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Abstract
We present a federated learning framework that is designed to robustly deliver good predic-
tive performance across individual clients with heterogeneous data. The proposed approach 
hinges upon a superquantile-based learning objective that captures the tail statistics of the 
error distribution over heterogeneous clients. We present a stochastic training algorithm 
that interleaves differentially private client filtering with federated averaging steps. We 
prove finite time convergence guarantees for the algorithm: O(1∕

√

T) in the nonconvex 
case in T communication rounds and O(exp(−T∕�3∕2) + �∕T) in the strongly convex case 
with local condition number � . Experimental results on benchmark datasets for federated 
learning demonstrate that our approach is competitive with classical ones in terms of aver-
age error and outperforms them in terms of tail statistics of the error.
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1 Introduction

Federated learning is a distributed machine learning framework where many clients (e.g. 
mobile devices) collaboratively train a model under the orchestration of a central server 
(e.g. service provider) while keeping the training data private and local to the client 
throughout the training process (McMahan et al., 2017; Kairouz et al., 2021). It has found 
widespread adoption across industry (Bonawitz et al., 2019; Paulik et al., 2021) for arti-
ficial intelligence  applications ranging from smart device apps  (Yang et  al., 2018; Hard 
et al., 2018) to healthcare (Brisimi et al., 2018; Huang et al., 2019).

A key feature of federated learning is the statistical heterogeneity, i.e., client data dis-
tributions are not identically distributed (Kairouz et al., 2021; Li et al., 2020). In typical 
cross-device federated learning scenarios, each client corresponds to a user. The diversity 
in the data they generate reflects the diversity in their unique personal, cultural, regional, 
and geographical characteristics.

This data heterogeneity in federated learning manifests itself as a train-test distributional 
shift. Indeed, the usual approach minimizes the prediction error of the model on average 
over the population of clients available for training (McMahan et al., 2017) while at test 
time, the same model is deployed on individual clients. This approach can fail on clients 
whose data distribution is far from most of the population or who may have less data than 
most of the population. It is highly desirable, therefore, to have a federated learning method 
that can robustly deliver good predictive performance across a wide variety of natural dis-
tribution shifts posed by individual clients.

We present in this paper a robust approach to federated learning that guarantees a mini-
mum level of predictive performance to all clients, even in situations where the population 
is heterogeneous. The method we develop addresses these issues by minimizing a learning 
objective based on the notion of a superquantile (Rockafellar & Uryasev, 2002; Rockafellar 
et al., 2008), a risk measure that captures the tail behavior of a random variable.

Training models with a learning objective involving the superquantile raises challenges. 
The superquantile is a non-smooth functional with sophisticated properties. Furthermore, 
the superquantile function can be seen as a kind of nonlinear expectation that we would 
like to blend well with averaging mechanisms. We show how to address the former by 
leveraging the dual formulation and the latter by leveraging the tail-domain viewpoint. As 
a result, we can obtain an algorithm that can be implemented in a similar way to FedAvg 
(McMahan et al., 2017) yet offers important benefits to heterogeneous populations.

The approach we propose, Δ-FL, allows one to control higher percentiles of the distribution 
of errors over the heterogeneous population of clients; see Fig. 1 for an illustration. We show in 
the experiments that our approach is more efficient than a direct approach, simply seeking to 
minimize the worst error over the population of clients. Compared to FedAvg, Δ-FL delivers 
improved prediction to tail clients or data-poor clients. Our algorithm relies on differentially pri-
vate quantile computation to filter out clients on which to run federated averaging steps. We pre-
sent finite-time theoretical convergence guarantees for our algorithm when used to train additive 
models or deep networks and prove bounds on the privacy and utility of the  algorithm.

1.1  Contributions

We make the following concrete contributions in this work.
The Δ-FL Framework The usual objective of federated learning, which we call the 

vanilla FL objective is
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where Fi(w) = �
�∼qi

[f (w;�)] is the expected loss on client i under its data distribution qi for 
i = 1,… , n , and � is a regularization parameter (McMahan et al., 2017). Minimizing the 
average loss can lead to poor performance on clients whose distribution p is far from the 
population training distribution ptrain = (1∕n)

∑n

i=1
qi . Our goal is to improve the perfor-

mance on such tail clients.
To this end, we directly minimize the average loss across tail clients whose loss is 

above a certain tail threshold. We formalize this through the notion of a risk measure 
known as the superquantile, a tail summary statistic of random variables (Rockafellar 
& Uryasev, 2002). The (1 − �)-superquantile is defined for a continuous random variable 
Z and � ∈ (0, 1) as �

𝜃
(Z) = �[Z | Z > Q

𝜃
(Z)] , where Q

�
(Z) is the (1 − �)-quantile of Z. A 

similar interpretation holds for discrete distributions; the formal definition of the super-
quantile for this case is given in Sect. 3.3.

Instead of minimizing the average loss as in (1), the proposed framework Δ-FL mini-
mizes the tail loss across clients, as measured by the superquantile. Concretely, at a tail 
threshold � ∈ (0, 1) , we minimize

where �
�
(a1,… , an) is the (1 − �)-superquantile of the empirical distribution (1∕n)

∑n

i=1
�ai

 . 
Thus, the objective (2) measures the tail statistics of the per-client loss distribution.

By a duality argument, we show that the superquantile objective (2) promotes dis-
tributional robustness. If we have a test client who is unseen during training and whose 
distribution p

�
=
∑n

i=1
�iqi can be written as a mixture of the training distributions 

q1,… , qn , then the Δ-FL objective can be written as

In other words, we minimize the worst-case loss over all mixture distributions with a con-
straint �i ≤ 1∕(�n) on the mixture weights; see Sect. 4.1 for details.

Optimization Algorithms. To design a federated optimization algorithm to optimize 
the Δ-FL objective, the nonsmoothness of the superquantile a ↦ �

�
(a1,… , an) might 

lead to potential difficulties in optimization. Fortunately, we can derive an expression 
for the subgradient of the Δ-FL objective (2): when �n is an integer, we have

(1)min
w∈ℝd

1
n

n
∑

i=1
Fi(w) +

�
2
‖w‖2 ,

(2)F
�
(w) ∶= �

�

�

F1(w),… ,Fn(w)
�

+
�

2
‖w‖2 ,

F
�
(w) = max

�i≤1∕(�n)
�
�∼p

�

�

f (w;�)
�

+
�

2
‖w‖2 .

Fig. 1  Schematic summary of the Δ-FL framework.   Left: The server maintains multiple models w
�j
 , one 

for each tail threshold �j . Middle: During training, selected clients participate in training each model w
�j
 . 

Individual updates are securely aggregated to update the server model. Right: Each test user is allowed to 
select their tail threshold � , and are served the corresponding model w

�
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and Q
�
= Q

�
(F1(w),… ,Fn(w)) is the (1 − �)-quantile of the losses evaluated at w. In other 

words, averaging the gradients of the losses that are larger than the quantile Q
�
 gives a 

valid subgradient of the objective (2).
Using this expression, we design a federated optimization algorithm that interleaves 

federated averaging with differentially private quantile estimation. Specifically, the local 
updates w+

i
 from the subsample of m selected clients i ∈ S are aggregated to update the 

global model with the following two steps:

• Estimate ̂Q
𝜃
≈ Q

𝜃
(Fi(w) ∶ i ∈ S) using the distributed discrete Gaussian mechanism 

(Kairouz et al., 2021) and hierarchical histograms (Cormode et al., 2019), and
• Aggregate the updates from the tail clients where Fi(w) ≥ ̂Q

𝜃
 to find the new global 

model w+ as 

Similar to FedAvg, this aggregation rule enjoys a simplification in the case of a single local 
update per-client with a learning rate � . Specifically, under the assumption of full client 
participation (i.e., m = n ), if the local update w − w+

i
= �∇

�

Fi(w) + (�∕2)‖w‖2
�

 is a single 
gradient step and ̂Q

𝜃
= Q

𝜃
(F1(w),… ,Fn(w)) is the exact quantile of the per-client losses, 

the aggregated update is simply a subgradient step w − w+ = �∇F
�
(w) where we denote 

the subgradient as ∇F
�
(w) ∈ �F

�
(w).

Convergence analysis Apart from the nonsmoothness of the superquantile, the conver-
gence analysis also has to overcome the difficulty that we cannot obtain unbiased mini-
batch subgradient estimators for the superquantile objective.

Given m i.i.d. copies Z1,… , Zm of a random variable Z, the empirical mean 
̄Zm = (1∕m)

∑m

i=1
Zi is an unbiased estimate of the population mean, i.e., �[ ̄Zm] = �[Z] . 

This is no longer true for the superquantile, i.e., �[�
�
(Z1,… , Zm)] ≠ �

�
(Z) . As a result, we 

cannot access unbiased stochastic gradients in the learning setting, where m is the mini-
batch size. Moreover, it is not reasonable to assume in federated learning that we have 
access to all the clients due to a diurnal availability pattern of clients (Kairouz et al., 2021). 
We overcome this issue by actually minimizing the expected minibatch superquantile 
instead. It is defined as

where Um is the uniform distribution over all subsets of {1,… , n} of batch size m. We 
can build an unbiased subgradient estimator for this objective by sampling a minibatch 
(i1,… , im) ∼ Um . This is a uniform close surrogate of the original objective, as shown by 
Levy et al. (2020, Prop. 1)

Assuming that each Fi is G-Lipschitz and L-smooth, we establish a rate of 
√

LG2∕T  in 
the nonconvex (and nonsmooth) case where � = 0 . If, additionally, each Fi is convex and 

n
�

i=1

𝜋
⋆

i
Fi(w) + 𝜆w ∈ 𝜕F

𝜃
(w) , where 𝜋

⋆

i
=

�(Fi(w) ≥ Q
𝜃
)

∑n

j=1
�(Fj(w) ≥ Q

𝜃
)
,

w+ =
1

|S
𝜃
|

∑

i∈S
𝜃

w+
i
, where S

𝜃
= {i ∶ Fi(w) ≥ ̂Q

𝜃
} .

F
�
(w) ∶= �(i1,…,im)∼Um

[

�
�

(

Fi1
(w),… ,Fim

(w)
)]

,

�F
�
(w) − F

�
(w)� ≤ O

�

maxi=1,…,n �Fi(w)�
√

�m

�

.
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𝜆 > 0 , the problem is strongly convex and we establish a rate of exp(−T∕�3∕2) + G2∕(�T) 
in this case where � = 1 + L∕� is the per-client condition number.

Privacy and utility analysis The standard algorithms to compute quantiles with differen-
tial privacy are based on the exponential mechanism and require a trusted central aggregator 
(Smith, 2011). Since this is not usually the case in federated learning, we estimate the cumula-
tive distribution using the hierarchical histogram method and combine it with the distributed 
discrete Gaussian mechanism (Kairouz et al., 2021) in order to simulate a central aggrega-
tion using a cryptographic primitive known as secure aggregation (Bonawitz et  al., 2017). 
The hierarchical histogram method, also known as tree aggregation, is a classical approach 
to answer range queries under differential privacy (Hay et al., 2010; Dwork et al., 2010; Chan 
et al., 2011; Smith et al., 2017; Cormode et al., 2019).

Privacy guarantees are obtained by adding noise to the per-client computations, resulting in 
a degradation of utility (i.e., the performance relative to the non-private case). This leads to a 
tradeoff between privacy and utility. For a hierarchical histogram of b bins, we prove a (1∕2)�2
-concentrated differential privacy (Bun & Steinke, 2016) guarantee given a per-client noise of 
scale log b∕(�

√

n) and a quantile error of log2 b∕(�n) up to constants and log factors.
Experiments We perform numerical experiments using neural networks and linear mod-

els on tasks including image classification and sentiment analysis based on public datasets. 
The experiments demonstrate the superior performance of Δ-FL over state-of-the-art baselines 
on the upper quantiles of the error on test clients, with particular improvements on data-poor 
clients, while being competitive on the mean error. A deeper analysis reveals that Δ-FL helps 
improve performance on data-poor clients.

We numerically study the privacy-utility tradeoff of the differentially private quantile esti-
mation algorithm described above and the Δ-FL algorithm with end-to-end differential pri-
vacy guarantees. We find that Δ-FL outperforms FedAvg on the tail error across a wide range 
of privacy budgets while exhibiting a comparable privacy-utility tradeoff to FedAvg on the 
mean error.

1.2  Outline

We start with Sect.  2 to describe the related work. Section  3 describes the general setup, 
recalls the FedAvg algorithm, and formally defines the superquantile as a tail summary of a 
random variable. Section 4 presents a federated optimization algorithm for Δ-FL. We analyze 
its convergence in the convex and non-convex cases, as well as its differential privacy proper-
ties in Sect. 5. We discuss an extension to other risk measures and relations to fair allocation in 
Sect. 6. Section 7 presents experimental results, comparing the proposed approach to existing 
ones. Detailed proofs and additional details can be found in the appendices, while the code 
and the scripts to reproduce the experiments can be found at https:// github. com/ krish nap25/ 
simpl icial- fl.

An early version of this work was presented at IEEE CISS (Laguel et al., 2021). This paper 
extends and improves upon it in several respects. First, we give an improved and tighter con-
vergence analysis in both the convex and general nonconvex cases. Second, we augment our 
algorithm with differential privacy and analyze its privacy and utility. Finally, we conduct an 
expanded numerical study, including (a) comparing with baselines such as Tilted-ERM (Li 
et al., 2021) that were published after our paper (Laguel et al., 2021), (b) an empirical com-
parison to model personalization, and, (c) a study of the privacy-utility tradeoff of Δ-FL under 
differential privacy.

https://github.com/krishnap25/simplicial-fl
https://github.com/krishnap25/simplicial-fl
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Notation. The norm ‖⋅‖ denote the Euclidean norm ‖⋅‖2 in ℝ
d . We use 

Δn−1 =
�

� ∈ ℝ
n
+
∶
∑n

i=1
�i = 1

�

 to denote the probability simplex in ℝn.

2  Related work

Federated learning was introduced by (McMahan et al., 2017) to handle distributed on-
client learning  (Kairouz et  al., 2021; Li et  al., 2020; Gafni et  al., 2022). A plethora 
of recent extensions have also been proposed (Yurochkin et  al., 2019; Sattler et  al., 
2020; Mills et al., 2020; Wei et al., 2020; Mohammadi Amiri & Gündüz, 2020; Shlez-
inger et  al., 2021; Jhunjhunwala et  al., 2021; Sery et  al., 2021; Collins et  al., 2021). 
Our approach to addressing the statistical heterogeneity by proposing a new objective is 
broadly applicable in these settings.

Distributionally robust optimization (Ben-Tal et al., 2013), which aims to train mod-
els that perform uniformly well across all subgroups instead of just on average, has wit-
nessed a flurry of recent research (Lee & Raginsky, 2018; Duchi & Namkoong, 2019; 
Kuhn et  al., 2019). This approach is closely related to the risk measures studied in 
economics and finance (Artzner et al., 1999; Rockafellar & Uryasev, 2000; Ben-Tal & 
Teboulle, 2007; Föllmer & Schied, 2016). The recent works (Laguel et al., 2020; Levy 
et  al., 2020; Curi et  al., 2020) study optimization algorithms for risk measures. More 
broadly, risk measures have been successfully utilized in problems ranging from bandits 
(Sani et al., 2012; Cassel et al., 2018), reinforcement learning (Chow et al., 2015; Tamar 
et al., 2015; Chow et al., 2017), and fairness in machine learning (Williamson & Menon, 
2019; Rezaei et al., 2021). The federated learning method here is based on the super-
quantile (Rockafellar & Uryasev, 2002), a popular risk measure. We propose a stochas-
tic optimization algorithm adapted to the federated setting and prove its convergence.

Addressing statistical heterogeneity in federated learning has led to two lines of 
work. The first includes algorithmic advances to alleviate the effect of heterogeneity on 
convergence rates while still minimizing the classical expectation-based objective func-
tion of empirical risk minimization. These techniques include the use of proximal terms 
(Li et  al., 2020), control variates (Karimireddy et  al., 2020) or augmenting the server 
updates (Wang et  al., 2020; Reddi et  al., 2021); we refer to the recent survey (Wang 
et al., 2021) for details. More generally, the framework of local SGD has been used to 
study federated optimization algorithms (Stich, 2019; Zhou & Cong, 2018; Haddadpour 
et al., 2019; Dieuleveut & Patel, 2019; Li et al., 2020; Khaled et al., 2020; Koloskova 
et al., 2020). Compared to these works, which study federated optimization algorithms 
in the smooth case, we tackle in our analysis the added challenge of nonsmoothness of 
the superquantile-based objective in both the general nonconvex and strongly convex 
cases.

The second line of work addressing heterogeneity involves designing new objective 
functions by modeling statistical heterogeneity and designing optimization algorithms. The 
AFL framework to minimize the worst-case error across all training clients and associ-
ated generalization bounds were given in Mohri et al. (2019). The concurrent work of Li 
et al. (2020) proposes the q-FFL framework whose objective is inspired by fair resource 
allocation to minimize the Lp norm of the per-client losses. Several related works were 
also published following the initial presentation of this work (Laguel et al., 2020). A feder-
ated optimization algorithm for AFL was proposed and its convergence was analyzed in 
Deng et al. (2020). Distributional robustness to affine shifts in the data was considered in 
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Reisizadeh et al. (2020) along with convergence guarantees. Finally, a classical risk meas-
ure, namely the entropic risk measure, was considered in Li et al. (2021). We note that no 
convergence guarantees are currently known for the stochastic optimization algorithms of 
Li et al. (2020). Furthermore, it is unclear if any of these algorithms can be implemented 
with differential privacy.

Differential privacy was introduced in Dwork et  al. (2006a, 2006b) to formalize the 
loss of privacy of an individual user in releasing population-level aggregates. DP-FedAvg 
(McMahan et al., 2018), a differentially private variant of FedAvg, is also implemented in 
industrial systems (Ramaswamy et al., 2020). Recent contributions in this direction include 
differential privacy mechanism compatible with secure aggregation (Kairouz et al., 2021; 
Agarwal et  al., 2021) and improving privacy-utility tradeoffs of federated learning with 
personalization (Jain et al., 2021; Bietti et al., 2022).

3  Problem setup

We begin this section by recalling the standard setup of federated learning in Sect. 3.1. We 
then describe the standard approach to federated learning and its associated optimization, 
FedAvg (McMahan et al., 2017) in Sect. 3.2. We then define the superquantile in Sect. 3.3.

3.1  Federated learning setup

Federated learning consists of heterogeneous clients who collaboratively train a machine 
learning model under the orchestration of a central server. The model is then deployed to 
all clients, including those not seen during training.

Let the vector w ∈ ℝ
d denote the d model parameters. We assume that each client has 

a distribution q over some data space such that the data on the client is sampled i.i.d. from 
q. The loss incurred by the model w ∈ ℝ

d on this client is F(w;q) ∶= �
�∼q[f (w;�)] , where 

f (w;�) is the chosen loss function, such as the logistic loss, on input-output pair � under the 
model w. The expectation above is assumed to be well-defined and finite. For a given dis-
tribution q, smaller values of F(⋅;q) denote a better fit of the model to the data.

There are n clients available for training. We number these clients as 1,… , n and 
denote the distribution on training client i by qi . We denote the loss on client i by 
Fi(w) ∶= F(w;qi).

The goal of federated learning is to train a model w so that it achieves good perfor-
mance when deployed on each test client, including those unseen during training. Owing to 
the statistical heterogeneity of federated learning, the distribution p of a specific test client 
could be different from the average distribution (1∕n)

∑n

i=1
qi that the model is trained on.

Each federated learning method is characterized by an objective function and the feder-
ated optimization algorithm used to minimize it. It is not possible to achieve good perfor-
mance on each client simultaneously with a single model w, as it would be a difficult multi-
objective optimization problem. The usual approach is to combine the per-client losses into 
a scalar and minimize this objective. The choice of the objective function and optimization 
algorithm is primarily determined by the three key aspects of federated learning (Kairouz 
et al., 2021; Li et al., 2020): 
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(1) Communication bottleneck: The repeated exchange of massive models between the 
server and clients over resource-limited wireless networks makes communication a 
critical bottleneck. Therefore, training algorithms should be able to trade off more local 
computation for a lower communication cost.

(2) Statistical heterogeneity: The training distribution qi and a specific test distribution 
p are likely to be different from each other. Therefore, a model which works well on 
average over all test clients might not work well on each individual test client.

(3) Privacy: The data on each client is highly privacy-sensitive. Federated learning is 
designed to protect data privacy since no user data is transferred to a data center. This 
privacy is enhanced by secure aggregation of model parameters, which refers to aggre-
gating client updates such that no client update is directly revealed to any other client 
or the server. This is achieved by cryptographic protocols based on secure multiparty 
communication (Bonawitz et al., 2017).

3.2  Federated learning and the FedAvg algorithm

Analogous to the classical expectation-based objective function in the empirical risk mini-
mization approach, the standard objective in federated learning is to minimize the average 
loss on the training clients

where � ≥ 0 is a regularization parameter. We will call this objective the vanilla FL 
objective.

The de facto standard training algorithm is FedAvg (McMahan et al., 2017). Each round 
of the algorithm consists of the following steps: 

(a) The server samples a set S of m clients from [n] and broadcasts the current model w(t) 
to these clients.

(b) Staring from w(t)

i,0
= w(t) , each client i ∈ S makes � local gradient descent steps with a 

learning rate � : 

 In practice, one could also use local stochastic gradient steps, but we restrict our-
selves to local full gradient steps for simplicity.

(c) The models from the selected clients are sent to the server and aggregated to update 
the server model 

FedAvg addresses the communication bottleneck by using 𝜏 > 1 local computation steps as 
opposed to � = 1 local steps in minibatch SGD. It also securely performs the averaging step 
(c) to enhance data privacy. However, the vanilla FL objective places a limit on how well 
statistical heterogeneity can be addressed. By minimizing the average training loss, the 
resulting model w can sacrifice performance on “difficult” clients to perform well on aver-
age. In other words, it is not guaranteed to perform well on individual test clients, whose 

(3)min
w∈ℝd

1

n

n
�

i=1

Fi(w) +
�

2
‖w‖2 ,

w
(t)

i,k+1
= w

(t)

i,k
− �∇Fi(w

(t)

i,k
) .

w(t+1) =
1

m

∑

i∈S

w
(t)

k,�
.
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distribution p might be quite different from the average training distribution (1∕n)
∑n

i=1
qi . 

Our goal in this work is to design an objective function, different from the vanilla FL objec-
tive (3) to better handle statistical heterogeneity and the associated train-test mismatch. We 
also design a federated optimization algorithm similar to FedAvg to optimize it.

3.3  Summarizing the tail behavior with the superquantile

In this work, we consider clients with heterogeneous local data distributions q1,… , qn . 
This data heterogeneity manifests itself as a spread over the losses F1(w),… ,Fn(w) for any 
w. In particular, some clients might suffer large losses due to their distributions being far 
from the average population distribution. Our goal is to improve the loss (and hence, pre-
dictive performance) on such tail clients whose loss is worse than average. In other words, 
we are concerned with the right tail statistics of the empirical distribution over the losses 
F1(w),… ,Fn(w).

A natural summary of the right tail of a random variable Z is its high quantiles. Recall 
that the (1 − �)-quantile Q

�
(Z) of a real-valued random variable Z is defined as

Unfortunately, the quantile function of discrete random variables such as the empirical loss 
distribution is piecewise constant and is not amenable to gradient-based optimization. A 
better-behaved tail summary in this regard is the superquantile, also known as the condi-
tional value at risk (CVaR) (Rockafellar & Uryasev, 2000, 2002).

The superquantile �
�
(Z) of a random variable Z is defined as the average of all quantiles 

greater than the (1 − �)-quantile:

For continuous random variables, we have the equivalence �
𝜃
(Z) = �[Z | Z > Q

𝜃
(Z)] of the 

superquantile as the tail mean, as illustrated in Fig. 2. Owing to this interpretation, we refer 
to the parameter � as the tail threshold.

Central to our development is the dual expression of the superquantile (Föllmer & 
Schied, 2002):

Here, �
�
(a1,… , an) denotes the (1 − �)-superquantile of the empirical measure 

(1∕n)
∑n

i=1
�ai

 and Δn−1 is the probability simplex in ℝn . The discrete superquantile is thus 
the support function of the polytope P

�
 , which is illustrated in Fig. 2. Not only is the dis-

crete superquantile a continuous function of its inputs (unlike the quantile function), but it 
is also convex as it is the maximum of a family of linear functions in the expression (5).

Q
𝜃
(Z) ∶= inf {𝜂 ∈ ℝ ∶ ℙ(Z > 𝜂) ≤ 𝜃}.

(4)�
�
(Z) =

1

� ∫
�

0

Q
�
(Z) d� .

(5)
�
𝜃
(a1,… , an) = max

𝜋∈P
𝜃

𝜋
⊤a ,

where P
𝜃
= {𝜋 ∈ Δn−1 ∶ 𝜋i ≤ (𝜃n)−1 for all i} .
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4  Handling heterogeneity with 1‑FL

In this section, we introduce the Δ-FL framework in Sect. 4.1 and propose an algorithm to 
optimize in the federated setting in Sect. 4.2.

4.1  The 1‑FL framework

The Δ-FL framework aims to improve the performance of the tail clients by minimizing 
the superquantile of the loss distribution. Given a discretization {�1,… , �r} of (0, 1], Δ-FL 
maintains r models w1,… ,wr , one for each tail threshold �j . We allow each test client to 
select the best model w ∈ {w1,… ,wr} , according to its local data. Recall the schematic in 
Fig. 1 for an illustration.

For a given tail threshold � , we propose to minimize the (1 − �)-superquantile of the 
distributions of losses:

The objective (6) focuses on poor-performing clients — specifically those with perfor-
mance worse than the (1 − �)-quantile of the distribution of losses (F1(w),… ,Fn(w)) . 
In contrast, the vanilla FL objective optimizes (1∕n)

∑n

i=1
Fi(w) + �∕2‖w‖2 , which is 

lim
�→1 F�

(w) ; this equally weights all clients involved in training. At the other extreme 
� → 0 , we recover the worst-case loss over all clients.

Distributionally Robust Interpretation We have the following dual characterization of 
Δ-FL as a distributionally robust learning objective, as a consequence of the dual represen-
tation (5) of the superquantile.

Property 1 The Δ-FL objective (6) can also be written as

This reformulation shows that Δ-FL can be interpreted as a distributionally robust vari-
ant of the vanilla FL objective: since 

∑n

i=1
�iFi(w) = F(w;p

�
) is loss of w on the mixture 

(6)min
w∈ℝd

�

F
�
(w) ∶= 𝕊

�

�

F1(w),… ,Fn(w)
�

+
�

2
‖w‖2

�

.

(7)
F
�
(w) = max

�∈P
�

n
∑

i=1

�iFi(w) ,

where, P
�
∶=

{

� ∈ Δn−1 ∶ �i ≤ (n�)−1 for all i ∈ [n]
}

.

Fig. 2  Left: (1−�)-quantile Q
�
(Z) and superquantile �

�
(Z) of a continuous r.v. Z. Right: The set of feasible 

mixture weights � = (�1,�2,�3) ∈ P
�
 in the dual formulation  (5) is given by the intersection of the box 

constraints 0 ≤ �i ≤ (3�)−1 for i = 1, 2, 3 , with the simplex constraint �1 + �2 + �3 = 1
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p
�
=
∑n

i=1
�iqi of the training distributions q1,… , qn , we get that Δ-FL aims to minimize 

the worst-case loss over all mixtures p
�
 subject to the constraint that �i ≤ (n�)−1.

This formulation also reveals two important properties of the Δ-FL objective. First, we 
note that the objective F

�
 , as a max function. is convex whenever the losses Fi are convex. 

Second, it is a non-smooth function, with the non-smoothness stemming from the maxi-
mum over the polytope P

�
 (cf. Fig. 2). These two properties will play important role in the 

convergence analysis of our federated algorithm in Sect. 5.1.

4.2  Federated optimization for 1‑FL

We now propose a federated optimization algorithm for the Δ-FL objective (6). While there 
could be many approaches to optimizing (6), we consider algorithms similar to FedAvg 
for their ability to avoid communication bottlenecks and preserve the privacy of user data. 
Owing to the tail mean interpretation of the superquantile (Fig. 2), a natural algorithm to 
minimize it first evaluates the loss on all the clients and only performs gradient updates 
on those clients in the tail above the (1 − �)-quantile. However, since a practical algorithm 
cannot assume that all the clients are available at a given time, we perform the same opera-
tion on a subsample of clients.

The optimization algorithm for the Δ-FL objective (6) is given in Algorithm 1. It has the 
following four steps: 

(a) Model Broadcast (line 2): The server samples a set S of m clients from [n] and sends 
the current model w(t).

(b) Quantile Computation and Reweighting (lines 3 and 5): Selected clients i ∈ S and the 
server collaborate to estimate the (1 − �)-quantile of the losses Fi(w

(t)) with differential 
privacy. The clients then update their weights to be zero if their loss is smaller than 
the estimated quantile and leave them unchanged otherwise. This ensures that model 
updates are only aggregated from the tail clients; cf. Fig. 2.
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(c) Local Updates (loop of line 7): Staring from w(t)

k,0
= w(t) , each client i ∈ S makes � local 

gradient or stochastic gradient descent steps with a learning rate �.
(d) Update Aggregation (line 11): The models from the selected clients are sent to the 

server and aggregated to update the server model, with weights from line 5).

Compared to FedAvg, Δ-FL has the additional step of computing the quantile and new 
weights �̃�(t)

i
 for each selected client i ∈ S in lines 3 and 5. Let us consider Δ-FL in relation 

to the three key aspects of federated learning we introduced in Sect. 3.1. 

(1) Communication Bottleneck: Identical to FedAvg, Δ-FL algorithm performs multiple 
computation rounds per communication round.

(2) Statistical Heterogeneity: The Δ-FL objective is designed to optimize the tail mean 
of the per-client loss distribution as formalized by the superquantile. The vanilla FL 
objective, in contrast, is oblivious to performance disparities across clients.

(3) Privacy: Identical to FedAvg, Δ-FL does not require any data transfer, and the aggre-
gation of line 11 can be securely performed using secure multiparty communication. 
The extra step of quantile computation is also performed with distributed differential 
privacy, as we describe next.

Quantile Estimation with Distributed Differential Privacy The naïve way to compute 
the quantile of the per-client losses in line 3 of Algorithm 1 is to have the clients send their 
losses to the server. To avoid the privacy risk of leakage of information about the clients 
to the server, we compute the quantile with distributed differential privacy (Kairouz et al., 
2021) using the discrete Gaussian mechanism (Canonne et al., 2020). The key idea behind 
differential privacy (Dwork et al., 2006b, 2016) is to ensure that the addition or removal of 
the data from one client does not lead to a substantial change in the output of an algorithm. 
A significant difference in the output would give a privacy adversary enough signal to learn 
about the client who was added or removed.

Distributed differential privacy simulates a trusted central aggregator by using a secure 
summation oracle (Bonawitz et  al., 2017), which enables the computation of summa-
tions 

∑

i∈S vi where vi ∈ ℝ
d is a privacy-sensitive vector residing with client i. Practical 
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implementations of such algorithms are based on cryptographic techniques such as secure 
multiparty computation (Evans et al., 2018), which requires each component of the vectors 
vi to be discretized to the ring ℤM of integers modulo M. We abstract out the details of the 
secure summation oracle and only require that it returns the sum 

�
∑

i∈S xv
�

mod M with-
out revealing any further information to a privacy adversary.

We assume that the losses are bounded as Fi(w) ∈ [0,B] for each i ∈ S , and that we are 
given b bin edges 0 ≤ l0 < l1 < ⋯ < lb = B . We aim to construct a hierarchical histogram 
h that maintains the number of clients not only in every single bin but also in groups 
of bins organized as a binary tree. Concretely, h(r,  j) maintains the number of clients 
whose losses lie between the bin edges l2r(j−1)+1 and l2r j for index j = 1,… , b∕2r and level 
r = 0,… , log2 b − 1.1 The lower levels r = 0 and r = 1 correspond respectively to indi-
vidual bins and pairs of bins, while the topmost level r = log2 b − 1 refers to two groups: 
the first b/2 bins and the last b/2 bins. We skip the topmost level in the tree because the 
count at this node is the publicly known number m = |S| of clients. The hierarchical his-
togram method, also known as tree aggregation, is a classical technique to answer range 
queries and in cumulative distribution estimation (Hay et al., 2010; Dwork et al., 2010; 
Chan et al., 2011; Smith et al., 2017).

Our algorithm is given in Algorithm 2. Each client i first computes its local hierarchical 
histogram xi as

such that the overall hierarchical histogram can be obtained as h =
∑

i∈S xi . To enforce dif-
ferential privacy, each client then adds random discrete Gaussian2 noise �i ∼ N

ℤ
(0, �2I) 

with scale parameter �2 and of appropriate dimension. These noisy x̃i ’s are summed up 
using a secure summation oracle so that the server receives an approximate hierarchi-
cal histogram ̂h which approximates the true histogram h =

∑

i∈S xi . With slight abuse of 
notation, we still refer to ̂h as a hierarchical histogram, although it could have negative 
entries and could be inconsistent, i.e., the count ̂h(r, j) at a node might not equal the sum 
̂h(r − 1, 2j − 1) + ̂h(r − 1, 2j) of counts at its children nodes.

The final step is to define and return an appropriate notion of a (1 − �)-quantile of the 
approximate histogram ̂h . A non-negative hierarchical histogram h can be viewed as a ran-
dom variable Z with (scaled) cumulative distribution function 
H(j) = mℙ

(

Z ≤ lj
)

= h(0, 1) +… + h(0, j) , from which we can estimate the quantile. We 
can obtain a greater utility under differential privacy by expressing the cumulative distribu-
tion function H(j) of this random variable Z by using nodes higher up in the tree. Con-
cretely, using a maximal dyadic partition Pj of the range [1,  j], we have 
H(j) =

∑

(r,o)∈Pj
h(r, o) from summing up |Pj| ≤ log2 b terms. For instance, the dyadic parti-

tion for j = 15 is P15 = [1, 8] ∪ [9, 12] ∪ [13, 14] ∪ [15] , where the counts of each range on 
the right side can be obtained from an intermediate node in the hierarchical histogram h.

With this definition of the cumulative mass H(j), we define (1 − �)-quantile of the hier-
archical histogram h as the quantile function of this induced random variable Z:

xi(r, j) = �
(

l2r(j−1)+1 ≤ Fi(w) < l2r j
)

,

Q
𝜃
(H) ∶= Q

𝜃
(Z) = min

j∈[b]

{

lj ∶ H(j) > (1 − 𝜃)m
}

.

1 We assume for simplicity that b is a power of 2 so that log2 b is an integer.
2 See Appendix B for a formal definition.
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Similarly, for approximate hierarchical histograms ̂h that are inconsistent and allow for 
negative values, we define the cumulative function ̂H(j) =

∑

(r,o)∈Pj

̂h(r, o) from a maximal 
dyadic partition Pj of [1, j]. As an estimate of the quantile, we return the bin edge lj such 
that the estimated cumulative mass ̂H(j) is as close to 1 − � as possible:

5  Theoretical analysis

In this section, we analyze the convergence analysis of Δ-FL (Sect. 5.1) and study the dif-
ferential privacy properties of the quantile computation (Sect. 5.2).

5.1  Convergence analysis

We study the convergence of Algorithm 1 with respect to the objective (6) in two cases: (i) 
the general non-convex case, and (ii) when each Fi(w) is convex.

Assumption We make some assumptions on the per-client losses Fi , which are assumed to 
hold throughout this section. For each client i ∈ [n] , the objective Fi is 

(a) B-bounded, i.e., 0 ≤ Fi(w) ≤ B for all w ∈ ℝ
d,

(b) G-Lipschitz, i.e., �Fi(w) − Fi(w
�)� ≤ G‖w − w�

‖ for all w,w� ∈ ℝ
d , and,

(c) L-smooth, i.e., Fi is continuously differentiable and its gradient ∇Fi is L-Lipschitz.

Equivalent Algorithm. Algorithm 1 is not amenable to theoretical analysis as it is 
stated because the quantile function of discrete random variables computed in line  3 
is piecewise constant and discontinuous. To overcome this obstacle, we introduce 
a near-equivalent algorithm in Algorithm  3, which replaces the reweighting step of 

(8)Q
𝜃
( ̂h) ∶= lj∗

𝜃
( ̂h) where j∗

𝜃
( ̂h) = argmin

j∈[b]

|

|

̂H(j) − (1 − 𝜃)m|
|

.
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Algorithm 1 (lines 3 and 5) with the ideal reweighting suggested by the dual representa-
tion of (7).

Let us start with the case of S = [n] . Our first observation shows that the weights �(t) 
that attain the maximum over � in the objective (7) can be used to construct a subgradi-
ent of F

�
 in the general nonconvex case — this will eventually allow us to derive con-

vergence guarantees.

Property 2 Fix a w ∈ ℝ
d and let 𝜋⋆ ∈ argmax

𝜋∈P
𝜃

∑n

i=1
𝜋iFi(w) . Then, we have,

where �F
�
(w) denotes the regular subdifferential of F

�
.

Proof Let h
𝜃
(a) ∶= max

𝜋∈P
𝜃

𝜋
⊤a denote the support function of the polytope P

�
 , and let 

gn(w) = (F1(w),… ,Fn(w)) denote the concatenation of the losses into a vector. Then, 
F
�
(w) = h

�
◦gn(w) + (�∕2)‖w‖2 . Since h

�
 is convex, we get that its (convex) subdifferential 

(e.g., Hiriart-Urruty & Lemaréchal 1996, Cor. 4.4.4) is

Since gn is smooth and h
�
 is convex with full domain, we obtain the regular subdifferential 

of h
�
◦gn by the chain rule (cf. Rockafellar & Wets (2009, Thm. 10.6))  as

where ∇gn(w) ∈ ℝ
d×n is the transpose of the Jacobian matrix of gn . We can handle the reg-

ularization by absorbing it into the superquantile by defining ̃Fi(w) = Fi(w) + (𝜆∕2)‖w‖2 .  
 ◻

Algorithm 3 extends this intuition to the setting where only a subsample S ⊂ [n] of 
clients are available in each round. We define the counterpart of the constraint set P

�
 

from (7) defined on a subset S ⊂ [n] of m clients as:

where we denote (�i)i∈S ∈ ℝ
|S| by � with slight abuse of notation. With this notation, Algo-

rithm 3 computes the new weights of the clients as

We now analyze how close Algorithm 3 is to Algorithm 1. Let Z(w) be a discrete random 
variable which takes the value Fi(w) with probability 1/n for i = 1,… , n , and let Q

�
(Z(w)) 

denote its (1 − �)-quantile. The weights �̂� ∈ Δn−1 considered in Algorithm  1 (assuming 
that Q(t) is the exact quantile of {Fi(w

(t)) ∶ i ∈ S} ) are given by a hard-thresholding based 
on whether Fi(w) is larger than its (1 − �)-quantile:

n
∑

i=1

𝜋
⋆

i
Fi(w) + 𝜆w ∈ 𝜕F

𝜃
(w) ,

𝜕h
𝜃
(a) = argmax

𝜋∈P
𝜃

𝜋
⊤a .

�(h
�
◦gn) = ∇gn(w)�h�

(

gn(w)
)

,

(9)P
�,S =

{

� ∈ Δ|S|−1 ∶ �i ≤ 1

�m
, for i ∈ S

}

,

�
(t) = argmax

�∈P
�,S

∑

i∈S

�iFi(w
(t)) .
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The objective defined by these weights is ̂F
𝜃
(w) =

∑n

i=1
�̂�iFi(w) + (𝜆∕2)‖w‖2 . The next 

proposition shows that ̂F
𝜃
(w) = F

𝜃
(w) under certain conditions, or is a close approxima-

tion, in general.

Proposition 3 Assume F1(w) < ⋯ < Fn(w) and let i⋆ = ⌈𝜃n⌉ . Then, we have, 

(a) 𝜋
⋆ = argmax

𝜋∈P
𝜃

∑n

i=1
𝜋iFi(w) is unique,

(b) Q
𝜃
(Z(w)) = Fi⋆ (w),

(c) if �n is an integer, then �̂� = 𝜋
⋆ so that ̂F

𝜃
(w) = F

𝜃
(w) , and,

(d) if �n is not an integer, then 

Proof We assume w.l.o.g. that � = 0 . We apply the property that the superquantile is 
a tail mean (cf. Fig.  2) for discrete random variables  shown by  Rockafellar & Uryasev 
(2002, Proposition 8) to get

Comparing with dual representation (7), this gives a closed-form expression for 
𝜋
⋆ , which is unique because Fi⋆−1(w) < Fi⋆ (w) < Fi⋆+1(w) . For (b), note that 

Q
𝜃
(Z(w)) = inf{𝜂 ∈ ℝ ∶ ℙ(Z(w) > 𝜂) ≤ 𝜃} equals Fi⋆ (w) by definition of i⋆ . Therefore, if 

�n is an integer, 𝜋⋆ coincides exactly with �̂�.
When �n is not an integer, we have

The bound on ̂F
𝜃
(w) − F

𝜃
(w) follows from elementary manipulations together with 

0 ≤ Fi(w) ≤ B .   ◻

In our context where we sample m clients per round, Proposition 3 holds for each 
round. In particular, part (c) of Proposition 3 states that when �m is an integer, the 
weights 𝜋⋆ computed as an exact argmax in Algorithm 3 are identical to the weights �̂� 
in Algorithm 1 where line 5 exactly computes the quantile of the per-client losses. We 
record another consequence of Proposition 3, namely, that the reweighting �(t) is sparse.

Remark 1 Proposition 3 shows that Δ-FL ’s reweighting �(t) (line  3 of Algorithm  3) is 
sparse. That is, �(t)

i
 is non-zero only for exactly ⌈�m⌉ clients with the largest losses.

Bias due to Partial Participation. Note that the dual representation (7) is the maxi-
mum over all distributions in P

�
 , but Algorithm 3 and Algorithm 1 only maximize the 

(10)�̃�i = �
�

Fi(w) ≥ Q
𝜃
(Z(w))

�

, and, �̂�i =
�̃�i

∑n

i�=1
�̃�i�

.

0 ≤ F
𝜃
(w) − ̂F

𝜃
(w) ≤ B

𝜃n
.

F
𝜃
(w) =

1

𝜃n

n
�

i=i⋆+1

Fi(w) +

�

1 −
⌊𝜃n⌋

𝜃n

�

Fi⋆ (w) .

̂F
𝜃
(w) =

1

n − i⋆ + 1

n
∑

i=i⋆

Fi(w) .
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weights over a set S of m clients in each round (line  3). Therefore, the updates per-
formed by Algorithm 3 are not unbiased. To formalize this, define the objective

is the analogue of (7) defined on a sample S ⊂ [n] of clients, and Um is the uniform distribu-
tion over subsets of [n] of size m. In each step, Algorithm 3 approximates the subgradients 
of F

�,S . Indeed, Property 2 gives

In expectation, Algorithm 3 therefore takes subgradient steps for F
�
 — this introduces a 

bias when compared to the original F
�
 that we would like to optimize. Fortunately, this bias 

can be bounded as shown by Levy et al. (2020, Prop. 1):

Our analysis strategy will be to study the convergence (near-stationarity or near-optimality) 
in terms of the objective F

�
 which Algorithm 3 actually minimizes, and then translate that 

to a convergence result on the original objective F
�
 using the bound (12).

Convergence: Nonconvex Case We start with the convergence analysis in the non-
convex case with no regularization (i.e., � = 0 ). Since F

�
 is nonsmooth and nonconvex, 

we state the convergence guarantee in terms of the Moreau envelope of F
�
 (Hiriart-

Urruty & Lemaréchal, 1996) following the idea of Drusvyatskiy and Paquette (2019), 
Davis and Drusvyatskiy (2019). Given a parameter 𝜇 > 0 , we define the Moreau enve-
lope of F

�
 as

The Moreau envelope satisfies several remarkable properties for 𝜇 > L , see for exam-
ple, Drusvyatskiy & Paquette (2019, Lemma 4.3). First, it is well-defined, and the infimum 
on the right-hand side admits a unique minimizer, called the proximal point of w, and 
denoted prox

F
�
∕�
(w) . Second, the Moreau envelope is continuously differentiable with 

∇Φ
�
� (w) = �(w − proxF�∕�

(w)) . Finally, the stationary points of Φ
�

�
 and F

�
 coincide. Interestingly, 

the bound ‖
‖

‖

∇Φ
�
� (w)

‖

‖

‖

≤ � directly implies a near-stationarity on F
�
 , and hence the original F

�
 , 

in the following variational sense: the proximal point z = prox
F
�
∕�
(w) satisfies the follow-

ing, cf. Drusvyatskiy & Paquette (2019, Sect. 4.1): 

(a) z is close to w; that is, ‖z − w‖ ≤ �∕�,
(b) z is nearly stationary on F

�
 ; that is dist

(

0, �F�(z)
)

≤ � , where �F
�
 refers to the regular 

subdifferential, and,
(c) F

�
 is uniformly close to F

�
 as per (12).

Thus, we state the convergence guarantee of our algorithm in the nonsmooth nonconvex 
case in terms of Φ

�

�
 (although it never appears in the algorithm).

F
�
(w) ∶= �S∼Um

�

F
�,S(w)

�

, where F
�,S(w) = max

�∈P
�,S

�

i∈S

�iFi(w) +
�

2
‖w‖2

(11)
∑

i∈S

�
(t)

i
Fi(w

(t)) + �w(t) ∈ �F
�,S(w

(t)) .

(12)sup
w∈ℝd

�

�

�

F
�
(w) − F

�
(w)

�

�

�

≤ B
√

�m
.

(13)Φ
�

�
(w) = inf

z∈ℝd

�

F
�
(z) +

�

2
‖w − z‖2

�

.
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Theorem  4 Let the number of rounds T be fixed and set � = 2L . Denote 
ΔF0 = F

�
(w(0)) − infF

�
 . Let ŵ denote a uniformly random sample from the sequence 

(

w(0),… ,w(T−1)
)

 produced by Algorithm 3. Then, there exists a learning rate � depending 
on the number of rounds T and problem parameters �,L,G,ΔF0 such that

Proof Sketch Let z(t) = proxF�∕�
(w(t)) be the proximal point of w(t) . We expand out the recursion 

w(t+1) = w(t) − �
∑

i∈S �
(t)
i
∑�−1

k=0 ∇Fi(w
(t)
i,k) to get

The term T1 which carries a O(�)-coefficient controls the convergence rate while T2 carries 
a O(�2)-coefficient and is a noise term. The latter can be controlled by making the learning 
rate small. We can handle the first term T1 by leveraging a property of F

�,S known as weak 
convexity, meaning that adding a quadratic makes it convex. In particular, F

�,S + (L∕2)‖⋅‖2 
is convex, so that

where we used (11) to construct a subgradient of F
�,S . This term T′

1
 is the result of a sin-

gle step with learning rate �� rather than � local steps with learning rate � . The differ-
ence T�

1
− T1 is the effect of the drift induced by multiple local steps, which we will handle 

later. We take an expectation with respect to the sampling S of clients (i.e., conditioned 
on F(t) = �(w(t)) , the �-algebra generated by w(t) ). Since z(t) is independent of S (i.e., z(t) 
is F(t)-measurable), we get F

�
 on the right-hand side. Next, we use that z(t) minimizes the 

strongly convex right hand side of (13) to get

Next, we bound the effect of the drift using the Cauchy-Schwarz inequality and the smooth-
ness of Fi ’s as

�
‖

‖

‖

∇Φ
𝜇

𝜃
(ŵ)

‖

‖

‖

2 ≤
√

Δ0LG
2

T
+ (1 − 𝜏

−1)1∕3
(

Δ0LG

T

)2∕3

+
Δ0L

T
.

Φ
�

�
(w(t+1)) ≤ F

�
(z(t)) +

�

2

‖

‖

‖

z(t) − w(t+1)‖
‖

‖

2

= F
�
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⟨
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i
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∑

k=0

∇Fi(w
(t)

i,k
)

⟩

+
��

2

2

‖

‖

‖

‖

‖

‖

∑

i∈S

�
(t)

i

�−1
∑

k=0

∇Fi(w
(t)

i,k
)

‖

‖

‖

‖

‖

‖

2

= Φ
�

�
(w(t)) + T1 + T2 .

T
�
1
∶= ���

⟨

z(t) − w(t),
∑

i∈S

�
(t)

i
∇Fi(w

(t))

⟩

≤ ���

(

F
�,S(z

(t)) − F
�,S(w

(t)) +
L

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2
)

,

�t[T
�
1
] ≤ −���(� − L)

‖

‖

‖

z(t) − w(t)‖
‖
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where we bound the client drift d(t) = �t

[

∑

i∈S �
(t)
i
∑�−1

k=0 ‖w
(t)
i,k − w(t)

‖

2
]

= O(�2) using standard tech-
niques. We plug in � = 2L to get a bound on T′

1
 in terms of ‖

‖

‖

∇Φ
�
� (w

(t))‖‖
‖

2 . A standard argu-
ment to handle the noise term T2 ≤ O(�2) and telescoping the resulting inequality over 
t = 0,… , T − 1 completes the proof. The full details are given in Sect. A.2.   ◻

Convergence: Convex Case We consider the convergence of function values in the case 
where each Fi is convex. Owing to the non-smoothness of F

�
 and F

�
 , we consider the fol-

lowing smoothed version of the objective in (7) and the corresponding modification to Algo-
rithm 3. First, define the Kullback-Leibler (KL) divergence between � ∈ Δ|S|−1 and the uni-
form distribution (1∕|S|,… , 1∕|S|) over S ⊂ [n] as

We simply write D(�) when S = [n] . Inspired by Nesterov (2005), Beck and Teboulle 
(2012), Devolder et al. (2014), we define the smooth counterpart to (7) as

where 𝜈 > 0 is a fixed smoothing parameter. We have that |F�

�
(w) − F

�
(w)| ≤ 2� log n . 

Finally, we modify line 3 of Algorithm 3 to handle F�

�
 rather than F

�
 as

Theorem 5 Suppose each function Fi is convex and 0 < 𝜆 < L . Define the condition num-
ber � = (L + �)∕� and fix a time horizon T ≥ 16�3∕2 . Consider the sequence (w(t))T

t=0
 of 

iterates produced by the Algorithm  3 with line  3 replaced by (15). Define the averaged 
iterate

and w⋆ = argminw∈ℝd F
𝜃
(w) . Then, there exist learning rate � and smoothing parameter 

� depending on the number of communication rounds T as well as problem parameters 
𝜏,G, 𝜆,L, ‖w(0) − w⋆

‖

2, 𝜃,m , such that the iterate w(T) satisfies the bound

�t
�

�
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�
1
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i

�−1
�
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�i log(�i |S|) .
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where we hide absolute constants and factors polylogarithmic in T and problem 
parameters.

Remark 2 (About the Rate) As soon as T ≳ 𝜅
3∕2 (ignoring constants and polylog factors), 

we achieve the optimal rate of 1∕(�T) rate of strongly convex stochastic optimization up to 
the bias B∕

√

�m.
Further, the bias B∕

√

�m due to partial participation is larger at small � and can be con-
trolled by choosing the cohort size m large enough. In the experiments of Sect. 7, we obtain 
meaningful numerical results when m is around 50 or 100 and � around 1/2, indicating that 
the worst-case bound (12) can be pessimistic.

Proof Sketch of Theorem  5 We start with some additional notation. We absorb the regu-
larization into the client losses to define ̃Fi(w) = Fi(w) + (𝜆∕2)‖w‖2 . Now, consider the 
smoothed counterpart of (7) on a subset S ⊂ [n] with a smoothing parameter 𝜈 > 0 as

It follows from the properties of smoothing (Nesterov, 2005; Beck & Teboulle, 2012) and 
composition rules that F�

�,S
 is L′-Lipschitz, where L� = L + � + G2∕� . Finally, let Ft denote 

the sigma-algebra generated by w(t) and let �t[⋅] ∶= �[⋅|Ft].
We start the proof with the decomposition

where w is arbitrary. For the first order term T1 , we bound using �-strong convexity and 
L-smoothness of ̃Fi as

where we used 
∑

i∈S �
(t)

i
∇Fi(w

(t)) = ∇F�

�,S
(w(t)) holds with smoothing, analogous to (11), 

and strong convexity.
The gap T1 − T

�
1
 is due to the effect of the drift from multiple local steps. We bound this 

term similar to the non-convex case of Theorem 4. For the second order term T2 , we rely on 
the variance bound of Levy et al. (2020, Prop. 2). Concretely, we have,

�F
𝜃
(w

(T)
) − F

𝜃
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‖
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−
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+
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+
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where Um is the uniform distribution over subsets S ⊂ [n] of size m, and 
F
�

�
(w) ∶= �S∼Um

F�

�,S
(w) as the expectation of F�

�,S
 over random subsets S ∼ Um . Putting 

these together and taking w = w⋆: = argminF
�
� gives the inequality,

where A, B are problem-dependent constants. We sum this up with the averaging weights �t 
given in the statement of the theorem to get

The final missing piece is a bound which allows us to translate statements about the con-
vergence of F

�

�
 in terms of the convergence of F

�
 . We achieve this using the bias bound of 

(12) together with the approximation error of smoothing. Finally, we optimize the choice 
of the learning rate and smoothing coefficient to give the final statement of the theorem. 
The details are provided in Sect. A.3.   ◻

5.2  Privacy and Utility analysis

We now analyze the privacy and utility of Algorithm 2. In this section, we assume with-
out loss of generality that S = [n] so that m = |S| = n.

First, we recall the definition of concentrated differential privacy (Bun & Steinke, 
2016). A randomized algorithm A satisfies (1∕2)�2-concentrated differential privacy if the 
Rényi �-divergence D

�
(A(X)‖A(X�)) ≤ ��

2∕2 for all � ∈ (0,∞) and all sequences X,X′ of 
inputs that differ by the addition or removal of one client’s data. Intuitively, the addition or 
removal of the data contributed by one client should not change the output distribution of 
the randomized algorithm by much, as measured by the Rényi divergence. A smaller value 
of � implies a stronger privacy guarantee. This notion of differential privacy can be trans-
lated back and forth with the usual one, cf. Canonne et al. (2020).

Error Criterion. We approximate the (1 − �)-quantile of the n per-client losses 
�i = Fi(w) for i = 1,… , n by the quantile of a hierarchical histogram h with entries 
h(r, j) =

∑n

i=1
�
�

l2r(j−1)+1 ≤ Fi(w) < l2r j
�

 where 0 = l0 < l1 < ⋯ < lb = B are the bin 
edges. The edge lj corresponding to index j ∈ [b] approximates the (1 − �)-quantile well 
if the cumulative mass H(j) ≈ (1 − �)n . We measure this error of approximation by the 
difference between the two sides. Formally, we define the error R

�
(H, j) of approximat-

ing the (1 − �)-quantile of the cumulative function H of a hierarchical histogram with 
index j ∈ [b] by

�S∼Um

‖

‖

‖

‖
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,
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𝛾𝜏
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−
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) ≤ 𝜆‖w(0) − w⋆
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We define the best achievable error R∗
�
(H) for estimating the (1 − �)-quantile of the cumu-

lative function H and the best approximating index j∗(H) as

where we assume ties are broken in an arbitrary but deterministic manner — note that 
j∗
�
(H) is defined here identically to (8). Lastly, we define the quantile error Δ

𝜃
(H, ̂H) of 

estimating the quantile of the cumulative function H from that of ̂H as

Essentially, if the index j∗
𝜃
( ̂H) computed from the estimate ̂H corresponds to the (1 − �

�)

-quantile of H, the quantile error satisfies Δ
𝜃
( ̂H,H) = |𝜃 − 𝜃

�
|.

Privacy and Utility Analysis We now analyze the differential privacy bound of 
Algorithm 2 and the error in the quantile computation.

Theorem 6 Fix a 𝛿 > 0 . Suppose that � ≥ 1∕2 and c > 0 are given, and the modular arith-
metic is performed on the base M ≥ 2 + 2cn + 2n

√

2�2 log(16nb∕�) . Then, we have: 

(a) Algorithm 2 satisfies (1∕2)�2-concentrated DP with 

 where � = 10
∑n−1

i=1
exp

�

− 2�2
�
2i∕(i + 1)

� ≤ 10(n − 1) exp(−2�2
�
2).

(b) With probability at least 1 − � , the quantile error of cumulative function ̂H returned by 
Algorithm 2 is at most 

 where R∗
𝜃
( ̂H) is the error in the estimation of (1 − �)-quantile of the cumulative func-

tion ̂H.

Let us interpret the result. The effective noise scale is �∕c . Since the dominant term of 
the privacy error is � ≈ c log2 b∕(�

√

n) , we choose �∕c ≈ log2 b∕(�
√

n) , so that the algo-
rithm satisfies (1∕2)�2-concentrated DP. The role of c is to avoid the degeneracy of the dis-
crete Gaussian as � → 0 . In particular, the theorem requires � ≥ 1∕2 . The error resulting 
quantile error Δ

𝜃
( ̂H,H) is (ignoring constants and log factors)

(17)R
�
(H, j) =

|

|

|

|

H(j)

n
− (1 − �)

|

|

|

|

.

(18)R∗
�
(H) = min

j∈[b]
R
�
(H, j) , and j∗

�
(H) = argmin

j∈[b]

R
�
(H, j) ,

(19)Δ
𝜃
( ̂H,H) = R

𝜃

(

H, j∗
𝜃
( ̂H)

)

.

� = min

⎧

⎪

⎨

⎪

⎩

�

c2 log2
2
b

n�2
+ �b,

c log2 b
√

n�
+ �

√

2b

⎫

⎪

⎬

⎪

⎭

,

Δ
𝜃
( ̂H,H) ≤ R∗

𝜃
( ̂H) +

√

4𝜎2

c2n
log2 b log

4b

𝛿

Δ
𝜃
( ̂H,H) ≲ R∗

𝜃
( ̂H) +

log2 b

𝜀n
.
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The quantile error scales as 1∕(�n) . The total communication cost is O(bn logM) bits 
since the dimension of each hierarchical histogram is 2(b − 2) . If we take � = O(1) and 
c = O(�

√

n) , we require M ≳ n3∕2 , so that the total communication cost is O(bn log n).

Proof of Theorem 6 We can show that no modular wraparound occurs anywhere in the algo-
rithm with high probability. We assume that it holds for the proof sketch. Thus, for all valid 
levels r and indices j, we have x̃i(r, j) = cxi(r, j) + 𝜉i(r, j) and

The privacy analysis follows from the sensitivity of the sum query. Namely, let 
X = (x1,… , xn) be a sequence and define A(X) =

∑n

i=1
cxi as the (rescaled) sum query. 

In our case, each xi is a hierarchical histogram with log2 b ones being the only non-
zeros, one for each level of the tree. Algorithm  2 adds discrete Gaussian noise to the 
sum query to make it differentially private. That is, we get the randomized algorithm 
A(X) = A(X) +

∑n

i=1
�i . It was shown in Kairouz et  al. (2021,  Corollary 12) that A(X) 

is approximately distributed as N
ℤ
(A(X), n�2) , so the desired privacy guarantee follows 

from that of the discrete Gaussian mechanism (Canonne et al., 2020). In particular, for two 
sequences X and X′ differing by the addition or removal of a single basis vector x′ , we have 
that

A rigorous analysis of the error, following the recipe of Kairouz et al. (2021), leads to the 
first part of the theorem; the details can be found in Appendix B.

Utility Analysis. The triangle inequality gives

Using standard concentration arguments, we show that the first term is, at most 
√

2�2n log2(b) log(4b∕�) , completing the proof.   ◻

6  Discussion

We discuss connections of Δ-FL to risk measures, fair resource allocation, and model 
personalization.

Connection to Risk Measures. The framework of risk measures in economics and 
finance formalizes the notion of minimizing the worst-case cost over a set of distributions 
(Föllmer & Schied, 2002; Rockafellar & Uryasev, 2013; Föllmer & Schied, 2016). The 
superquantile �

�
(⋅) is a special case of a risk measure. The Δ-FL framework, which mini-

mizes the superquantile of the per-client losses, can be extended to other risk measures � 
by minimizing the objective

̂h(r, j) =

n
∑

i=1

x̃i(r, j)

c
=

n
∑

i=1

(

xi(r, j) +
𝜉i(r, j)

c

)

.

D
�
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�
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(A(X), n�2)‖N

ℤ
(A(X�), n�2)) =

�c2

2n�2
.
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|
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1
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where Z(w) is a discrete random variable which takes value Fi(w) with probability 1/n for 
i ∈ [n] . Another example of a risk measure is the entropic risk measure, which is defined 
as ��

ent
(Z) = �[exp(�Z)]∕� where � ∈ ℝ+ is a parameter. The entropic risk measure is well 

defined provided the moment generating function �[exp(�Z)] exists, for instance, for sub-
Gaussian Z. The analog of Δ-FL with the entropic risk minimizes

This objective F�

ent
(w) coincides with the one studied recently in Li et al. (2021) under the 

name Tilted-ERM subsequent to the first presentation of this work (Laguel et al., 2020). 
Finally, we note that F�

ent
 is also related to the smoothed objective F�

�
 from (14) as the limit

Maximin Strategy for Resource Allocation We would like to point out an interesting 
analogy between distributional robustness and proportional fairness. The superquantile-
based objective in Eq.  (7) is a maximin-type objective that is reminiscent of maximin 
objectives used in load balancing and network scheduling (Kubiak, 2008; Stanczak et al., 
2009; Pantelidou & Ephremides, 2011).

We can draw an analogy between the two worlds, federated learning and resource allo-
cation resp., by identifying errors to rates and clients to users. The maximin fair strategy to 
resource allocation seeks to treat all users as fairly as possible by making their rates as large 
and as equal as possible so that no rate can be increased without sacrificing other rates that are 
smaller or equal (Pantelidou & Ephremides, 2011).

Our superquantile-based Δ-FL framework builds off the maximin decision-theoretic foun-
dation to frame an objective that we optimize with respect to parameters of models, and this, 
iteratively, over multiple rounds of client-server communication, while preserving the privacy 
of each client.

This compositional nature of our problem, where we optimize a composition (in the math-
ematical sense) of a maximin-type objective, a loss function, and model predictions differ with 
resource allocation in communication networks. Further explorations of the analogy are left 
for future work.

Model Family and Tail Thresholds Using a single global value of the tail threshold � 
for all clients could fail to balance supporting tail clients with fitting the population average. 
To circumvent this issue, we use a similar idea to the one of Li et al. (2020) where a family 
of models is trained simultaneously for various levels, and each test client can tune its tail 
threshold.

Δ-FL vs. Model Personalization Consider a family of distributions qi(x, y) for i = 1,… , n 
over input-output pairs. From the decomposition qi(x, y) = qi(x)qi(y|x) , it follows that the het-
erogeneity of the joint distributions can be due to (a) heterogeneity of the marginal distribu-
tions qi(x) over the input x, or, (b) heterogeneity of the conditional distributions qi(y|x) , or in 
other words, the input-output mapping.

If two clients do not agree on their input-output mapping, a single global model cannot 
serve both simultaneously. Thus, when training one single global model (as in vanilla FL) or 
a small number of them (as in Δ-FL), there is an implicit assumption that the heterogeneity 

FM(w) ∶= �(Z(w)) +
�

2
‖w‖2 ,

F�

ent
(w) =

1

�

log

�

1

n

n
�

i=1

exp
�

�Fi(w)
�

�

+
�

2
‖w‖2 .

F�

ent
(w) = lim

�→0
F�

�
(w) ,
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of {qi(y|x) ∶ i ∈ [n]} is small. Δ-FL was designed to handle the heterogeneity of qi(x) better 
than vanilla FL by providing better worst-case performance on tail clients.

On the other hand, the cases where the heterogeneity of the conditional distributions qi(y|x) 
is large requires a separate model per client, or in other words, model personalization. Stand-
ard approaches to model personalization still aim to minimize the average error across all cli-
ents (Dinh et al., 2020; Pillutla et al., 2022), similar to the vanilla FL objective. Thus, it can 
still suffer from disparate performance across clients, including poor performance on some tail 
clients or data-poor clients. One solution to reduce this disparity is to combine personalization 
with the Δ-FL objective. We refer to Sect. 7.6 for numerical experiments.

Quantile-based Filtering and Client Availability We note that the quantile-based fil-
tering of Algorithm 3 implies that only �m tail clients contribute their updates to the global 
model in the absence of noise (that is, the weight �(t) in line 3 of Algorithm 3 is sparse; see 
also Proposition 3). In order to include the updates of m′ clients after filtering, Δ-FL would 
require initially sampling an initial cohort of m = m�∕� clients. On the other hand, clients 
in cross-device federated learning are typically available in a diurnal pattern (Eichner et al., 
2019; Kairouz et al., 2021), where a large enough number of clients might not be available 
at certain times of the day. This issue might be exacerbated by Δ-FL ’s requirement of m�∕� 
clients per round as compared to FedAvg’s m′ . Devising strategies to dynamically vary the tail 
threshold � based on the number of available clients to overcome this issue is an interesting 
venue for future work.

7  Experiments

In this section, we demonstrate the effectiveness of Δ-FL in handling heterogeneity in fed-
erated learning. Our experiments were implemented in Python using automatic differen-
tiation provided by PyTorch while the data was preprocessed using LEAF (Caldas et al., 
2018). The code to reproduce our experiments can be found online.3 We start by describing 
the datasets, tasks, and models in Sect. 7.1. We present numerical comparisons to several 
recent works – we list them in Sect. 7.2 and show the experimental results in Sect. 7.3. We 
demonstrate that Δ-FL provides the most favorable tradeoff between average error and the 
error on tail clients in Sect.  7.4. Next, we compare Δ-FL with model personalization in 
Sect. 7.5. Finally, we numerically study the privacy-utility tradeoff of the differentially pri-
vate quantile computation (in Sect. 7.6), and of Δ-FL with end-to-end differential privacy 
(in Sect. 7.7).

Full details regarding the experiments, as well as additional results, are provided in 
the appendices.

7.1  Datasets, tasks and models

We consider two learning tasks. The dataset and task statistics are summarized in Table 1. 

(a) Character Recognition: We use the EMNIST dataset (Cohen et al., 2017), where the 
input x is a 28 × 28 grayscale image of a handwritten character, and the output y is its 

3 https:// github. com/ krish nap25/ simpl icial- fl.

https://github.com/krishnap25/simplicial-fl
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label (0-9, a-z, A-Z). Each client is a writer of the character x. The weight �i assigned to 
author i is the number of characters written by this author. We train both a linear model 
and a convolutional neural network architecture (ConvNet). The ConvNet consists of 
two 5×5 convolutional layers with max-pooling followed by one fully connected layer. 
Outputs are vectors of scores for each of the 62 classes. The multinomial logistic loss 
is used to train both models.

(b) Sentiment Analysis: We use the Sent140 dataset (Go et al., 2009) where the input x is 
a tweet, and the output y = ±1 is its sentiment. Each client is a distinct Twitter user. 
The weight �i assigned to user i is the number of tweets published by this user. We 
train a logistic regression and a Long-Short Term Memory neural network architec-
ture (LSTM). The LSTM is built on the GloVe embeddings of the words of the tweet 
(Hochreiter & Schmidhuber, 1997). The hidden dimension of the LSTM is the same 
as the embedding dimension, i.e., 50. We refer to the latter as “RNN”. The loss used 
to train both models is the binary logistic loss.

7.2  Algorithms and hyperparameters

We list here the competing approaches we benchmark and discuss their hyperparameters.
Algorithms As discussed in Sect. 3, a federated learning method is characterized by 

the objective function, as well as the federated optimization algorithm. We compare Δ
-FL with the following baselines: 

(a) Vanilla FL objective: We consider two methods that attempt to minimize the vanilla 
FL objective: FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020). The latter 
augments FedAvg with a proximal term for more stable optimization.

(b) Heterogeneity-aware objectives: We consider Tilted-ERM (Li et al., 2021), which is 
the analogue of Δ-FL with the entropic risk measure (cf. Sect. 6) and AFL (Mohri 
et al., 2019), whose objective is obtained as the limit lim

�→0 F�
(w) of the Δ-FL objec-

tive. We also consider q-FFL (Li et al., 2020), which raises the per-client loss Fi to the 
(q + 1)th power, for some q > 0 . We optimize q-FFL and Tilted-ERM with the feder-
ated optimization algorithms proposed in their respective papers. We use q-FFL with 
q = 10 in place of AFL, as it was found to have more stable convergence with similar 
performance.

We compare to one more baseline for the vanilla FL objective. Note that Δ-FL the 
weight �(t) (see line 3 of Algorithm 3) is sparse, i.e., it is non-zero for only some of the 

Table 1  Dataset description and 
statistics

Task Dataset #Classes Devices #Data per 
client

Median Max

Image recognition EMNIST 62 1730 179 447
Sentiment analysis Sent140 2 877 69 549
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m selected clients, cf. Proposition 3. This is equivalent to a fewer number of effective 
clients per round, which is �m on average. We use as baseline FedAvg with �m clients 
per round, where m is the number of clients per round in Δ-FL; we call it FedAvg-Sub.

Similar to McMahan et al. (2017), we consider a weighted version of the vanilla 
FL objective where each client’s loss is weighted by �i = Ni∕N  , where Ni is the num-
ber of data points on client i and N =

∑

i Ni . Similarly, we also consider a weighted 
version of the Δ-FL objective as a superquantile of a random variable that takes value 
Fi(w) with probability �i . For a fair comparison, we run all algorithms, including Δ
-FL, without differential privacy. We postpone a study of Δ-FL with differential pri-
vacy to Sect. 7.7.

Hyperparameters We fix the number of clients per round to be m = 100 for each 
dataset-model pair except for Sent140-RNN, for which we use m = 50 . We fixed an 
iteration budget for each dataset during which FedAvg converged. We tuned a learn-
ing rate schedule using grid search to find the smallest terminal loss averaged over 
training clients for FedAvg. The same iteration budget and learning rate schedule 
were used for all other methods, including Δ-FL. Each method, except FedAvg-Sub, 
selected m clients per round for training, as specified earlier. The regularization 
parameter � , and the proximal weight of FedProx were tuned to minimize the 90th 
percentile of the misclassification error on a held-out subset of training clients. We 
run q-FFL for q ∈ {10−3, 10−2,… , 10} and report q with the smallest 90th percentile 
of misclassification error on test clients. We run Tilted-ERM with a temperature 
parameter � ∈ {0.1, 0.5, 1, 5, 10, 50, 100, 200} and also report � with the smallest 90th 
percentile of misclassification error on test clients. We optimize Δ-FL with Algo-
rithm 3 for threshold levels � ∈ {0.8, 0.5, 0.1}.

7.3  Experimental results

We measure in Table 2 the 90th percentile of the misclassification error across the test 
clients as a measure of the right tail of the per-client performance. We also measure in 
Table 3 the mean error, which measures the average test performance. Our main find-
ings are summarized below.

Δ-FL consistently achieves the smallest 90th percentile error. Δ-FL achieves a 3.3% 
absolute ( 12% relative) improvement over any vanilla FL objective on EMNIST-ConvNet. 
Among the heterogeneity-aware objectives, Δ-FL achieves 1.8% improvement over the next 
best objective, which is Tilted-ERM. We note that q-FFL marginally outperforms Δ-FL 
on Sent140-Linear, but the difference 0.05% is much smaller than the standard deviation 
across runs.

Δ-FL is competitive at multiple values of � . For EMNIST-ConvNet, Δ-FL with 
� ∈ {0.5, 0.8} is better in 90th percentile error than all other methods we compare to, and Δ
-FL with � = 0.1 is tied with Tilted-ERM, the next best method. We also empirically con-
firm that Δ-FL interpolates between FedAvg ( � → 1 ) and AFL ( � → 0).

Δ-FL works best for larger threshold levels. We observe that Δ-FL with � = 0.1 is 
unstable for Sent140-RNN. This is consistent with Theorem  5, which requires m to be 
much larger than 1∕� (cf. Remark 2). Indeed, this can be explained by Δ-FL ’s sparse re-
weighting, which only gives non-zero weights to �m = 5 clients on average in each round 
(cf. Remark 1).
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Yet, Δ-FL is competitive in terms of average error. Perhaps surprisingly, Δ-FL gets 
the best test error performance on EMNIST-ConvNet and Sent140-Linear. This suggests 
that the average test distribution is shifted relative to the average training distribution p

�
 . In 

the other cases, we find that the reduction in mean error is small relative to the gains in the 
90th percentile error compared to Vanilla FL methods.

Minimizing superquantile loss over all clients performs better than minimizing 
worst error over all clients. Specifically, AFL which aims to minimize the worst error 
among all clients, as well as other objectives which approximate it ( Δ-FL with � → 0 , q-
FFL with q → ∞ , Tilted-ERM with � → 0 ) tend to achieve poor performance. We find that 
AFL achieves the highest error both in terms of 90th percentile and the mean. Δ-FL offers 
a more nuanced and more effective approach through an averaging of the tail performances 
rather than the straightforward pessimistic approach minimizing the worst error among all 
clients.

Table 2  90th percentile of the 
distribution of misclassification 
error (in % ) on the test devices

Each entry is the mean over five random seeds while the standard 
deviation is reported in the subscript. The boldfaced/highlighted 
entries denote the smallest value for each dataset-model pair

EMNIST Sent140

Linear ConvNet Linear RNN

FedAvg 49.660.67 28.461.07 46.830.54 49.673.95

FedAvg-Sub 50.280.77 27.570.81 46.600.38 46.943.84

FedProx 49.150.74 27.011.86 46.830.54 49.864.07

q-FFL 49.900.58 28.020.80 46.390.40 48.664.68

Tilted-ERM 48.590.62 25.461.49 46.690.49 46.543.27

AFL 51.620.28 45.081.00 47.520.32 57.781.19

Δ-FL, � = 0.8 49.100.24 26.231.15 46.440.38 46.464.39

Δ-FL, � = 0.5 48.44
0.38 23.69

0.94 46.640.41 50.488.24

Δ-FL, � = 0.1 50.340.95 25.462.77 51.391.07 86.4510.95

Table 3  Mean of the distribution 
of misclassification error (in % ) 
on the test devices

Each entry is the mean over five random seeds while the standard 
deviation is reported in the subscript. The boldfaced/highlighted 
entries denote the smallest value for each dataset-model pair

EMNIST Sent140

Linear ConvNet Linear RNN

FedAvg 34.380.38 16.640.50 34.750.31 30.160.44

FedAvg-Sub 34.510.47 16.230.23 34.470.03 ��.��0.46

FedProx ��.��
�.�� 16.020.54 34.740.31 30.200.48

q-FFL 34.340.33 16.590.30 34.480.06 29.960.56

Tilted-ERM 34.020.30 15.680.38 34.700.31 30.040.25

AFL 39.330.27 33.010.37 35.980.08 37.740.65

Δ-FL, � = 0.8 34.490.26 16.090.40 ��.��0.22 30.310.33

Δ-FL, � = 0.5 35.020.20 ��.��
�.�� 35.290.25 33.592.44

Δ-FL, � = 0.1 38.330.48 16.371.03 37.790.89 51.9811.81
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7.4  Exploring the trade‑off between average and tail error

We visualize in Figs. 3 and 4 the distribution of test errors to explore the trade-off various 
methods provide between the average error and the error on tail clients.

Δ-FL yields improved prediction on tail clients. This can be observed from the his-
togram of Δ-FL in Fig.  3, which exhibits thinner tails than FedAvg or Tilted-ERM. We 
see that the vanilla FL objective of FedAvg sacrifices performance on the tail clients. 
Tilted-ERM does improve over FedAvg in this regard, but Δ-FL has a thinner right tail than 
Tilted-ERM, showing better handling of heterogeneity.

Δ-FL yields improved prediction on data-poor clients. We observe in Fig.  4 that 
Tilted-ERM and q-FFL mainly improve the performance on data-rich clients, that is clients 
with lots of data. On the other hand, Δ-FL gives a more significant reduction in misclassifi-
cation error on data-poor clients, that is clients with little data ( < 200 examples per client).

7.5  1‑FL and model personalization

We now repeat the experiment of Sect. 7.3 with model personalization for the EMNIST 
ConvNet model.

Setup We personalize a model to a test client by finetuning a model trained either via 
FedAvg or Δ-FL on the particular test client’s data at the end of federated training. This 
simple baseline is competitive with more sophisticated personalization algorithms (Pil-
lutla et al., 2022). Towards this end, we split the data on each test client into a training set 
used for the finetuning and a test set used to report the evaluation metrics. We finetune the 
model for 10 epochs with the same local learning rate as at the end of federated training.

Results The numerical results are given in Table 4. We observe that after model per-
sonalization, both FedAvg and Δ-FL models perform similarly, often within one standard 
deviation of each other. The mean error is marginally smaller for FedAvg while the 90th 
percentile error is marginally smaller for Δ-FL with � = 0.8 . The gap between these, 0.01 
or 0.02 percentage points, is smaller than the standard deviation, 0.1 percentage points.

7.6  Differentially private quantile estimation

We study the privacy-utility tradeoff of Algorithm 2.
Setup We sample n = 256 numbers from a uniform distribution over [0, B] or a �2(4) 

distribution clipped to [0, B] with B = 10 . We consider the performance of Algorithm 2 
by varying the number b of bins and the ring size M. Since the communication cost 
of the protocol scales as the bit width log2 M , we display it instead in the plots. Recall 
that if our algorithm returns the (1 − �

�)-quantile when we aim to find the (1 − �)-quan-
tile, then its quantile error is |� − �

�
| , cf. (19). We plot the quantile error averaged over 

� = 0.1, 0.2,… , 0.9 , and the standard deviations are obtained from 10 random runs.
Results The results are given in Fig. 5. For n = 256 and b = 64 , we find that the quan-

tile error is 0.14 for the uniform distribution at � ≈ 1 ; this means we might find the 36rd 
percentile or the 64th percentile instead of the median. This error quickly falls to 0.03 at 
� ≈ 5 at large enough bit widths. At a bit width of 10, we incur errors due to the modular 
wraparound at � ≥ 5 . The results are also qualitatively similar for other settings, although 
the quantile error is unsurprisingly higher at b > n.
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7.7  End‑to‑end differential privacy with 1‑FL

We now compare Δ-FL with FedAvg with end-to-end differential privacy on a synthetic 
classification dataset.

Dataset and models The synthetic dataset contains k = 10 classes in d = 20 dimensions 
and n = 2500 training clients. The class-conditional distribution q(x|y = k) = N(�k, Id) is a 
Gaussian and is the same across all the clients while there is a label shift, i.e., qi(y) varies 
across clients. For the training clients, we have qi(y) = Dir(0.5) is a Dirichlet distribution 
with parameter 0.5, while for validation and test clients, we have qi(y) = Dir(0.01) . For 
each client, we sample 100 examples from its data distribution. We refer to Appendix D for 
details.

Algorithms and privacy budgeting For the FedAvg baseline, we clip the model 
updates to an �2 norm bound of C, which is a tunable hyperparameter. We add Gaussian 
noise N(0, �2

w
I) — thus, each update satisfies �2

w
∕(2C2)-concentrated differential privacy. 

To get a privacy bound across all the rounds, we use the generic bounds of Zhu and Wang 
(2019) for privacy amplification by subsampling and composing the privacy loss across the 
number of rounds of the algorithm. Given a fixed norm bound C, we select the noise scale 
�w to get (�, 1∕n)-differential privacy over the entire algorithm, where � is provided as an 
input, and n is the number of clients.

Fig. 3  Histogram of misclassification error on test clients for the EMNIST-ConvNet and Sent140-RNN
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Each round of Δ-FL involves quantile computation and weight aggregation: we use 
Algorithm  2 to compute the quantile of the losses clipped to a tuned bound B using a 
hierarchical histogram with b bins. We clip the weight updates to a norm bound C and 
add Gaussian noise, similar to FedAvg. The total privacy loss is calculated by composing 
the privacy loss across both the quantile and weight updates, and the number of rounds 
together with amplification by subsampling using the bounds of Zhu and Wang (2019).

We calculate the noise scales �q of the quantile and �w of the weight update so that (a) 
the privacy budget for the quantile computation to be r times the privacy budget of the 
weight update, where r is a hyperparameter, and (b) the overall algorithm satisfies (�, 1∕n)
-differential privacy. We tune the loss bound B, norm bound C, the number of bins b, and 
the quantile privacy ratio r to attain the best 90th percentile misclassification error across 
validation clients. For all experiments, we train for 1000 rounds with 100 clients per round 
and a fixed learning rate of 0.1. For further details on the algorithms, privacy budgeting, 
and hyperparameters, we refer to Appendix D.

Results: Δ-FL gives better tail performance under the same privacy budget. The 
privacy-utility tradeoff of Δ-FL and FedAvg are shown in Fig. 6. We see that Δ-FL with 
threshold level � = 0.5 has a privacy-utility tradeoff within one standard deviation of Fed-
Avg on the mean misclassification error while being 3.1 percentage points better on the tail 
misclassification error as measured by its 90th percentile: 55.7% for FedAvg versus 52.6% 
for Δ-FL at � = 5 . Smaller values of � , such as � = 0.25 are 0.6 percentage points worse on 

Fig. 4  Scatter plots of misclassification error on test clients against its data size for the EMNIST-ConvNet
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the mean error while being 1.2 and 4.3 percentage points better than � = 0.5 and FedAvg 
respectively on the tail error. We note that the utility of Δ-FL degrades more at smaller � 
when compared to FedAvg: 1.64 percentage points for � = 0.5 versus 0.2 percentage points 
for FedAvg from � = 10 to � = 3 for the tail error. Despite this effect, the tail error for Δ-FL 
is smaller than FedAvg even at � = 3.

8  Conclusion

We present the Δ-FL framework that operates with heterogeneous clients while guaran-
teeing a minimal predictive performance to each client. Δ-FL relies on a superquantile-
based objective, parameterized by a tail threshold level, to optimize the tail statistics of 

Table 4  Misclassification error % 
of FedAvg and Δ-FL with model 
personalization on the EMNIST 
ConvNet model

Each table entry is the average over 5 random seeds, while the sub-
script denotes the standard deviation. The boldfaced entries indicate 
the smallest error in each column

Mean error 90th percentile error

Before pers. After pers. Before pers. After pers.

FedAvg 16.680.50 5.430.12 28.441.15 8.710.19

Δ-FL, � = 0.8 16.000.44 5.440.08 26.261.28 8.690.12

Δ-FL, � = 0.5 15.50
0.31 5.580.07 23.61

1.02 8.760.15

Δ-FL, � = 0.1 16.050.78 6.170.11 24.581.96 9.380.06

Fig. 5  The quantile error (defined in (19)) incurred by Algorithm  2 to estimate the quantile of n = 256 
numbers drawn from a uniform or �2(4) distribution with (�, 10−5)-differential privacy
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the prediction errors on the client data distributions. We present a federated optimization 
algorithm that combines differentially private quantile estimation to filter out clients to run 
federated averaging steps. We derive finite time convergence guarantees of O(1∕

√

T) in T 
communication rounds in the nonconvex case and O(exp(−T∕�3∕2) + �∕T) in the strongly 
convex case with local condition number � . We establish a utility bound of O(log2 b∕(�n)) 
for (�, �)-differentially private quantile computation. Experimental results on federated 
learning benchmarks demonstrate the superior performance of Δ-FL over state-of-the-art 
baselines on the upper quantiles of the error on test clients, with particular improvements 
on data-poor clients, while being competitive on the mean error with and without differen-
tial privacy.

Appendix A: Convergence analysis

Below, we restate and prove Theorem 4 as Theorem 7 in Sect. A.2 and Theorem 5 as Theo-
rem 8 in Sect. A.3.

A.1: Review of Notation

Here, we review the notation of the variants of the functions Fi and F
�
 in Table 5.

A.2: Convergence analysis: non‑convex case

We review some definitions of subdifferentials and weak convexity before we get to the 
main theorem.

Nonconvex Subdifferentials. We start by recalling the definition of subgradients 
for nonsmooth functions (in finite dimension), following the terminology of Rockafel-
lar and Wets (2009). Consider a function � ∶ ℝ

d
→ ℝ ∪ {+∞} and a point w̄ such that 

𝜓(w̄) < +∞ . The regular (or Fréchet) subdifferential of � at w̄ is defined by

𝜕𝜓(w̄) =
�

s ∈ ℝ
d ∶ 𝜓(w) ≥ 𝜓(w̄) + ⟨s,w − w̄)⟩ + o(‖w − w̄‖)

�

.

Fig. 6  Δ-FL versus FedAvg with (�, 1∕n)-differential privacy on a synthetic classification task in ℝ20 with 
10 classes and n = 2500 clients. The error bars denote the standard deviation across 5 random runs
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The regular subdifferential thus corresponds to the set of gradients of smooth functions 
that are below � and coincide with it at w̄ . These notions generalize (sub)gradients of both 
smooth functions and convex functions: it reduces to the singleton {∇𝜓(w̄)} when � is 
smooth and to the standard subdifferential from convex analysis when � is convex.

Weak Convexity. We recall the notion of weak convexity, which is one way of char-
acterizing functions that are “close” to convex. A function � ∶ ℝ

d
→ ℝ is said to be �

-weakly convex if the function w ↦ �(w) + (�∕2)‖w‖2 is convex (Nurminskii, 1973). 
The class of weakly convex functions includes all convex functions (with � = 0 ) and all 
L-smooth functions (with � = L).

Weak convexity also admits an equivalent first-order condition: for any w, z ∈ ℝ
d and 

s ∈ ��(w) , we have,

Weak convexity will feature in our developments in two ways:

• In our case, both F
�
 as well as F

�,S are L-weakly convex, since each can be written 
as the maximum of a family of L-smooth functions; cf. Drusvyatskiy & Paquette 
(2019, Lemma 4.2).

• The prox operator for weakly convex functions is well-defined. Let � be a �-weakly 
convex function. Its proximal or prox operator, with parameter 𝜇 > 0 , is defined as 

 It is well-defined (i.e., the argmin exists and is unique) for 𝜇 > 𝜂 , since the function 
inside the argmin is (� − �)-strongly convex.

In nonsmooth and nonconvex optimization of weakly convex functions, we are inter-
ested in finding stationary points w.r.t. the regular subdifferential, i.e., points w satisfy-
ing 0 ∈ ��(w) . A natural measure of near-stationarity is, therefore,

(A1)�(z) ≥ �(w) + ⟨s, z − w⟩ −
�

2
‖z − w‖2 .

prox
�∕�(w) = argmin

z

�

�(z) +
�

2
‖w − z‖2

�

.

dist(0, ��(w)) = inf
s∈��(w)

‖s‖ .

Table 5  Review of notation Function Description

Fi Loss function of client i
F̃i Loss plus regularization on client i: F̃i(w) = Fi(w) +

𝜆

2
‖w‖2

F
�

The main objective of Δ-FL, defined in (7)
F
�,S The analogue of F

�
 defined on only on a sample S of clients

F
�

Averaged minibatch objective: F
�
(w) = �S[F�,S(w)] where 

the expectation is over uniform subsamples of clients of 
size |S| = m

Φ
�

�

The Moreau envelope of F
�
 ; see (13)

F̂
𝜃

The variant of the Δ-FL objective computed with a tail 
mean, and used to formalize the connection between 
Algorithms 1 and 3

F�

�
Smoothing of F

�
 using the KL divergence; see (14)
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Moreau Envelope. Given a parameter 𝜇 > 0 , we define the Moreau envelope of F
�
 as

The Moreau envelope is well-defined since F
�
 is bounded from below by our assumptions. 

We will use two standard properties of the Moreau envelope:

• Since F
�,S is L-weakly convex, we have that its Moreau envelope Φ

�

�
(w) is continu-

ously differentiable for 𝜇 > L with 

• The stationary points of Φ
�

�
 and F

�
 coincide and infΦ

�

�
= infF

�
 for 𝜇 > L.

• We have for all 𝜇 > 0 that Φ
�

�
(w) ≤ F

�
(w).

Notation. Let S = S(t) denote the random set of clients selected in round t of Algo-
rithm 3. We define

where �(t)

i
∈ argmax

�∈P
�,S

∑

i∈S �iFi(w
(t)) is selected as in line  3 of Algorithm  3. A key 

consequence of the chain rule (cf. Rockafellar & Wets (2009, Thm. 10.6)) is

Convergence analysis We now state and prove the convergence result in the nonconvex 
case.

Theorem 7 Fix the number of local steps � and the number of rounds T, fix � = 2L and set 
the learning rate

where we denote ΔF0 = Φ
�

�
(w(0)) − infΦ

�

�
≤ F

�
(w(0)) − infF

�
 . Let ŵ be sampled uniformly 

at random from {w(0),… ,w(T−1)} . Ignoring absolute constants, we have the bound,

Proof We start with some notation. Throughout, we denote z(t) as the proximal point of w(t):

Let F(t) denote the sigma algebra generated by w(t) and define �t[⋅] = �[⋅ ∣ F(t)] . By defini-
tion, we have that z(t) is also F(t)-measurable.

We use the update w(t+1) = w(t) − �

∑

i∈S �
(t)

i

∑

�−1

k=0
∇Fi(w

(t)

i,k
) to get

Φ
�

�
(w) = inf

z

�

F
�
(z) +

�

2
‖w − z‖2

�

.

(A2)∇Φ
�

�
(w) = �

(

w − prox
F
�
∕�
(w)

)

.

(A3)∇̃F
𝜃,S(w

(t)) =
∑

i∈S

𝜋
(t)

i
∇Fi(w

(t)) ,

(A4)∇̃F
𝜃,S(w

(t)) ∈ 𝜕F
𝜃,S(w

(t)) .

� = min

�

1

4�L
,

1

�

√

T

�

ΔF0

LG2
,

1

�T1∕3

�

ΔF0

32L2G2(1 − �
−1)

�1∕3
�

,

�
‖

‖

‖

∇Φ
𝜇

𝜃
(ŵ)

‖

‖

‖

2 ≤
√

ΔF0LG
2

T
+

(

ΔF0LG(1 − 𝜏
−1)1∕2

T

)2∕3

+
ΔF0L

T
.

z(t) = prox
F
�
∕�
(w(t)) = argmin

z

{

F
�
(z) +

�

2

‖

‖

‖

z − w(t)‖
‖

‖

2
}

.



2990 Machine Learning (2024) 113:2955–3022

1 3

For T1 , we consider the effect of a single update with a learning ��:

so that the difference T1 − T
�
1
 is the effect of the drift introduced by taking multiple local 

steps. We bound the first order term T′
1
 , the drift term T1 − T

�
1
 and the second order term T2 

separately.
Bounding the first order term T′

1
 . By definition of the weights �(t)

i
 , we have 

∑

i∈S 𝜋
(t)

i
∇Fi(w

(t)) = ∇̃F
𝜃,S(w

(t)) ∈ 𝜕F
𝜃,S(w

(t)) , see also (A3). This allows us to invoke the 
weak convexity of F

�,S , in particular (A1), to bound

Taking an expectation conditioned on F(t) (i.e., over the randomness in S), we 
get �t[F�,S(w

(t))] = F
�
(w(t)) . Further, since z(t) is F

(t)-measurable, we also have 
�t[F�,S(z

(t))] = F
�
(z(t)) . That gives,

Note that the function

(A5)

Φ
�

�
(w(t+1)) = min

z

{

F
�
(z) +

�

2

‖

‖

‖

z − w(t+1)‖
‖

‖

2
}

≤ F
�
(z(t)) +

�

2

‖

‖

‖

z(t) − w(t+1)‖
‖

‖

2

= F
�
(z(t)) +

�

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2

+ ��

⟨

z(t) − w(t),
∑

i∈S

�
(t)

i

�−1
∑

k=0

∇Fi(w
(t)

i,k
)

⟩

+
��

2

2

‖

‖

‖

‖

‖

‖

∑

i∈S

�
(t)

i

�−1
∑

k=0

∇Fi(w
(t)

i,k
)

‖

‖

‖

‖

‖

‖

2

= Φ
�

�
(w(t)) + ��

⟨

z(t) − w(t),
∑

i∈S

�
(t)

i

�−1
∑

k=0

∇Fi(w
(t)

i,k
)

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶T1

+
��

2

2

‖

‖

‖

‖

‖

‖

∑

i∈S

�
(t)

i

�−1
∑

k=0

∇Fi(w
(t)

i,k
)

‖

‖

‖

‖

‖

‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶T2

.

T
�
1
∶= ���

⟨

z(t) − w(t),
∑

i∈S

�
(t)

i
∇Fi(w

(t))

⟩

,

T
�
1

𝜇𝜏𝛾

=
⟨

z(t) − w(t), ∇̃F
𝜃,S(w

(t))
⟩ ≤ F

𝜃,S(z
(t)) − F

𝜃,S(w
(t)) +

L

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2

.

1

���

�t[T
�
1
] ≤

(

F
�
(z(t)) +

�

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2
)

− F
�
(w(t)) −

� − L

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2

.

h(z) ∶= F
�
(z) +

�

2

‖

‖

‖

z − w(t)‖
‖

‖

2
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is (� − L)-strongly convex and z(t) is its minimizer. This gives,

so that we have the bound

Bounding the effect of the drift T1 − T
�
1
 . The contribution of kth local step to the drift 

T1 − T
�
1
 can be bounded as

Here, we first used (i) the Cauchy-Schwarz inequality, (ii) Jensen’s inequality, and (iii) the 
smoothness of Fi . Summing this over k, we get the bound

where we bounded d(t) ∶= �t

�

∑

i∈S

∑

�−1

k=0
�
(t)

i

�

�

�

w
(t)

i,k
− w(t)�

�

�

2
�

 by Proposition 12.

Bounding the second order term T2 . Next, we bound T2 as

where we used Jensen’s inequality and ‖‖
‖

∇Fi(w
(t)

i,k
)
‖

‖

‖

2 ≤ G2 since Fi is G-Lipschitz.
One step update and telescoping the bound Plugging (A6) to (A8) into (A5), we have,

h(w(t)) − h(z(t)) ≥ � − L

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2

,

(A6)
1

���

�t[T
�
1
] ≤ −(� − L)

‖

‖

‖

z(t) − w(t)‖
‖

‖

2(A2)
= −

� − L

�
2

‖

‖

‖

∇Φ
�

�
(w(t))

‖

‖

‖

2

.

|

|

|

|

|

⟨

z(t) − w(t),
∑

i∈S

�
(t)

i

(

∇Fi(w
(t)

i,k
) − ∇Fi(w

(t))
)

⟩

|

|

|

|

|

(i)≤� − L

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2

+
1

2(� − L)

‖

‖

‖

‖

‖

∑

i∈S

�
(t)

i

(

∇Fi(w
(t)

i,k
) − ∇Fi(w

(t))
)‖

‖

‖

‖

‖

2

(ii)≤ � − L

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2

+
1

2(� − L)

∑

i∈S

�
(t)

i

‖

‖

‖

∇Fi(w
(t)

i,k
) − ∇Fi(w

(t))
‖

‖

‖

2

(iii)≤ � − L

2

‖

‖

‖

z(t) − w(t)‖
‖

‖

2

+
L2

2(� − L)

∑

i∈S

�
(t)

i

‖

‖

‖

w
(t)

i,k
− w(t)‖

‖

‖

2

.

(A7)
�t
|

|

T1 − T
�
1
|

|

≤ ��(� − L)

2�

‖

‖

‖

∇Φ
�

�
(w(t))

‖

‖

‖

2

+
��L2

2(� − L)
d(t)

≤ ��(� − L)

2�

‖

‖

‖

∇Φ
�

�
(w(t))

‖

‖

‖

2

+
4��3�3G2

� − L
(1 − �

−1) ,

(A8)
T2 =

��
2

2

‖

‖

‖

‖

‖

‖

∑

i∈S

�
(t)

i

�−1
∑

k=0

∇Fi(w
(t)

i,k
)

‖

‖

‖

‖

‖

‖

2

≤ ��
2
�

2

∑

i∈S

�
(t)

i

�−1
∑

k=0

‖

‖

‖

∇Fi(w
(t)

i,k
)
‖

‖

‖

2

≤ ��
2
�
2G2

2
,

�t

[

Φ
�

�
(w(t+1))

] ≤ Φ
�

�
(w(t)) −

��(� − L)

2�

‖

‖

‖

∇Φ
�

�
(w(t))

‖

‖

‖

2

+
��

2
�
2G2

2

(

1 +
8L2�

� − L
(� − 1)

)

.
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Finally, taking an unconditional expectation, summing this up over t = 0 to T − 1 and rear-
ranging gives us the bound

where we plugged in � = 2L . Plugging in the choice of � (cf. Lemma 14) completes the 
proof.   ◻

A.3: Convergence analysis: strongly convex case

The fully specified version of Theorem 5 is the following.

Theorem  8 (Convergence rate, Strongly Convex Case) Suppose that each Fi is convex 
and the regularization parameter satisfies 0 < 𝜆 < L . Define notation � = (L + �)∕� , 
w⋆ = argminw F𝜃

(w) and Δ0 = ‖w(0) − w⋆
‖

2 . Assume also that the number of rounds is 
T ≥ 16�3∕2 . Fix a smoothing parameter 𝜈 > 0 as

where 𝛿 > 0 is given by

and C = �
2Δ0∕G

2 . Letting L� = L + � + G2∕� , fix a learning rate

Consider the sequence (w(t))T
t=0

 produced by Algorithm 3 run with smoothing parameter � 
and learning rate � chosen as above, and the corresponding averaged iterate

Then, ignoring absolute constants, we have,

�
‖

‖

‖

∇Φ
𝜇

𝜃
(ŵ)

‖

‖

‖

2 ≤ 4ΔF0

𝜏𝛾T
+ 4𝜏𝛾LG2(1 + 8L𝛾(𝜏 − 1)) ,

� =
8G2

�

�

(

1 ∨ 32�2
�

)

,

� = min

{

1

16�3∕2
,
1

T

(

1 ∨ log
CT

logm

)

,
1

T

(

1 ∨ log
CT2

�
2 logm

)}

,

� = min

�

1

4�L�
,

1

8��
√

2�L�
,

1

��T
(1 ∨ logC�mT),

1

��T

�

1 ∨ log
CT2

�
2(1 − �

−1)

�2�

.

w
(T)

∶=

∑T

t=0
w(t)

�

1 −
���

2

�−(1+t)

∑T

r=0

�

1 −
���

2

�−(1+r)
.

�

�

F
𝜃
(w

(T)
) − F

𝜃
(w⋆)

� ≤ 𝜆‖w(0) − w⋆

‖

2 exp
�

−
T

16𝜅3∕2

�

+
B

√

𝜃m

+
G2

𝜆T

�

1

𝜃m
+ logm

�

�

1 ∨ log
𝜆
2Δ0𝜃mT

G2

�

+
G2

𝜅
2

𝜆T2

�

1 − 𝜏
−1 + logm

�

�

1 ∨ log
𝜆
2Δ0T

2

G2
𝜅
2

�2

.
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We review some notation before giving the proof.
Notation. Analogous to the smoothing F�

�
 of F

�
 , we define the smoothing of the sam-

ple version F
�,S as

From Danskin’s theorem, cf. Bertsekas (1999, Proposition B.25), we get the expression of 
its gradient as

where �(t) attains the unique argmax in (A9) (see also (15) for the definition).
We define the averaged superquantile as

where Um is the uniform distribution over subsets of [n] of size m. Finally, let 
w⋆ = argminw F

�
�(w).

We also define the notion of client drift as

Proof of Theorem  8 We denote �t[⋅] ∶= �[ ⋅ ∣ Ft] . We expand the update 
w(t+1) = w(t) − 𝛾

∑

i∈S 𝜋
(t)

i

∑

𝜏−1

k=0
∇ ̃Fi(w

(t)

i,k
) to get

In order to bound the first order term T1 , we analyze the effect of a single local step of 
learning rate �� rather than � local steps of learning rate � . The analogue of the first order 
term T1 , in this case, would be

The difference T1 − T
�
1
 is the effect of the drift from taking multiple local steps. From here, 

the proof consists of the following steps: 

(A9)F�

�,S
(w) = max

�∈P
�,S

�

�

i∈S

�iFi(w) − �DS(�)

�

+
�

2
‖w‖2 ,

(A10)∇F𝜈

𝜃,S
(w(t)) =

∑

i∈S

𝜋
(t)

i
∇ ̃Fi(w

(t)) ,

(A11)F
�

�
(w) = �S∼Um

[F�

�,S
(w)] ,

(A12)d(t) ∶= �S∼Um

�

�

i∈S

�
(t)

i

�−1
�

k=0

‖w
(t)

i,k
− w(t)

‖

2
�

�

�

�

�

Ft

�

.

(A13)

‖w(t+1) − w
⋆

‖

2 = ‖w(t) − w
⋆

‖

2 − 2𝛾
�

i∈S

𝜋
(t)

i

𝜏−1
�

k=0

�

∇F̃i(w
(t)

i,k
),w(t) − w

⋆

�

�������������������������������������������������������

=∶T1

+ 𝛾
2

�

�

�

�

�

�

�

i∈S

𝜋
(t)

i

𝜏−1
�

k=0

∇ ̃Fi(w
(t)

i,k
)

�

�

�

�

�

�

2

�����������������������������������

=∶T2

.

T
�
1
∶= 2𝜏𝛾

∑

i∈S

𝜋
(t)

i

⟨

∇ ̃Fi(w
(t)),w(t) − w

⋆
⟩(A.10)

= 2𝜏𝛾
⟨

∇F𝜈

𝜃,S
(w(t)),w(t) − w

⋆

⟩

.
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1. Bound the first order term T′
1
,

2. Bound the drift T1 − T
�
1
,

3. Bound the second order term T2,
4. Combine these to get the effect of one communication round t,
5. Unroll the bound over all communication rounds t = 1,… , T ,
6. Connect optimization on the surrogate F

�

�
 to the original F

�
,

7. Optimize the choices of the learning rate � and smoothing parameter �.

1. Bounding the first order term T′
1
 . We use the �-strong convexity (cf. (A25)) of F�

�,S
 

to get

Taking an expectation w.r.t. the sampling S (i.e., conditioned on Ft ) gives

2. Bounding the effect of the drift T1 − T
�
1
 . The contribution of kth local step to the drift 

T1 − T
�
1
 can be bounded as

Here, we first used (i) the Cauchy–Schwarz inequality, (ii) Jensen’s inequality, and (iii) the 
(L + �)-smoothness of ̃Fi . Summing this over k, we get the bound

where we use the definition of d(t) from (A12).
3. Bounding the second order term T2 . By using the expression (A10) of ∇F�

�,S
 , we get

T
�
1
≥ 2𝜏𝛾

�

F𝜈

𝜃,S
(w(t)) − F𝜈

𝜃,S
(w

⋆

) +
𝜆

2
‖w(t) − w

⋆

‖

2
�

.

(A14)�t[T
�
1
] ≥ 2𝜏𝛾

�

F
𝜈

𝜃
(w(t)) − F

𝜈

𝜃
(w

⋆

) +
𝜆

2
‖w(t) − w

⋆

‖

2
�

.

|

|

|

|

|

⟨

∑

i∈S

𝜋
(t)

i

(

∇ ̃Fi(w
(t)

i,k
) − ∇ ̃Fi(w

(t))
)

,w(t) − w
⋆

⟩

|

|

|

|

|

(i)≤𝜆

4

‖

‖

‖

w(t) − w
⋆‖

‖

‖

2

+
1

𝜆

‖

‖

‖

‖

‖

∑

i∈S

𝜋
(t)

i

(

∇F̃i(w
(t)

i,k
) − ∇F̃i(w

(t))
)‖

‖

‖

‖

‖

2

(ii)≤ 𝜆

4

‖

‖

‖

w(t) − w
⋆‖

‖

‖

2

+
1

𝜆

∑

i∈S

𝜋
(t)

i

‖

‖

‖

∇ ̃Fi(w
(t)

i,k
) − ∇ ̃Fi(w

(t))
‖

‖

‖

2

(iii)≤ 𝜆

4

‖

‖

‖

w(t) − w
⋆‖

‖

‖

2

+
(L + 𝜆)2

𝜆

∑

i∈S

𝜋
(t)

i

‖

‖

‖

w
(t)

i,k
− w(t)‖

‖

‖

2

.

(A15)�t�T1 − T
�
1
� ≤ 𝜆𝜏𝛾

2
‖w(t) − w

⋆

‖

2 +
2𝛾(L + 𝜆)2

𝜆

d(t) ,
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For the first term, we invoke (L + �)-smoothness of ̃Fi and take an expectation to get 
2�(L + �)2d(t) . For the second term, we have from the definition (A11) of F

�

�
 that 

�t

[

∇F�

�,S
(w(t))

]

= ∇F
�

�
(w(t)) . Therefore, we can write

where we invoked Property 9 to bound the variance of the partial superquantile and L′

-smoothness of F
�

�
 . Overall, this gives us

4. One-step update Plugging (A14) to (A16) into (A13), we get,

Next, we plug in the bound on d(t) from Proposition 12 and simplify some coefficients. First, 
since � ≤ (4�L�)−1 we have 2�� − 4�2�2L� ≥ �� . Likewise, the same condition on � also 
implies �� + 1∕� ≤ 2∕� . Finally, � ≤ �

8��
√

2�L�
�−1 implies 64L�(L + �)2�2�2∕� ≤ 1∕2 . 

As a result, we arrive at the bound

5. Telescoping the bound By telescoping the one-step improvement and convexity, we get, 
Next, we use convexity to get

‖

‖

‖

‖

‖

‖

∑

i∈S

𝜋
(t)

i

𝜏−1
∑

k=0

∇ ̃Fi(w
(t)

i,k
)

‖

‖

‖

‖

‖

‖

2

≤ 2

‖

‖

‖

‖

‖

‖

∑

i∈S

𝜋
(t)

i

𝜏−1
∑

k=0

(

∇ ̃Fi(w
(t)

i,k
) − ∇ ̃Fi(w

(t))
)

‖

‖

‖

‖

‖

‖

2

+ 2

‖

‖

‖

‖

‖

‖

∑

i∈S

𝜋
(t)

i

𝜏−1
∑

k=0

∇ ̃Fi(w
(t))

‖

‖

‖

‖

‖

‖

2

≤ 2𝜏
∑

i∈S

𝜋
(t)

i

𝜏−1
∑

k=0

‖

‖

‖

∇F̃i(w
(t)

i,k
) − ∇F̃i(w

(t))
‖

‖

‖

2

+ 2𝜏2
‖

‖

‖

∇F𝜈

𝜃,S
(w(t))

‖

‖

‖

2

.

�t
‖

‖

‖

∇F𝜈

𝜃,S
(w(t))

‖

‖

‖

2

= �t
‖

‖

‖

∇F𝜈

𝜃,S
(w(t)) − ∇F

𝜈

𝜃
(w(t))

‖

‖

‖

2

+
‖

‖

‖

∇F
𝜈

𝜃
(w(t))

‖

‖

‖

2

≤ 8G2

𝜃m
+ 2L�

(

F
𝜈

𝜃
(w(t)) − F

𝜈

𝜃
(w

⋆

)
)

,

(A16)�t[T2] ≤ 2𝛾2𝜏(L + 𝜆)2 d(t) +
16𝜏2𝛾2G2

𝜃m
+ 4𝜏2𝛾2L�

(

F
𝜈

𝜃
(w(t)) − F

𝜈

𝜃
(w

⋆

)
)

.

�t‖w
(t+1) − w

⋆

‖

2 ≤
�

1 −
𝜆𝜏𝛾

2

�

‖w(t) − w
⋆

‖

2

− (2𝜏𝛾 − 4𝛾2𝜏2L�)
�

F
𝜈

𝜃
(w(t)) − F

𝜈

𝜃
(w

⋆

)
�

+
16𝜏2𝛾2G2

𝜃m
+ 2𝛾(L + 𝜆)2(𝜏𝛾 + 𝜆

−1)d(t) .

F
𝜈

𝜃
(w(t)) − F

𝜈

𝜃
(w

⋆

) ≤ 2

𝜏𝛾

�

1 −
𝜆𝜏𝛾

2

�

‖w(t) − w
⋆

‖

2 −
2

𝜏𝛾

�t‖w
(t+1) − w

⋆

‖

2

+
32𝜏𝛾G2

𝜃m
+

64G2(L + 𝜆)2𝜏2(1 − 𝜏
−1)𝛾2

𝜆

�

4 +
8

𝜃m

�

�������������������������������������������������������������������������������

=∶T3

.
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Now, we can bound the denominator from below with

This gives us the final bound

6. Translating the results from the surrogate F
�

�
 to the original F

�
 . We optimize the sur-

rogate F
�

�
 defined on a sample S of clients rather than the full superquantile. The effect of 

this shows up in both sides of (A17). We bound the left-hand side by noting that the bias 
introduced by the surrogate is bounded as in Property 9. For the right hand side, we use the 
�-strong convexity of F

�
 and Property 9 to get

since F
𝜈

𝜃
(w

⋆

) − F
𝜈

𝜃
(w⋆) ≤ 0 . Plugging this into (A17) gives us the bound

7. Hyperparameter optimization To complete the proof from here, it remains to optimize 
the learning rate � and the smoothing parameter � by repeated invocations of Lemma 13.

We start with the learning rate � . Ignoring absolute constants gives us the bound

�

�

F
𝜈

𝜃
(w

(T)
) − F

𝜈

𝜃
(w

⋆

)
�

≤ 1

∑T

t=0

�

1 −
𝜆𝛾𝜏

2

�−(1+t)

T
�

t=0

�

1 −
𝜆𝜏𝛾

2

�−(1+t)

�

�

F
𝜈

𝜃
(w(t)) − F

𝜈

𝜃
(w

⋆

)
�

≤ 2
�

�

�

w(0) − w
⋆�

�

�

2

𝜏𝛾

∑T

t=0

�

1 −
𝜆𝜏𝛾

2

�−(1+t)
+ T3 .

T
∑

t=0

(

1 −
���

2

)−(1+t)

≥ 2

���

(

(

1 −
���

2

)−(T+1)

− 1

)

≥ 2

���

(

e(T+1)��� − 1
)

.

(A17)�

�

F
𝜈

𝜃
(w

(T)
) − F

𝜈

𝜃
(w

⋆

)
� ≤ 𝜆

eT𝜆𝜏𝛾 − 1
‖w(0) − w

⋆

‖

2 + T3 .

‖w(0) − w
⋆

‖

2 ≤ 2‖w(0) − w⋆

‖

2 + 2‖w
⋆

− w⋆

‖

2

≤ 2‖w(0) − w⋆

‖

2 +
4

𝜆

�

F
𝜃
(w

⋆

) − F
𝜃
(w⋆)

�

≤ 2‖w(0) − w⋆

‖

2

+
4

𝜆

�

F
𝜃
(w

⋆

) − F
𝜈

𝜃
(w

⋆

) + F
𝜈

𝜃
(w

⋆

) − F
𝜈

𝜃
(w⋆) + F

𝜈

𝜃
(w⋆) − F

𝜃
(w⋆)

�

≤ 2‖w(0) − w⋆

‖

2 +
4

𝜆

�

2B
√

𝜃m
+ 4𝜈 logm

�

,

(A18)

�

�

F
𝜃
(w

(T)
) − F

𝜃
(w⋆)

� ≤ 2𝜆

eT𝜆𝜏𝛾 − 1
‖w(0) − w⋆

‖

2 +
32𝜏𝛾G2

𝜃m

+
64G2(L + 𝜆)2𝜏2(1 − 𝜏

−1)𝛾2

𝜆

�

4 +
8

𝜃m

�

+

�

2B
√

𝜃m
+ 4𝜈 logm

�

�

1 +
8

eT𝜆𝜏𝛾 − 1

�

.
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where we take

This application of Lemma 13 requires ��ΓT ≥ 1 , which we will ensure later, based on the 
choice of � . Recall that Γ depends on L′ , which itself depends on � as L� = L + � + G2∕�.

Next, we set � . We will require that � ≤ G2∕(��) , so that the two terms from (A19) that 
depend on � can be bounded as

To simplify the expression, we substitute

The bound � ≤ G2∕(��) translates to the upper bound � ≤ (16�3∕2)−1 . Therefore, the right 
hand side of (A20) can be further upper bounded by using max{a, b} ≤ a + b as

We now invoke Lemma 13 under the condition T ≥ 16�3∕2 . We set � as specified by 
Lemma 13 — this gives us the choices of the smoothing parameter � and learning rate � . 
Plugging this into (A19) gives the bound of the theorem. Finally, to complete the proof, it 
can be verified that the condition ��ΓT ≥ 1 is guaranteed by T ≥ 16�3∕2 .   ◻

A.4: Intermediate results

We present some prerequisites and some intermediate results which are required in the 
convergence proofs.

Note that for any S ⊂ [n] of size m, the partial superquantile is differentiable at w with :

where 𝜋⋆ denotes the solution to the maximization

(A19)

�

�

F
𝜃
(w

(T)
)
�

− F
𝜃
(w⋆) ≤ 𝜆Δ0 exp(−𝜆𝜏ΓT) +

G2

𝜃m𝜆T

�

1 ∨ log
𝜆
2Δ0𝜃m

G2
T

�

+
G2

𝜅
2

𝜆T2
(1 − 𝜏

−1)

�

1 ∨ log
𝜆
2Δ0T

2

G2
𝜅
2

�2

+
B

√

𝜃m
+ 𝜈 logm ,

Γ = min

�
√

�

8�(L + �)
√

2L�
,

1

4�L�

�

.

(A20)�Δ0 exp(−��ΓT) + � logm ≤ �Δ0 exp

⎛

⎜

⎜

⎜

⎝

−
T

16�

�

G2

��

∨
8G2

��

⎞

⎟

⎟

⎟

⎠

+ � logm .

1

�

= max

{

16�

√

G2

��

,
8G2

��

}

⟺ � = max

{

256�2G2
�
2

�

,
8G2

�

�

}

.

�Δ0 exp(−�T) +
8G2 logm

�

� +
256G2

�
2G2 logm

�

�
2 .

(A21)∇F𝜈

𝜃,S
(w) =

∑

i∈S

𝜋
⋆

i
∇ ̃Fi(w)
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Bias and variance of the partial superquantile We use the partial superquantile defined 
on a subset S ⊂ [n] to approximate the full superquantile. We start with the quality of this 
approximation.

Property 9 Let Um denote the uniform distribution over all subsets of [n] of size m. For any 
w ∈ ℝ

d , we have

Smoothing and smoothness constants The following result is standard, cf. Beck & 
Teboulle (2012, Theorem 4.1, Lemma 4.2).

Property 10 For every 𝜈 > 0 , we have that F�

�,S
 and F

�

�,S
 are L′-smooth with L� = L + � +

G2

�

.

Bounding the gradient dissimilarity. Bounding of the variance of gradient estimators 
is a key assumption in the analysis of stochastic gradient methods (see e.g. the textbook 
(Bottou et  al., 2018)). In the centralized setting, when a stochastic objective �

�
[f (w, �)] , 

it is standard to assume for a given estimator gw of ∇w�f (w, �) that there exists some con-
stants M1,M2 > 0 such that for all w ∈ ℝ

d,

In the federated setting, the use of a subset S ⊂ [n] of clients in each round induces noise 
on the estimation of the average gradient over the whole network. Thus, such assumption 
translates into a bound on the gradient dissimilarity among the clients (Karimireddy et al., 
2020; Wang et al., 2019):

In this work, we also consider the minimization of the global loss F�

�
 by a stochastic algo-

rithm based on partial participation of the clients, with the additional difficulty that we 
only have access to a biased estimator F

�

�
 of the loss F�

�
 and its gradient. In particular, the 

adaptive reweighting of the clients selected at each round does not permit the direct use of 
such an assumption. We show instead in the next lemma that the variance of the stochastic 
gradient estimator can also be bounded, thanks to the Lipschitz assumption.

Proposition 11 (Gradient dissimilarity) Consider the quantities �(t),w(t) from Algorithm 3. 
We have,

F𝜈

𝜃,S
(w) = max

𝜋∈P
𝜃,S

∑

i∈S

𝜋i
̃Fi(w) − 𝜈DS(𝜋) .

�

�

�

F
�

�
(w) − F

�
(w)

�

�

�

≤ B
√

�m
+ 2� logm ,

�S∼Um

�

�

�

∇F�

�,S
(w) − ∇F

�

�
(w)

�

�

�

2 ≤ 8G2

�m
.

‖

‖

‖

�
[

gw
]

‖

‖

‖

2 ≤ M1 or
‖

‖

‖

�
[

gw
]

‖

‖

‖

2 ≤ M1 +M2
‖

‖

‖

∇w�
[

f (w, �
]

‖

‖

‖

2

.

1

n

∑

i∈[n]

‖

‖

∇ ̃Fi(w)
‖

‖

2 ≤ M1 +M2

‖

‖

‖

‖

‖

‖

1

n

∑

i∈[n]

∇ ̃Fi(w)

‖

‖

‖

‖

‖

‖

2

.
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Proof We drop the superscript t throughout this proof. By centering the second moment 
(cf. (A24)), we have:

Now since the weights �i sum to one, we may use the convexity of ‖⋅‖2 to get:

The squared triangle inequality (cf. (A23)) together with the Lipschitz assumption on the 
functions Fi yields:

Thus, taking an expectation over S ∼ Um gives

By centering (cf. (A24)), we get,

Finally, substituting the variance bound from Property 9 into (A22) yields the stated result.  
 ◻

Bounding the Client Drift. During federated learning, each client takes multiple 
local steps. This causes the resulting update to be a biased estimator of a descent direc-
tion for the global objective. This phenomenon has been referred to as “client drift” (Li 
et al., 2020; Karimireddy et al., 2020). Current proof techniques rely on treating this as 
a “noise” term that is to be controlled. In the context of this work, the reweighting by 
�
(t) requires us to adapt this typical definition of client drift to our setting. In particular, 

recall that we define the client drift d(t) in outer iteration t of the algorithm as

�

[

∑

i∈S

𝜋
(t)

i

‖

‖

‖

∇ ̃Fi(w
(t))

‖

‖

‖

2 |
|

|

|

|

Ft

]
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8

𝜃m

)

G2 +
‖

‖

‖

∇F
𝜈

𝜃
(w(t))

‖

‖

‖

2

.

∑
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𝜋i
‖

‖

‖

∇ ̃Fj(w)
‖

‖

‖
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‖

‖

‖
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𝜃,S
(w)

‖

‖

‖

2

+
‖

‖

‖

∇F𝜈

𝜃,S
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‖

‖

‖
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=
∑
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‖

‖

‖

‖

‖

‖
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‖

‖
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‖

‖

‖
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(A22)
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Proposition 12 (Client Drift) If � ≤ 1

4�(L+�)
 , we have for any t ≥ 0 that

Furthermore, if � = 0 , we have the bound

The last bound also works without smoothing, i.e., � = 0.

Proof We absorb the regularization into the superquantile by defining 
̃Fi(w) = Fi(w) + (𝜆∕2)‖w‖2 . If � = 1 , there is nothing to prove as both sides of the inequal-
ity are 0. We assume now that 𝜏 > 1 . Let us first fix S ⊂ [n] of size |S| = m . For any k ∈ S 
and j ∈ {1,… , � − 1} , by the squared triangle inequality (cf. (A23)), we have:

The squared triangle inequality (cf. (A23)) together with the smoothness of the local losses gives:

Hence, for � ≤ 1

4�(L+�)
 , we get:

Unrolling this recursion yields for any j ≤ � − 1

d(t) ∶= �S∼Um

�

�

i∈S

�
(t)

i

�−1
�
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where we use (1 + 2∕x)x ≤ e2 < 8 for any x > 0 . If � = 0 we have that 
‖

‖

∇ ̃Fi(w
(t))‖

‖

2
= ‖

‖

∇Fi(w
(t))‖

‖

2 ≤ G2 since Fi is G-Lipschitz; this gives us the final bound in 
the statement. When � ≠ 0 , this does not hold. In this case, we apply Proposition 11 to get

Invoking smoothness (cf. (A26)) completes the proof.   ◻

A.5: Useful inequalities and technical results

We recall a few standard inequalities:

• Squared Triangle inequality: For any x, y ∈ ℝ
d and 𝛼 > 0 we have: 

• Centering the second moment: For any ℝd-valued random vector X such that 
�‖X‖2 < ∞ , 

• Strong convexity: Let F ∶ ℝ
d
→ ℝ be �-strongly convex. Then for any x, y ∈ ℝ

d , we 
have: 

• Smoothness: Let F ∶ ℝ
d
→ ℝ be L-smooth and let F⋆ be the minimum value of F 

(assuming it exists). Then for any x ∈ ℝ
d , we have: 

Lemma 13 Consider the maps �,� ∶ (0,Γ] → ℝ+ given by
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(A23)‖x + y‖2 ≤ (1 + �)‖x‖2 +
�

1 +
1

�

�

‖y‖2 .

(A24)�‖X‖2 = ��
�

X − �[X]�
�

2
+ �

�

�[X]�
�

2
.

(A25)⟨∇F(x), x − y⟩ ≥ F(x) − F(y) +
�

2
‖x − y‖2 .

(A26)‖∇F(x)‖2 ≤ 2L
�

F(x) − F⋆

�

.
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where 𝜆,Γ,A,B,C, T > 0 are given and �Γ ≤ 1 . If T ≥ (�Γ)−1 , then, we have,

where 𝛾⋆ is given by

Furthermore, we also have that 
(

exp(𝜆𝛾⋆T) − 1
)−1 ≤ 1.

Proof Since �ΓT ≥ 1 , we have that 𝜆𝛾⋆T ≥ 1 . Then, exp(−𝜆𝛾⋆T) ≤ exp(−1) < 1∕2 so that

Therefore, we have,

Next, define �1 = (�T)−1 log(1 ∨ A�T∕B) and �2 = (�T)−1 log(1 ∨ A�2T2∕C) , so that 
𝛾
⋆ = min{Γ, 𝛾1, 𝛾2} . We have three cases:

• If 𝛾⋆ = Γ , we have that Γ ≤ �1 and Γ ≤ �2 so that 

• If 𝛾⋆ = 𝛾1 , we have �1 ≤ �2 . In this case, 

• If 𝛾⋆ = 𝛾2 , we have �2 ≤ �1 , so that 

  ◻

The proof of the next lemma is elementary and is omitted.

Lemma 14 Consider the map � ∶ (0,Γ] → ℝ+ given by

where Γ,A,B,C > 0 are given. Then, we have,

�(�) =
A

exp(��T) − 1
+ B� + C�2 , �(�) = 2A exp(−��T) + B� + C�2 ,

𝜑(𝛾⋆) ≤ 𝜓(𝛾⋆) ≤ 2A exp(−𝜆ΓT) +
3B

𝜆T

(

1 ∨ log
A𝜆T

B

)

+
3C

𝜆
2T2

(

1 ∨ log
A𝜆2T2

C

)2

,

𝛾
⋆ = min

{

Γ,
1

𝜆T

(

1 ∨ log
A𝜆T

B

)

,
1

𝜆T

(

1 ∨ log
A𝜆2T2

C

)}

.

1

exp(𝜆𝛾⋆T) − 1
=

exp(−𝜆𝛾⋆T)

1 − exp(−𝜆𝛾⋆T)
≤ 2 exp(−𝜆𝛾⋆T) ≤ 1 .

𝜑(𝛾⋆) ≤ 2A exp(−𝜆𝛾⋆T) + B𝛾⋆ + C(𝛾⋆)2 = 𝜓(𝛾⋆) .

𝜓(𝛾⋆) = 2A exp(−𝜆ΓT) + BΓ + CΓ2 ≤ 2A exp(−𝜆ΓT) + B𝛾1 + C𝛾2
2
.

𝜓(𝛾⋆) = A exp(−𝜆𝛾1T) + B𝛾1 + C𝛾2
1
≤ 2B

𝜆T
+

B

𝜆T

(

1 ∨ log
A𝜆T

B

)

+ C𝛾2
2
.

𝜓(𝛾⋆) = 2A exp(−𝜆𝛾2T) + B𝛾2 + C𝛾2
2
≤ 2C

𝜆
2T2

+ B𝛾1 +
C

𝜆
2T2

(

1 ∨ log
A𝜆2T2

C

)2

.

�(�) =
A

�T
+ B� + C�2 ,
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where 𝛾⋆ is given by

Appendix B: Privacy analysis

B.1: Preliminaries

The discrete Gaussian mechanism was introduced in Canonne et al. (2020) as an extension 
of the Gaussian mechanism to integer data. A random variable � is said to satisfy the dis-
crete Gaussian distribution with mean � and variance proxy �2 if

where C is an appropriate normalizing constant. We denote it by N
ℤ
(�, �2) . We need the 

following property of the discrete Gaussian.

Property 15 Let � be distributed according to N
ℤ
(�, �2) . Then, �[�] = � . Furthermore, if 

� = 0 , then � is sub-Gaussian with variance proxy �2 , i.e., �[exp(��)] ≤ exp(�2�2∕2) for 
all 𝜆 > 0.

B.2: Privacy‑utility analysis of quantile computation

We now give the full proof of Theorem 6.

Proof of Theorem 6 We start by defining and controlling the probabilities of some events. 
Throughout, let 𝛿 > 0 be fixed. Define the event

Note that under Emod , no modular wraparound occurs in the algorithm. Thus, for all valid 
levels r and indices j, we have x̃i(r, j) = cxi(r, j) + 𝜉i(r, j) and

Next, we define the event

𝜑(𝛾⋆) ≤ A

ΓT
+ 2

(

AB

T

)1∕2

+ 2C1∕3
(

A

T

)2∕3

,

𝛾
⋆ = min

{

Γ,

√

A

BT
,
(

A

CT

)1∕3
}

.

ℙ(� = n) = C exp

(

−
(n − �)2

2�2

)

for all n ∈ ℤ ,

(B27)Emod =

n
⋂

i=1

log2 b−1
⋂

r=0

b∕2r
⋂

j=1

{

−
M − 2

2n
≤ cxi(r, j) + �i(r, j) ≤ M − 2

2n

}

.

̂h(r, j) =

n
∑

i=1

x̃i(r, j)

c
=

n
∑

i=1

(

xi(r, j) +
𝜉i(r, j)

c

)

.
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We will show later that Emod and Ediff holds with high probability; for now, we assume that 
they hold.

Privacy analysis We start by establishing the sensitivity of the sum query over xi ’s as 
log2 b , one for each level in the hierarchical histogram. Define the input space X  to be the 
space of hierarchical histograms with one non-zero entry in the leaf nodes with consist-
ent counts (i.e., the count of a parent node in the hierarchical histogram equals the sum of 
its child nodes). Let X∗ = ∪∞

m=1
X

m denote the set of all sequences of elements of X  . We 
consider the rescaled sum query A((x1,… , xN)) =

∑n

i=1
cxi . The L2 sensitivity S(A) of this 

query A is supremum over all X ∈ X
∗ and X′ which is obtained by concatenating x′ to X:

We invoke the privacy bound of sums of discrete Gaussians (Lemma 18) to claim that an 
algorithm A returning A(x) +

∑n

i=1
�i satisfies (1∕2)�2-concentrated DP where � is as in 

the theorem statement. The fact that the quantile and all further functions of it remain pri-
vate follows from the post-processing property of DP (also known as the data-processing 
inequality).

Utility analysis Using the triangle inequality, we get,

The first term is bounded under Ediff , and this gives the utility bound.
Bounding the failure probability The algorithm fails when at least one of Emod or Ediff 

fail to hold. We have from Claim 16 that ℙ(Emod) ≥ 1 − �∕4 under the given assumptions. 
From, Claim 17, we have ℙ(Ediff|Emod) ≥ 1 − �∕2 . We bound the total failure probability of 
the algorithm with a union bound as

  ◻

We state and prove bounds on probabilities of the events Emod,Ediff defined above.

Claim 16 If M ≥ 2 + 2cn + 2n
√

2�2 log(16nb∕�) , then ℙ(Emod) ≥ 1 − �∕4.

Proof Each discrete Gaussian random variable �i(r, j) is centered and sub-Gaussian with 
variance proxy �2 (cf. Property 15). A Cramér-Chernoff bound (cf. Lemma 19) gives us the 
exponential tail bound

(B28)Ediff =

b
⋂

j=1

{

|

|

|

H(j) − ̂H(j)
|

|

|

≤
√

2𝜎2n log2(b) log(4b∕𝛿)

}

.

S(A) = sup
X,X�

‖

‖

A(X) − A(X�)‖
‖2

= sup
x�∈X

c‖
‖

x�‖
‖2

= c log2 b .

Δ
𝜃
( ̂H,H) =

|

|

|

|

|

H
(

j∗
𝜃
( ̂H)

)

n
− (1 − 𝜃)

|

|

|

|

|

≤ 1

n

|

|

|

H
(

j∗
𝜃
(Ĥ)

)

− Ĥ
(

j∗
𝜃
(Ĥ)

)

|

|

|

+
|

|

|

|

1

n
Ĥ
(

j∗
𝜃
(Ĥ)

)

− (1 − 𝜃)
|

|

|

|

≤ max
j∈[b]

{

1

n

|

|

|

H(j) − ̂H(j)
|

|

|

}

+ R∗
𝜃
( ̂H) .

ℙ( ̄Ediff ∪
̄Emod) ≤ ℙ( ̄Ediff|Emod)ℙ(Emod) + ℙ( ̄Ediff|

̄Emod)ℙ(
̄Emod) + ℙ( ̄Emod)

≤ ℙ( ̄Ediff|Emod) + 2ℙ( ̄Emod) ≤ 𝛿 .
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Applying the union bound over i = 1,… , n and the 2b − 2 nodes in each hierarchical histo-
gram xi (each node corresponding to one (r, j) pair) completes the proof.   ◻

Claim 17 We have ℙ(Ediff|Emod) ≥ 1 − �∕2.

Proof Under Emod , we have that Ĥ(j) = H(j) +
∑n

i=1
∑

(r,o)∈Pj
�i(r, o) , where Pj is the maximal 

dyadic partition of [1, j] with |Pj| ≤ log2 b . Thus, �j: = Ĥ(j) − H(j) is sub-Gaussian with vari-
ance proxy n|Pj|�

2 ≤ n�2 log2 b . A Cramér-Chernoff bound (cf. Lemma 19) gives us

Applying a union bound over j = 1,… , b completes the proof.   ◻

B.3: Useful results

The distributed discrete Gaussian mechanism gets privacy guarantees by adding a sum 
of discrete Gaussian random variables. We give a bound on its privacy. The following 
lemma is due to Kairouz et al. (2021).

Lemma 18 (Privacy of Sum of Discrete Gaussians) Fix � ≥ 1∕2 . Let A ∶ X →
d be a deter-

ministic algorithm with �2-sensitivity S for some input space X  . Define a randomized algo-
rithm A , which when given an input x ∈ X  , samples �1,… , �n ∼ N

ℤ
(0, �2Id) and returns 

A(x) +
∑n

i=1
�i . Then, A satisfies �2∕2-concentrated DP with

where � = 10
∑n−1

i=1
exp

�

− 2�2
�
2i∕(k + 1)

� ≤ 10(n − 1) exp(−2�2
�
2).

Next, we record a standard concentration result.

Lemma 19 (Cramér-Chernoff) Let � be a real-valued and centered sub-Gaussian random 
variable with variance proxy �2 , i.e., �[�] = 0 and �[exp(��)] ≤ exp(�2�2∕2) for all 𝜆 > 0 . 
Then, we have for any t > 0,

ℙ

�

�𝜉i(r, j)� >
√

2𝜎2 log(16nb∕𝛿)
� ≤ 𝛿

8nb
.

ℙ

(

|𝜁j| >

√

2𝜎2n log2(b) log(4b∕𝛿)

)

≤ 𝛿

2b
.

� = min

�
�

S2

n�2
+

�d

2
,

S
√

n�
+ �

√

d

�

,

ℙ(|𝜉| > t) ≤ 2 exp

(

−
t2

2𝜎2

)

.
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Appendix C: Numerical experiments: extended results

We conduct our experiments on two datasets from computer vision and natural language 
processing. These datasets contain a natural, non-iid split of data which is reflective of data 
heterogeneity encountered in federated learning. In this section, we describe in detail the 
experimental setup and the results. Here is its outline:

• Section C.1 describes the datasets and tasks.
• Section C.2 presents the algorithm and the hyperparameters used.
• Section C.3 details the evaluation methodology.
• Section C.4 gives the experimental comparison of Δ-FL to baselines.

Since each client has a finite number of datapoints in the examples below, we let its prob-
ability distribution qi to be the empirical distribution over the available examples, and the 
weight �i to be proportional to the number of datapoints available on the client.

C.1: Datasets and tasks

We use the two following datasets, described in detail below. The data was preprocessed 
using LEAF (Caldas et al., 2018).

EMNIST for handwritten-letter recognition
Dataset EMNIST (Cohen et al., 2017) is a character recognition dataset. This dataset 

contains images of handwritten digits or letters, labeled with their identification (a-z, A-Z, 
0-9). The images are grey-scaled pictures of 28 × 28 = 784 pixels.

Train and test devices Each image is also annotated with the “writer” of the image, i.e., 
the human subject who hand-wrote the digit/letter during the data collection process. Each 
client corresponds to one writer. From this set of clients, we discard all clients contain-
ing less than 100 images. The remaining clients were partitioned into two groups — 1730 
training and 1730 testing clients. For each experiment, we subsampled 865 training and 
865 testing clients for computational tractability, where the sampled clients vary based on 
the random seed of each experiment.

Model We consider the following models for this task.

• Linear model: We use a linear softmax regression model. In this case, each Fi is con-
vex. We train parameters w ∈ ℝ

62×784 . Given an input image x ∈ ℝ
784 , the score of 

each class c ∈ [62] is the dot product ⟨wc, x⟩ . The probability pc assigned to each class 
is then computed as a softmax: pc = exp ⟨wc, x⟩∕

∑

c� exp ⟨wc� , x⟩ . The prediction for a 
given image is then the class with the highest probability.

• ConvNet: We also consider a convolutional neural network with two convolutional lay-
ers with max-pooling and one fully connected layer (F.C) which outputs a vector in ℝ62 . 
The outputs of the ConvNet are scores with respect to each class. They are also used 
with a softmax operation to compute probabilities.

The loss used to train both models is the multinomial logistic loss L(p, y) = − log py where p 
denotes the vector of probabilities computed by the model and py denotes its yth component. In 
the convex case, we add a quadratic regularization term of the form (�∕2)‖w‖2

2
.

Sent140 for sentiment analysis
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Dataset Sent140  (Go et  al., 2009) is a text dataset of 1,600,498 tweets produced by 
660,120 Twitter accounts. Each tweet is represented by a character string with emojis 
redacted. Each tweet is labeled with a binary sentiment reaction (i.e., positive or negative), 
which is inferred based on the emojis in the original tweet.

Train and test devices Each client represents a Twitter account and contains only 
tweets published by this account. From this set of clients, we discarded all clients contain-
ing less than 50 tweets and split the 877 remaining clients into a train set and a test set of 
sizes 438 and 439 respectively. This split was held fixed for all experiments. Each word in 
the tweet is encoded by its 50-dimensional GloVe embedding (Pennington et al., 2014).

Model We consider the following models.

• Linear model: We consider a l2-regularized linear logistic regression model where the 
parameter vector w is of dimension 50. In this case, each Fi is convex. We summarize 
each tweet by the average of the GloVe embeddings of the words of the tweet.

• RNN: The nonconvex model is a Long Short Term Memory (LSTM) model (Hochreiter 
& Schmidhuber, 1997) built on the GloVe embeddings of the words of the tweet. The 
hidden dimension of the LSTM is the same as the embedding dimension, i.e., 50. We 
refer to it as “RNN”.

The loss function is the binary logistic loss.

C.2: Algorithms and hyperparameters

Algorithm and baselines
The proposed Δ-FL is run for three values of � ∈ {0.8, 0.5, 0.1} . We compare it to the 

following baselines:

• FedAvg   (McMahan et al., 2017): It is the de facto standard for the vanilla federated 
learning objective.

• FedAvg, � : We also consider FedAvg with a random client subselection step: local 
updates are run on a fraction of the initial number of clients randomly selected per 
round. For each dataset, we try three values, corresponding to the average number of 
clients selected by Δ-FL for the three values of � used.

  In the main paper, we report as FedAvg-Sub the performance of FedAvg, � with 
� ∈ {0.8, 0.5, 0.1} which gives the best performance on Δ-FL (i.e., lowest 90th percen-
tile of test misclassification error). Here we report numbers for all values of � consid-
ered.

• FedProx  (Li et al., 2020): It augments FedAvg with a proximal term but still minimizes 
the vanilla federated learning objective.

• q-FFL   (Li et  al., 2020): It raises the per-client losses to the power (1 + q) , where 
q ≥ 0 is a parameter, in order to focus on clients with higher loss. We run q-FFL for 
values of q in {10j, j ∈ {−3,… , 1}}.

• AFL  (Mohri et al., 2019): It aims to minimize the worst per-client loss. We imple-
ment it as an asymptotic version of q-FFL, using a large value of q, as this was found 
to yield better convergence with comparable performance  (Li et  al., 2020). In the 
experiments, we take q = 10.0.

The experiments are conducted on the datasets described in Section C.1.
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Hyperparameters.
Rounds We measure the progress of each algorithm by the number of calls to secure 

aggregation routine for weight vectors, i.e., the number of communication rounds.
For the experiments, we choose the number of communication rounds depending on 

the convergence of the optimization for FedAvg. For the EMNIST dataset, we run the 
algorithm for 3000 communication rounds with the linear model and 1000 for the Con-
vNet. For the Sent140 dataset, we run the 1000 communication rounds for the linear 
model and 600 for the RNN.

Devices per round We choose the same number of clients per round for each 
method, with the exception of FedAvg, �.

All clients are assumed to be available and selections are made uniformly at random. 
In particular, we select 100 clients per round for all experiments with the exception of 
Sent140 RNN for which we used 50 clients per round.

Local updates and minibatch size Each selected client locally runs 1 epoch of mini-
batch stochastic gradient descent locally.

We used the default mini-batch of 10 for all experiments (McMahan et  al., 2017), 
except for 16 for EMNIST ConvNet. This is because the latter experiments were run 
using on a GPU, as we describe in the section on the hardware.

Learning rate scheme We now describe the learning rate �t used during LocalUp-
date. For the linear model, we used a constant fixed learning rate �t ≡ �0 , while for the 
neural network models, we used a step decay scheme of the learning rate �t = �0c

−⌊t∕t0⌋ 
for some t0 where �0 and 0 < c ≤ 1 are tuned. We tuned the learning rates only for the 
baseline FedAvg and used the same learning rate for the other baselines and Δ-FL at all 
values of �.

For the neural network models, we fixed t0 so that the learning rate decayed once 
or twice during the fixed time horizon T. In particular, we used t0 = 400 for EMNIST 
ConvNet (where T = 1000 ) and t0 = 200 for Sent140 RNN (where T = 600 ). We tuned c 
from the set {2−3, 2−2, 2−1, 1} , while the choice of the range of �0 depended on the data-
set-model pair. The tuning criterion we used was the mean of the loss distribution over 
the training clients (with client i weighted by �i ) at the end of the time horizon. That is, 
we chose the �0, c which gave the best terminal training loss.

Tuning of the regularization parameter The regularization parameter � for linear 
models was tuned with cross validation from the set {10−k ∶ k ∈ {3,… , 8}} . This was 
performed as described below.

For each dataset, we held out half the training clients as validation clients. Then, for 
different values of the regularization parameter, we trained a model with the (smaller 
subset of) training clients and evaluate its performance on the validation clients. We 
selected the value of the regularization parameter as the one which gave the smallest 
90th percentile of the misclassification error on the validation clients.

Baselines parameters We tune the proximal parameter of FedProx with cross valida-
tion. The procedure we followed is identical to the procedure we described above for the 
regularization parameter � . The set of parameters tested is {10−j, j ∈ {0,… , 3}}.

We did not attempt to tune the parameter q of q-FFL and report the performance of all 
values of q which we tried.

Hyperparameters of Δ-FL We optimize Δ-FL via Algorithm 3 with a fixed number of 
local steps, corresponding to one epoch. For simplicity, we calculate the quantile exactly, 
assuming client losses are available to the server.
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C.3: Evaluation strategy and other details

Evaluation metrics We record the loss of each training client and the misclassification 
error of each testing client, as measured on its local data.

The evaluation metrics noted in Sect. C.4 are the following: the weighted mean of the 
loss distribution over the training clients, the (unweighted) mean misclassification error 
over the testing clients, the weighted �-percentile of the loss over the training client and the 
(unweighted) �-percentile of the misclassification error over the testing clients for values 
of � among {20, 50, 60, 80, 90, 95} . We also present the 90th and 95th superquantile of the 
test misclassification error (i.e., average misclassification error of the worst 10% and 5% of 
the clients respectively), as well as the average test misclassification error of the best 10% 
clients. The weight �i used for training client i was set as proportional to the number of 
datapoints on the client.

Evaluation times We evaluate the model during the training process once every l com-
munication rounds. The value of l used was l = 50 for EMNIST linear model, l = 10 for 
EMNIST ConvNet, l = 20 for Sent140 linear model and l = 25 for Sent140 RNN.

Hardware We run each experiment as a simulation as a single process. The linear 
models were trained on m5.8xlarge AWS instances, each with an Intel Xeon Plati-
num 8000 series processor with 128 GB of memory running at most 3.1 GHz. The 
neural network experiments were trained on workstation with an Intel i9 processor 
with 128 GB of memory at 1.2 GHz, and two Nvidia Titan Xp GPUs. The Sent140 
RNN experiments were run on a CPU while the other neural network experiments 
were run using GPUs.

Software packages Our implementation is based on NumPy using the Python language. 
In the neural network experiments, we use PyTorch to implement the LocalUpdate proce-
dure, i.e., the model itself and the automatic differentiation routines provided by PyTorch 
to make SGD updates.

Randomness Since several sampling routines appear in the procedures such as the 
selection of clients or the local stochastic gradient, we carry out our experiments with five 
different seeds and plot the average metric value over these seeds. Each simulation is run 
on a single process. Where appropriate, we report one standard deviation from the mean.

C.4: Experimental results

We now present the experimental results of the paper.

• We present different metrics on the distribution of test misclassification error over the 
clients, comparing Δ-FL to baselines.

• We study the convergence of Algorithm 3 for Δ-FL over the course of the optimization, 
and compare it with FedAvg.

• We plot the histograms of the distribution of losses over train clients as well as the test 
misclassification errors over test clients at the end of the training process.

• We present in the form of scatter plots the training loss and test misclassification error 
across clients achieved at the end of the training, versus the number of local data points 
on the client.

• We present the number of clients having a loss greater than the quantile at each com-
munication round for Δ-FL. This gives the effective number of clients selected in each 
round, cf. Proposition 3 and Remark 1.
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Comparison to baselines We now present a detailed comparison of various statistics of 
the test misclassification error distribution for different methods in Table 6-For each col-
umn, the smallest mean over five random runs is highlighted in bold. Further, if no other 
method is within one standard deviation of this method, the entire entry (i.e., mean ± std) 
is highlighted in bold.

Histograms of loss and test misc. Error over Devices Here, we plot the histograms 
of the loss distribution over training clients and the misclassification error distribution 
over testing clients. We report the losses and errors obtained at the end of the train-
ing process. Each metric is averaged per client over 5 runs of the random seed. Fig-
ure 7 shows the histograms for EMNIST, while Fig. 8 shows the histograms for Sent140 
dataset. for Sent140. We note that Δ-FL tends to exhibit thinner upper tails at multiple 
values of � and a lower variance of the distribution in most of the cases. This is also 
confirmed by the figures in Tables 6 , 7, 8 and 9. This shows the benefit of using Δ-FL 
over vanilla FedAvg.

Fig. 7  Histogram of loss distribution over training clients and misclassification error distribution over test-
ing clients for EMNIST. The identification of the model (linear or ConvNet) is given on the y-axis of the 
histograms
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Performance compared to local data size Next, we plot the loss on training clients 
versus the amount of local data on the client and the misclassification error on the test cli-
ents versus the amount of local data on the client. See Fig. 9 for EMNIST and Fig. 10 for 
Sent140.

Observe firstly that improvement over the worst cases is achieved regardless of the 
local data size of the clients. Indeed, the client re-weighting step operates a sorting of 
the loss of the clients which does not prevent small clients from being selected. In con-
trast, FedAvg, by averaging with respect to the weights of the clients is likely to put more 
weight on the clients with larger local data size. Secondly, Δ-FL appears to reduce the 
variance of of the loss on the train clients. Lastly, note that amongst test clients with 
a small number of data points (e.g., < 200 for EMNIST or < 100 for Sent140), Δ-FL 
reduces the variance of the misclassification error. Both effects are more pronounced on 
the neural network models.

Fig. 8  Histogram of loss distribution over training clients and misclassification error distribution over test-
ing clients for Sent140. The identification of the model (linear or RNN) is given on the y-axis of the histo-
grams
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Appendix D: Numerical experiments: End‑to‑end differential privacy

We consider a synthetic classification dataset to evaluate the privacy-utility tradeoff of Δ-FL 
under end-to-end differential privacy.

D.1: End‑to‑end differential privacy with 1‑FL

To obtain an end-to-end differentially private version of Δ-FL, we modify the weight 
aggregation step of Algorithm 1 (line 11). Specially, we clip the weight updates and add 

Table 6  Metrics for the test misclassification error for EMNIST (Linear Model)

The boldfaced entries indicate the smallest error in each column

Method Mean Standard deviation 10th Percentile Median 90th Percentile

FedAvg 34.38 ± 0.38 18.39 ± 0.33 21.54 ± 0.35 32.61 ± 0.39 49.65 ± 0.67

FedAvg � = 0.8 34.20 ± 0.45 18.25 ± 0.22 ��.�� ± 0.26 32.10 ± 0.34 49.92 ± 1.16

FedAvg � = 0.5 34.51 ± 0.47 18.21 ± 0.30 21.40 ± 0.36 32.36 ± 0.59 50.28 ± 0.77

FedAvg � = 0.1 34.60 ± 0.46 18.58 ± 0.31 21.71 ± 0.37 32.54 ± 0.37 50.33 ± 1.28

FedProx ��.�� ± 0.30 18.25 ± 0.23 21.37 ± 0.35 ��.�� ± 0.20 49.15 ± 0.74

q-FFL (Best q = 1.0) 34.71 ± 0.27 19.34 ± 0.30 22.33 ± 0.41 32.80 ± 0.23 49.90 ± 0.58

Tilted-ERM (Best 
t = 1.0)

34.15 ± 0.25 10.78 ± 0.30 22.43 ± 0.29 32.36 ± 0.23 48.59 ± 0.62

AFL 39.32 ± 0.27 25.42 ± 0.27 28.64 ± 0.43 38.16 ± 0.34 51.62 ± 0.28

Δ-FL � = 0.8 34.48 ± 0.26 19.16 ± 0.32 22.24 ± 0.32 32.85 ± 0.31 49.10 ± 0.24

Δ-FL � = 0.5 35.01 ± 0.20 20.46 ± 0.34 23.64 ± 0.22 33.83 ± 0.34 ��.�� ± 0.38

Δ-FL � = 0.1 38.32 ± 0.48 23.86 ± 0.59 27.27 ± 0.64 37.52 ± 0.67 50.34 ± 0.95

Table 7  Metrics for the test misclassification error for EMNIST (ConvNet Model)

The boldfaced entries indicate the smallest error in each column

Method Mean Standard deviation 10th Percentile Median 90th Percentile

FedAvg 16.63 ± 0.50 �.�� ± 0.14 �.�� ± 0.24 15.34 ± 0.37 28.46 ± 1.07

FedAvg � = 0.8 15.95 ± 0.42 5.25 ± 0.19 6.86 ± 0.38 14.84 ± 0.24 26.82 ± 1.28

FedAvg � = 0.5 16.22 ± 0.23 5.06 ± 0.17 6.47 ± 0.28 15.05 ± 0.25 27.56 ± 0.81

FedAvg � = 0.1 15.97 ± 0.43 5.40 ± 0.42 7.10 ± 0.64 14.76 ± 0.20 26.35 ± 2.08

FedProx 16.01 ± 0.54 5.16 ± 0.32 6.68 ± 0.44 14.88 ± 0.29 27.01 ± 1.86

q-FFL (Best q = 0.001) 16.58 ± 0.30 5.05 ± 0.21 6.53 ± 0.20 15.40 ± 0.43 28.02 ± 0.80

Tilted-ERM (Best 
t = 1.0)

15.69 ± 0.38 7.31 ± 0.68 7.26 ± 0.51 14.66 ± 0.16 25.46 ± 1.49

AFL 33.00 ± 0.37 20.38 ± 0.23 22.92 ± 0.23 31.58 ± 0.27 45.07 ± 1.00

Δ-FL � = 0.8 16.08 ± 0.40 5.60 ± 0.14 7.31 ± 0.29 14.85 ± 0.48 26.23 ± 1.15

Δ-FL � = 0.5 ��.�� ± 0.30 6.13 ± 0.15 8.08 ± 0.16 14.73 ± 0.22 ��.�� ± �.��

Δ-FL � = 0.1 16.37 ± 1.03 6.61 ± 0.42 8.28 ± 0.65 15.49 ± 1.03 25.45 ± 2.77
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Gaussian noise to obtain differential privacy via the Gaussian mechanism. The overall 
algorithm is given in Algorithm 4.

Privacy accounting We now discuss the privacy spent in each communication 
round. For simplicity, we assume the number m(t) =

∑

i∈S �(Fi(w
(t)) ≥ Q(t)) of selected 

clients is publicly known.

Table 8  Metrics for the test misclassification error for Sent140 (Linear Model)

The boldfaced entries indicate the smallest error in each column

Method Mean Standard deviation 10th Percentile Median 90th Percentile

FedAvg 34.74 ± 0.31 12.16 ± 0.15 21.89 ± 0.24 34.81 ± 0.38 46.83 ± 0.54

FedAvg � = 0.8 34.47 ± 0.03 12.08 ± 0.16 21.69 ± 0.26 34.62 ± 0.17 46.59 ± 0.38

FedAvg � = 0.5 34.46 ± 0.07 12.11 ± 0.24 ��.�� ± 0.51 ��.�� ± 0.20 47.00 ± 0.40

FedAvg � = 0.1 34.79 ± 0.32 11.97 ± 0.37 22.08 ± 0.75 34.93 ± 0.35 46.69 ± 0.84

FedProx 34.74 ± 0.31 12.16 ± 0.15 21.89 ± 0.24 34.82 ± 0.39 46.83 ± 0.54

q-FFL (Best q = 1.0) 34.48 ± 0.06 11.96 ± 0.14 21.61 ± 0.24 34.57 ± 0.16 ��.�� ± 0.40

Tilted-ERM (Best 
t = 1.0)

34.71 ± 0.31 12.00 ± 0.14 21.83 ± 0.34 34.91 ± 0.39 46.70 ± 0.50

AFL 35.97 ± 0.08 11.83 ± 0.09 23.58 ± 0.28 36.09 ± 0.17 47.51 ± 0.32

Δ-FL � = 0.8 ��.�� ± 0.22 12.17 ± 0.11 21.77 ± 0.34 34.64 ± 0.25 46.44 ± 0.38

Δ-FL � = 0.5 35.28 ± 0.25 ��.�� ± 0.40 23.03 ± 0.38 35.55 ± 0.53 46.64 ± 0.41

Δ-FL � = 0.1 37.78 ± 0.89 12.86 ± 0.52 23.93 ± 0.99 37.80 ± 1.30 51.38 ± 1.07

Table 9  Metrics for the test misclassification error for Sent140 (RNN Model)

The boldfaced entries indicate the smallest error in each column

Method Mean Standard deviation 10th Percentile Median 90th Percentile

FedAvg 30.16 ± 0.44 4.36 ± 1.26 10.06 ± 2.06 29.51 ± 0.33 49.66 ± 3.95 1
FedAvg � = 0.8 ��.�� ± 0.46 5.39 ± 1.32 11.90 ± 2.27 29.57 ± 0.31 46.93 ± 3.84 1
FedAvg � = 0.5 31.06 ± 1.01 �.�� ± 2.73 �.�� ± 4.89 30.14 ± 0.71 53.10 ± 7.22 1
FedAvg � = 0.1 31.96 ± 1.47 4.82 ± 2.09 11.65 ± 4.83 31.55 ± 1.13 52.87 ± 8.41 1
FedProx 30.20 ± 0.48 4.35 ± 1.23 10.37 ± 2.08 ��.�� ± 0.32 49.85 ± 4.07

q-FFL (Best q = 0.01

)
29.99 ± 0.56 4.90 ± 1.66 10.98 ± 2.88 29.56 ± 0.39 48.65 ± 4.68

Tilted-ERM (Best 
t = 1.0)

30.13 ± 0.49 14.17 ± 2.10 13.18 ± 3.33 29.96 ± 0.84 46.54 ± 3.27

AFL 37.74 ± 0.65 9.90 ± 1.46 18.19 ± 1.99 36.95 ± 1.03 57.78 ± 1.19

Δ-FL � = 0.8 30.30 ± 0.33 6.75 ± 2.68 13.05 ± 3.87 29.92 ± 0.38 ��.�� ± 4.39

Δ-FL � = 0.5 33.58 ± 2.44 8.74 ± 3.98 16.77 ± 6.62 33.28 ± 2.27 50.47 ± 8.24

Δ-FL � = 0.1 51.97 ± 11.81 9.11 ± 5.47 16.67 ± 9.15 52.44 ± 13.21 86.44 ± 10.95
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Claim 20 Consider the setting of Algorithm 4 with noise scale �w , norm bound C and Algo-
rithm 2 with b bins and noise scale � = �q . Each round of Algorithm 4 satisfies (1∕2)�2
-concentrated DP where

where � = 10
∑m−1

i=1
exp

�

−2�2
�
2
q
i∕(i + 1)

�

.

Proof The privacy bound of the quantile computation from Algorithm 2 is given by 
Theorem. Since the contribution �(t)

i
 of each client has �2 norm ‖‖

‖

�
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Fig. 9  Scatter plot of a loss on training client versus amount of local data, and b misclassification error on 
testing client vs. amount of local data for EMNIST
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Gaussian noise N(0, �2
w
Id) , the weight update step satisfies �2

w
∕(2C2)-concentrated DP. 

The proof is completed by noting that concentrated differential privacy composes 
additively.   ◻

To obtain a bound on the concentrated DP of the entire algorithm, we rely 
on generic upper bounds of Zhu and Wang (2019) for privacy amplification by 
subsampling.

Fig. 10  Scatter plot of a loss on training client versus amount of local data, and b misclassification error on 
testing client vs. amount of local data for Sent140
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D.2: Experimental setup

We consider a synthetic classification dataset and train a linear model on it.
Dataset description We create a 10-class classification dataset in d = 20 dimensions, 

inspired by Guyon (2003). The input x for each class k is drawn from a Gaussian of 
mean �i and identity covariance in ℝ15 . The means �i ’s are the corners of a random 
polytope in ℝ15 . We add 2 features that are linear combinations of the 15 informative 
ones and 3 features that are pure noise. Overall, the dataset can be generated using the 
make_classification function of scikit-learn (Pedregosa et al., 2011) as
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We now split this dataset into a federated dataset with n = 2500 training clients and 
n� = 500 validation and n�� = 500 test clients. The data distribution qi(x, y) = qi(y)qi(x|y) 
across the clients is designed to exhibit a label shift, i.e., the distribution qi(y) over labels 
for each client is different while the class-conditional distribution qi(x|y = k) = N(�k, Id) is 
the same across clients. The class distribution qi(y) on each training client i is drawn from 
a Dirichlet distribution Dir(0.5) , while that for a validation or test client is drawn from 
Dir(0.01) . We sample 100 input-output pairs for each training, validation, and test client.

Model and per-client objective We use a linear model (with intercept) on each client 
and the multinomial logistic loss, also known as the cross entropy loss, to define the per-
client objective.

Algorithms and hyperparameters We compare Algorithm 4 with DP-FedAvg (McMa-
han et al., 2018), a version of FedAvg with differential privacy.

Both algorithms used a single full gradient step per client with a fixed learning rate of 
0.1. For each algorithm, we sample 100 clients per round and run the training for a total 
of 1000 rounds. We vary the privacy budget � ∈ {3, 5, 10, 15, 20} and tune the following 
hyperparameters for each algorithm.

For DP-FedAvg, we tune the �2 norm bound (analogous to C in Algorithm 4) and set 
the noise scale �w depending on the target privacy budget � and the norm bound C. For 
Algorithm 4, we allocate r-times the privacy budget of the weight updates to the quantile 
updates. In addition, we also tune:

• The loss upper bound B, so that all losses are truncated to [0, B],
• The number of bins b in the hierarchical histogram,
• The �2 norm bound C for the weight update.

We tune all 4 hyperparameters with a grid search and set the noise scale �w for the weight 
update, and �q∕c for the quantile update depending on the selected hyperparameters and 
the privacy budget � . The objective of the grid search was to minimize the 90th percentile 
of the misclassification errors across all validation clients.

The ranges of the hyperparameters considered are quantile privacy ratio 
r ∈ {0.1, 0.25, 0.5, 0.75} , loss upper bound B ∈ {0.7, 0.9, 1.1, 1.3, 1.5},4, number of bins 
b ∈ {16, 32, 64} , and update norm C ∈ {0.9, 1.1, 1.3, 1.5}.5

Author contributions KP and YL jointly and equally contributed to the theoretical analyses, designing, and 
running experiments. ZH and JM conceived the original idea and supervised the project. All authors dis-
cussed the theoretical and experimental results and contributed to the final manuscript.

4 The loss at convergence was around 0.7, while that at random guessing is log 10 ≈ 2.3.
5 These correspond approximately to the 0.3, 0.5, 0.7, 0.9 quantiles of the update norms of FedAvg without 
differential privacy, during the latter half of training.
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