk

)
ε2 + O

(
ε3

)
, k > 1 (C.1)

Appendix D. The Nijenhuis tensor

We list the explicit form of the nonzero elements of the Nijenhuis tensor Ni
jk for any

value of i . They are evaluated directly based on the definition of the tensor (2.6) and
the form of the matrix A(u) given by the expressions (2.4). As mentioned in the proof
of Proposition 5, the only nonzero elements of Ni

jk are the ones listed in (2.7) along

with their counterparts with lower indices exchanged—recall that Ni
jk = −Ni

k j .
For |i | > 2

Ni
0 1 =

{
u0

(
(i − 1)ui−1 − (i + 1)ui+1

)
if i > 2

u0
(
iui−1 − (i + 2)ui+1

)
if i < −2

Ni
0−1 =

{
(i − 1)ui−1 + u1ui − (i + 1)ui+1 if i > 2
iui−1 − uiu1 − (i + 2)ui+1 if i < −2

Ni−1,1 = −sgn(i)u0ui

N i
0,i = −4u0

Ni
0,i+1 = u0u1

Ni
0,i−1 = u0u1

Ni
1,i+1 = (u0)2

Ni
1,i−1 = (u0)2

Ni
−1,i+1 = u0

Ni
−1,i−1 = u0
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For |i | ≤ 2

N 2
0,1 = u0(2u1 − 3u3)

N 2
0,−1 = u1(1 + u2) − 3u3

N 2−1,1 = −u0(−1 + u2)

N 2
0,2 = −4u0

N 2
0,3 = u0u1

N 2
1,3 = (u0)2

N 2−1,3 = u0

N 1
0,1 = −2u0(2 + u2)

N 1
0,2 = u0u1

N 1
1,2 = (u0)2

N 1−1,0 = −(u1)2 + 2u2

N 1−1,1 = −u0u1

N 1−1,2 = u0

N−2
0,1 = −2u−3u0

N−2
0,−1 = −2u−3 + (−u−2 + u0)u1

N−2
−1,1 = (u−2 − u0)u0

N−2
0,−2 = −4u0

N−2
0,−3 = u0u1

N−2
1,−3 = (u0)2

N−2
−1,−3 = u0

N−1
0,1 = −u0(u−2 + 2u0)

N−1
0,−1 = −u−2 − 6u0 − u−1u1

N−1
0,−2 = u0u1

N−1
1,−2 = (u0)2

N−1
−1,−2 = u0

N−1
−1,1 = u0u−1.
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