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Abstract
Performance of trained neural network (NN) models, in terms of testing accuracy, has 
improved remarkably over the past several years, especially with the advent of deep learn-
ing. However, even the most accurate NNs can be biased toward a specific output clas-
sification due to the inherent bias in the available training datasets, which may propagate 
to the real-world implementations. This paper deals with the robustness bias, i.e., the bias 
exhibited by the trained NN by having a significantly large robustness to noise for a cer-
tain output class, as compared to the remaining output classes. The bias is shown to result 
from imbalanced datasets, i.e., the datasets where all output classes are not equally repre-
sented. Towards this, we propose the UnbiasedNets framework, which leverages K-means 
clustering and the NN’s noise tolerance to diversify the given training dataset, even from 
relatively smaller datasets. This generates balanced datasets and reduces the bias within the 
datasets themselves. To the best of our knowledge, this is the first framework catering to 
the robustness bias problem in NNs. We use real-world datasets to demonstrate the efficacy 
of the UnbiasedNets for data diversification, in case of both binary and multi-label clas-
sifiers. The results are compared to well-known tools aimed at generating balanced data-
sets, and illustrate how existing works have limited success while addressing the robustness 
bias. In contrast, UnbiasedNets provides a notable improvement over existing works, while 
even reducing the robustness bias significantly in some cases, as observed by comparing 
the NNs trained on the diversified and original datasets.
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1 Introduction

Machine learning (ML)-based systems are becoming increasingly ubiquitous in today’s 
world, with their applications ranging from small embedded devices [like health moni-
toring in smartwatches (Esteva et al., 2019)] to large safety-critical systems [like auton-
omous driving (Fink et al., 2019)]. Their success is often attributed to the Neural Net-
works (NNs) deployed in these systems, which have the ability to learn and perform 
decision-making with a high accuracy, without being explicitly programmed for their 
designated task. Typically, these NNs are trained on large datasets, with tens to hun-
dreds of thousands of input samples, using various supervised training algorithms. Test-
ing accuracy is often the most commonly (and possibly the only) used metric to analyze 
the performance of these NNs.

This spotlights two major limitations: (a) there is a notable reliance on large, labeled 
datasets, obtaining which is a significant challenge for the ML community, especially for 
new use-cases, and (b) the trained NN may experience problems like robustness bias, i.e., 
the robustness of NN to noise is not the same across all output classes, which accentuate in 
the presence of noisy real-world data.

Even when large datasets are available, they may contain a significantly large number 
of samples from one output/decision class. For instance, the MIT-BIH Arrhythmia data-
set (Moody and Mark, 2001) contains a considerably larger number of normal ECG signals 
as compared to the ECG signals indicating a specific arrhythmia. Likewise, the IMDB-
WIKI dataset (Rothe et al., 2018) comprises mostly of Caucasian faces. The NNs trained 
on such datasets are, therefore, less likely to detect arrhythmia or non-Caucasian faces, 
with high confidence—the problem aggravates under noisy input setting. However, the 
number of inputs from each output class is not the only parameter that leads to an imbal-
anced dataset.

1.1  Motivating example

Consider a NN trained on the Leukemia dataset (Golub et al., 1999)—details of the data-
set and NN are provided in Sect. 5 along with further experiments. The training dataset 
contains an unequal number of inputs from the two output classes. Figure 1 (left) shows 
the classification performance of this network under the application of varying noise. Not 
surprisingly, the trained NN is more likely to misclassify inputs from the output class with 
less number of training inputs.

The experiments were then repeated, deleting randomly selected inputs from the class 
with a larger number of inputs in the training dataset each time, hence ensuring an equal 
number of inputs from both classes in the dataset. The graphs in Fig. 1 (right) give the clas-
sification performance of these networks under the application of varying noise. As shown 
in the graphs, simply having an equal number of inputs in both classes may still lead to a 
trained network significantly misclassifying inputs from one class.

It must also be noted that the bias becomes apparent only in the presence of noise, 
since the trained NNs do not indicate misclassifications in the absence of noise. Hence, the 
robustness bias in a trained NN may go undetected before the deployment of the NN in a 
real-world application. This gravitates the need to address robustness bias and calls for the 
better description and acquisition of balanced datasets that may enable training unbiased 
NNs. However, obtaining such datasets is not a straightforward task.
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The existing works dealing with bias alleviation either aim to improve the training 
algorithms to ensure unbiased training, or manipulate training data to obtain datasets 
that favor minimal NN bias. Yet, most of these works (Gat et al., 2020; Le Bras et al., 
2020; Nam et  al., 2020) encounter the following limitations, making robustness bias 
alleviation a challenging task: 

1. Most works (Li & Vasconcelos, 2019; Li et al., 2018; Zhao et al., 2017) focus on either 
the dataset bias, i.e., the lack of generalization of the available dataset to real-world data, 
or representation bias, i.e., flaws in the dataset acquired during its collection process. 
However, they rarely focus on biases like robustness bias, which generally becomes 
evident only during NN deployment, since noisy inputs are common in practical real-
world systems.

2. A limited notion of balanced dataset is often used in literature (Bagui & Li, 2021; 
Lemaître et al., 2017), i.e., a balanced dataset is the one that contains an equal number 
of inputs from all output classes. However, as seen from our motivational example, such 
a dataset does not necessarily aid in the alleviation of robustness bias.

3. They primarily focus on large datasets (Nam et al., 2020; Kim et al., 2019; Le Bras 
et al., 2020; Gat et al., 2020; Zhang et al., 2019), which provide a large pool of training 
samples to learn the input features from as well as to handpick a subset of inputs that 
favor an unbiased NN. However, such large datasets may not always be available.

4. Some works focus on adding new input samples to the training dataset or at deeper 
network layers (Zhang et al., 2019). However, the heuristics for adding new inputs do 
not always favor a balanced dataset.

5. The addition and deletion of input samples (Bagui & Li, 2021) may also lead to overfit-
ting or reduction of the training dataset, respectively.

6. The works also often focus on visual datasets, like colored MNIST or the IMDB dataset, 
where the existence of bias is perceptually easy to detect and comprehend (Wang et al., 

Fig. 1  Networks trained on unequal (left) and equal (right) number of inputs from the classes: Label 0 and 
Label 1. All networks used the same network architecture and training hyper-parameters, and all indicate a 
higher likelihood of Label 0 being misclassified as compared to Label 1 
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2020; Zhao et al., 2017). However, the robustness bias problem may stretch beyond 
visual datasets, albeit often being difficult to (perceptually) detect in non-visual datasets.

1.2  Our novel contributions

To address the aforementioned limitations and challenges, this paper proposes the Unbi-
asedNets framework,1 which facilitates the detection and reduction (ideally elimination) 
of bias in a trained NN by addressing the bias at the root level, i.e., by reducing the bias 
within the training data, rather than relying on training algorithms to unlearn biases. Our 
framework is generic and hence can be implemented along with any training algorithm, 
using any programming language (including MATLAB, Python, C++, etc.). The novel 
contributions of the work are as follows: 

1. This work deals with robustness bias, which results from having an imbalanced dataset 
(which may in turn be a consequence of either dataset bias or representation bias or 
both), to alleviate bias from datasets where the bias may not always be apparent in the 
absence of noisy inputs.

2. We redefine the notion of balanced dataset to provide a more precise explanation of the 
extent to which the number of inputs from each output class is, or is not, essential for 
training unbiased NNs.

3. Unlike the state-of-the-art approaches, UnbiasedNets can work efficiently to diversify 
the dataset even in the absence of a large dataset using K-means clustering and the noise 
tolerance of a NN previously trained on the dataset.

4. Our novel framework can identify the practical bounds for generating synthetic input 
samples using clusters of input features obtained via K-means and the noise tolerance 
bounds of the trained network. To the best of our knowledge, UnbiasedNets is the only 
framework exploiting noise tolerance to obtain realistic bounds for synthetic inputs. We 
also make use of feature correlation from real-world inputs to ensure that the synthesized 
inputs are realistic.

5. UnbiasedNets combines synthetic input generation with redundancy minimization to 
diversify and generate potentially balanced and equally-represented datasets, with not 
necessarily an equal number of inputs from all output classes.

6. The framework is applicable in diverse application scenarios. We demonstrate this using 
UnbiasedNets on two real-world datasets, where the bias in the dataset is not always 
visually detectable, and hence may not be straightforward to address.

1.3  Paper organization

The rest of the paper is organized as follows. Section 2 gives an overview of the existing 
works for bias alleviation in NNs. Section 3 elaborates on the notions of balanced data-
sets, robustness, robustness bias, metric for bias estimation and noise tolerance, while also 
providing the relevant formalism. Section  4 then explains our novel data diversification 
framework, UnbiasedNets, to alleviate robustness bias from the training dataset. Sections 5 
and 6 show the application of UnbiasedNets on real-world datasets, providing details of 
experiments, results, and analysis. Section 7 discusses the open future directions for the 

1 https:// github. com/ Mahum 123/ Unbia sedNe ts. git

https://github.com/Mahum123/UnbiasedNets.git
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improvements in data diversification for alleviating robustness bias. Finally, Sect. 8 con-
cludes the paper.

2  Related work

This section provides an overview of the current state-of-the-art on reducing bias in NNs. 
The summary of state-of-the-art, including approach categorization, their predominant 
focus on non-visual datasets, and their comparison to our novel UnbiasedNets approach, is 
given in Table 1. The bias alleviation approaches can be broadly classified into two major 
categories: (1) unbiased training algorithms (i.e., algorithm-centric (AC) approaches), and 

Table 1  Comparison of the state-of-the-art bias alleviation approaches with our proposed UnbiasedNets 
framework

Aug., Input Augmentation;     Del., Input Deletion;    N/A, technique not applicable for scenario;     Δx
max

 , 
Noise Tolerance;      X

new
 , Synthetic Data

Recent work Small dataset Non-
visual 
dataset

Approach Dataset Aug./
Del

Leverages 
Δx

max

X
new

 validation

Alvi et al. 
(2018)

× × AC N/A × N/A

 at et al. (2020) × × AC N/A × N/A
 Kim et al. 

(2019)
× × AC N/A × N/A

 Li & Vascon-
celos (2019)

× × AC Del × N/A

 Nam et al. 
(2020)

× × AC N/A × N/A

Sanh et al. 
(2020)

× ✓ AC N/A × N/A

avani et al. 
(2020)

× × AC N/A × N/A

 hao et al. 
(2017)

× × AC N/A × N/A

Xu et al. (2021) × × AC N/A × N/A
Benz et al. 

(2021)
× × AC N/A × N/A

Zhang et al. 
(2019)

× × AC+DC Aug × ×

Chawla et al. 
(2002)

✓ ✓ DC Aug × ✓

He et al. (2008) ✓ ✓ DC Aug × ✓

Lemaître et al. 
(2017)

✓ ✓ DC Aug./Del. × ✓

Le Bras et al. 
(2020)

× ✓ DC Del N/A N/A

 Li et al. (2018) × × DC Del N/A N/A
UnbiasedNets ✓ ✓ DC Aug.+Del. ✓ ✓
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(2) bias reduction via dataset manipulation (i.e., data-centric (DC) approaches). Towards 
the end of the section, we also provide an overview of the current and on-going works tar-
geting the recently discovered problem of robustness bias.

2.1  Algorithm‑Centric (AC) approaches

Training unbiased NN via AC approaches often involves splitting the network model into 
two separate but connected networks (Alvi et al., 2018; Kim et al., 2019; Nam et al., 2020). 
The first network aims at either identifying key input features or amplifying the bias pre-
sent in the dataset. The second network, in turn, uses these features or accentuated bias 
to unlearn the bias from the network. Learning features at deeper NN layers during train-
ing for data augmentation (Zhang et al., 2019) has also been shown to aid unbiased train-
ing. In addition, knowledge of known biases in the dataset and a NN trained using stand-
ard cross-entropy loss has also been leveraged to develop a more robust NN (Sanh et al., 
2020). Other AC bias reduction approaches include the incorporation of additional con-
straints during training to guide the NN in order to avoid learning unwanted correlations in 
data (Zhao et al., 2017).

For biases specific to multi-modal datasets (like colored MNIST  (Kim et  al., 2019), 
where the dataset contains two kinds of information: the colors and the numerals), the 
use of a training algorithm based on functional entropy is shown to perform better  (Gat 
et al., 2020). A recent work (Li & Vasconcelos, 2019) also explores inputs in the dataset to 
identify the weights2 that the inputs must be encoded with before training, to successfully 
reduce the bias. The determination of invariants in inputs has also been proposed (Arjovsky 
et al., 2019) to enable unbiased training of a NN. In addition, recent work (Savani et al., 
2020) also explores algorithms where instead of training an unbiased network from scratch, 
a trained NN and dataset (not used during training) are used to fine-tune the network to be 
devoid of biases specific to a certain application.

However, as indicated earlier, these works are tailored for minimizing data and repre-
sentation biases, generally for large datasets. The biases are often explored in visual data-
sets. In contrast, NNs deployed in the real-world often also deal with non-visual inputs, 
like patient’s medical data, where the existence of a bias (even the data and representa-
tion biases) may not always be easy to detect and hence may go unnoticed. Hence, bias 
alleviation poses a challenge in cases where the detection of bias is beyond visual percep-
tion. Moreover, the exploration of robustness bias is a fairly new research direction, and 
hence, the success of these AC approaches for minimizing robustness bias remains largely 
unexplored.

2.2  Data‑centric (DC) approaches

The orthogonal direction to minimize bias is by manipulating the training dataset via DC 
approaches, to potentially eliminate the bias at its core. Among the simplest and most pop-
ular DC bias alleviation approaches are random over-sampling (ROS), i.e., random replica-
tion of inputs from the class with less number of input samples, or random under-sampling 
(RUS), i.e., random deletion of inputs from the class with a significantly larger portion of 

2 Note that the weights for encoding inputs in Li & Vasconcelos (2019) are not same as the parametric 
weights of NN layers.



2505Machine Learning (2024) 113:2499–2526 

1 3

available inputs (Bagui & Li, 2021; Leevy et al., 2018). The idea is to obtain a dataset with 
an equal number of inputs from each class. However, RUS is known to reduce the number 
of input samples available for NN to learn, while ROS may lead to overfitting the training 
data.

The synthetic minority over-sampling (SMOTE) (Chawla et al., 2002) and adaptive syn-
thetic sampling (ADASYN) (He et al., 2008) techniques provide an improvement over ROS 
by synthesizing new points in the class with less number of samples using the available 
inputs as reference for the synthesis of new input samples (Lemaître et al., 2017). However, 
the general assumption in these works is that having an equal number of inputs for each of 
the classes ensures a balanced dataset, and in turn ensures an absence of bias (Bagui & Li, 
2021; Picek et al., 2019). As such, the approaches deploy data manipulation for the out-
put class with a smaller number of inputs only. As observed in the motivating example in 
Sect. 1, this assumption provides a limited notion of balanced datasets. In addition, neither 
do these works have the means to ensure if the new inputs generated in fact belong to the 
minority class (i.e., output class with less number of inputs), nor the sophistication to ana-
lyze the number of inputs required to be added to the class to alleviate bias.

Other works explore heuristics to identify the inputs that must be removed from the 
training dataset (Le Bras et al., 2020; Li et al., 2018) for obtaining an unbiased NN. How-
ever, for most real-world applications, large labeled datasets may not always be available, 
except to a few tech giants. This leaves limited scope for tasks relying on limited dataset for 
bias alleviation.

In summary, the DC approaches again focus on alleviating representation and data bias, 
i.e., the biases pertaining to faulty data acquisition and lack of data generalizing well to 
all output classes. Alleviation of robustness bias remains an unexplored research direc-
tion in the existing works. The notion of a balanced dataset often used in these works is 
too naive. For the approaches relying on the deletion of inputs from the training dataset, 
the approaches are ideal only for large datasets to ensure sufficient inputs remain for NN 
training. For the augmentation approaches (like ROS, SMOTE and ADASYN), i.e., the 
approaches where synthetic inputs are added to the training dataset (henceforth referred to 
as data augmentation), the location for the new inputs is chosen to be in the close proxim-
ity around existing “randomly” selected inputs. The new inputs may or may not be realistic 
for the real-world input domain. The validation of these generated synthetic inputs relies 
solely on them being a part of NN training, and how well the trained NN works with the 
testing dataset.

2.2.1  Bias and the focus on visual datasets

As highlighted in Sect.  1, NNs are deployed in a diverse range of applications. These 
include networks performing classification and decision-making tasks for visual inputs (Vu 
et al., 2022; Li et al., 2021). Yet, a large portion of NN applications, for instance, bank-
ing (Asha & KR, 2021), environmental forecast (Benali et al., 2019), finance (Calvo-Pardo 
et  al., 2020) and spam filtering (Barushka and Hajek, 2018), accept non-visual inputs. 
However, most literature pertaining to bias analysis (Alvi et al., 2018; Gat et al., 2020; Kim 
et al., 2019; Nam et al., 2020; Li et al., 2018; Li & Vasconcelos, 2019; Zhang et al., 2019; 
Zhao et al., 2017) focus (often solely) on NNs working on visual datasets—this comes to 
no surprise since a bias in these datasets is visually perceptible to human analysts, who are 
inclined to perceive visual queues better than the non-visual ones (for instance, consider 
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the case of visual capture, where visual senses are observed to dominate over auditory 
senses (Welch, 1999)).

The NNs using non-visual inputs often deploy similar network architectures as those 
using visual inputs. Intuitively, these NNs are likely to be as biased as their counterparts 
used in visual applications. Yet, the difficulty in perceiving the bias in non-visual datasets 
makes their bias analysis a scarcely explored research area, as evident in the lack of exist-
ing works in the domain.

Such dominant focus on visual datasets is not unique to the study of bias but is, in fact, 
also observed in fields like visual analytics, where non-visual aspects of the system are 
transformed into visual aspects. For example, the neuron activations are presented graphi-
cally (visually) in the research on network interpretability (Becker et al., 2020) and security 
(Liu et al., 2018), which enables problem identification (detection). This in turn motivates 
deeper research/solutions.

2.3  Current and ongoing efforts

The vulnerability of NNs to robustness bias has only been recently discovered (Nanda 
et al., 2021). Hence, the efforts to resolve this particular category of bias are still limited. 
Nevertheless, a few AC approaches have been proposed within the last year to alleviate 
such bias. This includes a multi-objective training algorithm, which ensures that the stand-
ard error (which dictates the classification accuracy of the networks) and boundary error 
(since the inputs from class(es) closer to the decision boundary are expected to be more 
vulnerable under noise) (Xu et al., 2021) are minimal, thereby minimizing the bias. How-
ever, later work (Nayak et al., 2022) comes to a contrary conclusion, i.e., even the inputs 
with the same distance to the classification boundary may have different vulnerabilities to 
the noise. A re-weighting approach has also been proposed (Benz et al., 2021), which aims 
to update parameter values during training whenever the accuracy of a particular output 
class deviates too much from the average accuracy of the network.

Recent work (Benz et  al., 2021) also notes that the bias in the NNs exists due to the 
dataset (and its features) itself, rather than depending on the NN model or its optimization 
factors. Yet, to the best of our knowledge, no DC effort has been proposed to alleviate bias 
from the dataset itself. It is interesting to note that adversarial training, a popular approach 
found successful in ensuring the robustness of NN against noise (concept explained later in 
Sect. 3.2), is found to aggravate the bias (Tian et al., 2021).

3  Preliminaries

This section describes the notions and provides the relevant formalism for balanced data-
sets, robustness, robustness bias, bias estimation and noise tolerance (Nanda et al., 2021; 
Naseer et al., 2020), which form the basis of UnbiasedNets. The terminology and notations 
introduced in the section will be used throughout the rest of the paper.

3.1  Balanced datasets

Contrary to the popular notion, i.e., a balanced dataset (Bagui & Li, 2021; Lemaître et al., 
2017) consists of an equal number of inputs from all output classes, we define balanced 
dataset to be the dataset where all output classes are equally-represented.
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Definition 1 (Balanced Dataset) Given a dataset X with L output classes (i.e., 
Y1, Y2, ...,YL ), the dataset is said to be balanced/the output classes are equally represented 
iff density � of inputs from each class in the input hyperspace is (approximately) equal, i.e., 
�(Y1) ≈ �(Y2) ≈ ... ≈ �(YL) . Note that density � of input here refers to the average number 
of input samples contained within the unit hypervolume of the valid input domain for an 
output class.

This implies that a network trained on such a balanced dataset would potentially be 
equally likely to identify inputs from all the classes, without a bias (explained in Sect. 3.3).

3.2  Robustness

Robustness is the property of NN that signifies how the application of noise Δx to the 
inputs does not change what the trained NN originally learned about the inputs.

Definition 2 (Robustness) Given a trained network N ∶ X → Y  , N is said to be robust 
against the noise Δx if the application of an arbitrary noise � ≤ Δx to the input x ∈ X does 
not change network’s classification of x, i.e., ∀� ≤ Δx ∶ N(x + �) = N(x).

It must be noted that x corresponds to inputs that the network N does not originally mis-
classify, i.e., N(x) corresponds to the true output class for input x. For the purpose of this 
work, we assume the noise � to be bounded within the L ∞ space around input x, with the 
radius of Δx—this is one of the most popular noise used in NN analysis literature. Never-
theless, it is fairly straightforward to opt for any other type of (Lp-norm bounded) noise for 
the framework.

3.3  Robustness bias

Section 1 highlighted the well-studied NN biases in literature, i.e., data and representation 
bias. This paper instead deals with robustness bias (henceforth referred to as only bias) 
proposed by Nanda et al. (2021) and Joshi et al. (2022), which is a property of the dataset 
where a specific output class may or may not be robust under the application of noise. 
More specifically, it can be defined as follows:

Definition 3 (Robustness Bias) Given a dataset X with L output classes (i.e., 
Y1, Y2, ...,YL ), and DY1

,DY2
, ...,DYL

 as the of input sub-domain representing each output 
class. X is said to exhibit robustness bias iff the sub-domains DY1

,DY2
, ...,DYL

 are not equi-
distant from the decision boundary.

Naturally, the sub-domains DY1
,DY2

, ...,DYL
 may be disjoint or overlapping. However, as 

long as the sub-domains are equidistant from the decision boundary, the dataset is said to 
be free from a robustness bias. A NN trained on such a dataset is said to be unbiased, since 
intuitively, for a NN with a decision boundary equidistant from all input sub-domains, all 
output classes must be equally robust to noise.

However, given the large number of input features (forming an input hyperspace) in 
practical datasets, it is not easy to visualize the bias in the dataset itself. Hence, we define 
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the notion of biased NN, which aids in identifying the robustness bias in the dataset via 
analyzing the NN trained on the dataset:

Definition 4 (Biased Network) Given a trained network N ∶ X → Y  , N is said 
to be biased if the application of an arbitrary noise � ≤ Δx to any (correctly clas-
sified) input from class Xi ⊂ X does not change network’s output classification, 
∀� ≤ Δx, xi ∈ Xi ∶ N(xi + �) = N(xi) . However, application of the same noise to any input 
from another class Xj ⊂ X makes the network misclassify the originally correctly classified 
input from the class ∀� ≤ Δx, xj ∈ Xj ∶ N(xj + �) ≠ N(xj).

It must be noted that even though unbiasedness (i.e., the property of a trained NN to be 
unbiased) and classification accuracy may intuitively seem similar, they are not identical. 
Obtaining an accurate NN involves identifying the decision boundary that separates the 
output classes in the dataset. In contrast, obtaining an unbiased NN involves identifying a 
decision boundary that is equidistant from all the sub-domains encapsulating the different 
output classes. The resulting unbiased network, in turn, may or may not have the high-
est classification accuracy. However, all the output classes will likely be equally robust to 
noise in an unbiased network.

3.4  Metric for robustness bias

In practice, it is often impossible to obtain a completely unbiased NN. Hence, a metric is 
required to quantify and analyze the bias in the network. Let Ri be the ratio of misclassi-
fied to correctly classified inputs from class i, which defines the average tendency of inputs 
from output class i to be misclassified. We define the metric to estimate robustness bias 
( BR ) as follows:

where L is the set of all output classes. Having a BR of zero indicates an equal Ri across all 
output classes, and therefore an unbiased NN. Consequently, larger BR implies higher bias. 
It must also be noted that the (absolute) difference in ratios Ri and Rj is generally different 
across the different pairs of output classes. In order not to reduce (nullify) the impact of 
the differences (and hence that of the bias in the network), the maximum difference, rather 
than the average, is used to estimate the bias in NN.

Contrary to the formal notion of robustness bias, as provided in Definition 3, BR uses 
the inputs to quantify bias rather than the decision boundary of the NN. This is a viable 
approach since the exact decision boundary of the NN is often hard to visualize for the 
multi-dimensional input space. The metric BR , instead, makes use of the measurable/quan-
tifiable entity, i.e., the input classification, to estimate the bias. As stated earlier, the ratio 
Ri provides the tendency of the boundary to misclassify the inputs from class i. This is 
compared to the average tendency of misclassification of inputs from the other network 
classes Rj—this is analogous to comparing the distance of inputs to the decision boundary 
for different classes. Hence, if the ratio Ri for all classes is equal (analogously all classes 
are equidistant from the decision boundary), BR computes to zero. The NN is then ought to 
be unbiased.

BR = max

�

abs

�

Ri −

∑

j∈L⧵i Rj

∣ L ∣ −1

��
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3.5  Noise tolerance

Similar to robustness, noise tolerance also checks the classification performance of a NN 
for inputs under the application of noise. However, it is a stronger property than robustness 
(i.e., noise tolerance to a specific noise implies robustness to the noise as well) such that it 
provides the bounds within which the addition of noise does not change the classification 
of the inputs by a trained NN.

Definition 5 (Noise Tolerance) Given a trained network N ∶ X → Y  , noise tolerance is 
defined as the maximum noise Δxmax , which can be applied to a correctly classified input 
x ∈ X such that N does not misclassify the input. Hence, for any arbitrary noise � ≤ Δxmax , 
the application of noise to an input x ∈ X does not change network’s classification of x, i.e., 
∀� ≤ Δxmax ∶ N(x + �) = N(x).

Alternatively, noise tolerance can be viewed as the largest �-ball ( l∞ norm ball) around 
the inputs, such that � = Δxmax and any input within this ball is correctly classified by the 
NN. Consequently, this knowledge can in turn be used to estimate the region around seed 
inputs where the realistic synthetic inputs may reside and still be correctly identified by a 
trained NN.

4  UnbiasedNets: framework for bias alleviation

We categorize UnbiasedNets into two major tasks: bias detection using a trained NN to 
identify the existence of robustness bias followed by bias alleviation to diversify the train-
ing dataset to eliminate the bias at its core. Figure 2 provides an overview of our proposed 
methodology.

Fig. 2  Overview of the UnbiasedNets framework incorporating the proposed methodology starting with a 
trained NN undergoing bias detection, followed by bias alleviation, ultimately leading to a diversified data-
set and potentially unbiased trained NN
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4.1  Bias detection

The first step here is the application of noise � , bounded by the small noise bounds Δx to 
the inputs present in the testing dataset x ∈ X (shown as Block 0 in Fig. 2) to obtain the 
noisy inputs xn.

The noisy inputs are then supplied to the trained NN, and their output classifications are 
compared to the classifications of inputs in the absence of noise. For the network to be 
robust (see Definition 2), the NN’s classification must not change under the influence of 
noise. The noise is then iteratively increased, beyond the maximum noise at which the NN 
does not misclassify the inputs, i.e., beyond the NN’s noise tolerance (see Definition 5). 
Such iterative increment of noise provides the noise tolerance bounds of the network.

The application of noise larger than the noise tolerance bounds of the NN entails that 
the NN misclassifies some or all the noisy inputs. These misclassifying noise patterns (i.e., 
the counterexamples) act as inputs for the counterexample analysis. These noise patterns 
can be collected either using a formal framework [such as the ones based on model check-
ing used by Naseer et al. (2020) and Bhatti et al. (2022)] or an empirical approach [like the 
Fast Gradient Sign Method (FGSM) attack (Goodfellow et al., 2015)].

During counterexample analysis, the collected noise patterns, and in turn the misclassi-
fied inputs, are used to compute the BR of the network to detect the presence and severity of 
robustness bias in the trained NN. A non-zero BR implies a robustness bias in the network. 
Additionally, the number of misclassified inputs from each class is also used to determine 
the number of synthetic inputs required in the training dataset (elaborated in Sect. 4.2.4) to 
alleviate the bias.

4.2  Bias alleviation

Using the noise tolerance available from the bias detection and the feature extremum of 
the inputs from the training dataset, we provide the step-by-step bias alleviation methodol-
ogy. The aim of the methodology is to identify the valid input domain for the generation 
of synthetic data and provide a diversified training dataset for the training of a potentially 
unbiased NN. The details of each step in the methodology are as follows.

4.2.1  Bounds determination

For each input feature in every output class, the feature extremum, i.e., the maximum and 
minimum value of the feature as per the available training data, is first identified (as shown 
in Block 1 of Fig.  2). As discussed earlier, the inputs with noise, less than the allowed 
noise tolerance, are still likely to be correctly classified by a trained NN. Hence, the feature 
bounds are relaxed using Δxmax , to provide a larger input space for the diversified inputs 
(also shown in Fig. 3a), as follows:

Theorem  1 (Bound Relaxation using Noise Tolerance) For input domain X, let [xi, xi]  
represent the bounds of inputs belonging to Xi (where Xi ⊂ X ) and Δxmax be the noise 

(1)xn = x + � s.t. � ≤ Δx
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tolerance of the network. From Definition 4, we know that the application of noise within 
the tolerance of the network does not change the output classification. Hence, more realis-
tic input bounds [x�

i
, x�

i
] can be obtained using the laws of interval arithmetic as:

It must be noted that due to the scalability of underlying bias detection framework [for 
instance (Naseer et al., 2020)], where the application of large noise to NN inputs may lead 
to very large formal models, not suitable for analysis, noise tolerance may not always be 
available for bound relaxation. A similar challenge is encountered for NNs with a very low 
noise tolerance. Consider the example of a NN trained on an image dataset, where the addi-
tion of noise leading to a magnitude change of even 1.0 in the pixel value of an image may 
still lead to misclassification (Ma et al., 2021). This indicates a very low noise tolerance. 
Under these conditions, UnbiasedNets assumes the noise tolerance to be zero, and proceeds 
with feature extremum as the feature bounds obtained during bound determination.

4.2.2  Bound tightening

Bounds obtained from the previous step identify the regions in the input space where real 
inputs from the training dataset exist, and hence provide an estimate for the generation 
of valid synthetic data. However, it is possible for the feature bounds for different output 
classes to overlap, as shown in Fig. 3b. The overlap can be either partial or complete. This 
provides a means for tightening the feature bounds (shown as Block 2 in Fig. 2), hence 
leading to smaller, yet realistic, input space for the generation of synthetic data. This in 
turn ensures that a lesser number of iterations are required for realistic synthetic input gen-
eration in the later steps of the framework. The generation of tighter feature bounds in the 
case of partial feature can be seen as follows:

Theorem 2 (Bound Tightening in case of Partial Overlap)  Given the bounds of input fea-
ture a  for inputs belonging to class i  and j  to be 

[

xa
i
, xa

i

]

 and 
[

xa
j
, xa

j

]

 ,  respectively, the 
bounds can be tightened to 

[

xa
i
, xa

j

]

 and 
[

xa
i
, xa

j

]

  provided that xa
i
< xa

j
  and xa

i
< xa

j
  (i.e., the 

bounds overlap partially). Then, any input belonging to the new bounds also belongs to the 
original feature bounds as well.

x�
i
= min

((

xi − Δxmax
)

,
(

xi + Δxmax
)

,
(

xi − Δxmax
)

,
(

xi + Δxmax)),

x�
i
= max

((

xi − Δxmax
)

,
(

xi + Δxmax
)

,
(

xi − Δxmax
)

,
(

xi + Δxmax
))

Fig. 3  a Realistic bounds determination for individual feature bounds using available training inputs, 
K-means clustering and noise tolerance, b Bound tightening to eliminate/reduce bound overlap for synthetic 
input generation
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However, the same cannot be generalized for complete overlap since the bounds of one 
label form a subset of the other. As such, tightening is possible for a single label only.

Theorem 3 (Bound Tightening in case of Complete Overlap)   Given the bounds of input 
feature a for inputs belonging to class  i  and j  to be 

[

xa
i
, xa

i

]

  and 
[

xa
j
, xa

j

]

 ,  respectively, the 
bounds for feature a of class i, Xa

i
 ,  can be tightened to 

[

xa
i
, xa

j

]

  and 
[

xa
j
, xa

i

]

  provided that 
xa
i
< xa

j
  and xa

j
< xa

i
 .  Then, any input belonging to the new bounds for Xa

i
  also belongs to 

the original feature bounds as well.

Motivating Example Consider an arbitrary feature a with valid input values in the range 
[0,  10]. Let the inputs from class i have the bounds [2,  8] and those from class j have 
the bounds [7, 10], for the feature a. Without bound tightening, any input 7 < xa < 8 can 
belong to either class i or j (but not both). On the contrary, bound tightening reduces the 
bounds of the feature a for classes i and j to [0, 7] and [8, 10], respectively. This reduces 
the valid input domain for feature a such that it is impossible to pick a sample for feature a 
that may belong to more than a single output class, hence simplifying the task of generat-
ing realistic synthetic input samples.

4.2.3  Feature clustering

The previous steps in the framework make use of the entire training dataset to obtain real-
istic feature bounds. But intuitively, real-world inputs often contain outliers that may be 
part of the training dataset, which do not occur frequently in practical case scenarios. To 
subsume this characteristic into the synthetic inputs generated, further bound tightening is 
carried out (shown as Block 3 in Fig. 2) on the top-k input features, i.e., the k features with 
the smallest distance from cluster centroid to the farthest input.

4.2.4  Synthetic input generation

Using the feature bounds obtained from the previous step, the random input values are 
chosen within the available bounds (shown as Block 4 in Fig. 2). The number of inputs 
to be added to each output class �i is determined on the basis of the ratio of percentage of 
misclassified inputs from class i (i.e., �i ) and the percentage of misclassified inputs from 
the class with minimum misclassifications (i.e., min(�L) ) using counterexamples recorded 
during the bias detection. Hence, the class with higher �i gets the most synthetic inputs 
added to the dataset.

Algorithm  1 outlines the entire synthetic data generation process, starting from the 
training dataset and noise tolerance bounds. Function classSegment (Line:  3) splits 
the dataset into non-overlapping subsets of inputs belonging to each class, globalExt 
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(Line: 5) provides feature bounds using feature extremum, nonOverlapping (Line: 8) 
performs bound tightening on basis of Theorems 2 and 3, minDist (Line: 10) identifies 
the top-k features based on k-means clustering, boundsFinal (Line: 12) performs fur-
ther bound tightening based on the top features, and randInp (Line: 15) finally generates 
the synthetic inputs for each output class.

It must be noted that the above input generation assumes an implicit hyperrectangular 
distribution of the input domain. This means, each input feature may take any input value 
(from within the defined input bounds), with equal likelihood. However, it is also possible 
for the input features to have non-rectangular distributions. Assuming these distributions to 
be known a priori, the random input generation could be modified to select input values, 
from within the input bounds, according to their probability of occurrence in their exact 
input distributions, i.e., with the more probable values having higher likelihood of selec-
tion and vice versa.

4.2.5  Redundancy minimization

Oversampling may lead an NN to overfit to the training samples. Moreover, the existence 
of similar inputs, after the addition of synthetic inputs, does not add to the diversity of 
the dataset. Existing works also indicate that training the NNs on smaller datasets—for 
instance, those obtained by eliminating input instances leveraging different distance matri-
ces—may reduce the timing overhead for training while providing comparable classifi-
cation accuracy (Fuangkhon, 2022; Kotsiantis et al., 2006; Wang et al., 2009). (Also see 
Appendix A for case studies indicating how redundancy minimization using K-means dele-
tion reduces the bias of the actual NNs).

Hence, x% closely resembling inputs from each class are removed to minimize the 
redundancy in the diversified training dataset (shown as Block 5 in Fig. 2). This is done 
by generating 1

x
 clusters for each output class and then retaining a single input from each 
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cluster. The result is a dataset with input samples covering diverse input space, without 
densely populating any specific region of the input space (as realized in Fig. 4).

4.2.6  Dataset validation

Up until the previous step, UnbiasedNets used real-world inputs to identify valid input 
space within which the inputs exist, used knowledge of the percentage of misclassified 
inputs from each output class to identify the number of synthetic inputs to generate, and 
minimized the redundancy in the generated input samples to obtain a diversified dataset. 
However, features in the real-world data may be correlated, and the synthetic input fea-
tures, despite lying in the valid input domain, may not follow the correlation of real-world 
data. Hence, this step aims to validate the synthetic inputs by comparing their feature cor-
relation with that of the original training data. If the percentage difference between the cor-
relation coefficients is within t% , the new inputs are deemed suitable for training a poten-
tially unbiased NN. Otherwise, the process of synthetic data generation is repeated until 
the feature correlation of the synthetic inputs resembles that of the original training dataset 
(shown as Block 6 in Fig. 2).

The choice of t is made on the basis of the percentage difference between the correla-
tion coefficients of training and testing datasets. However, if this difference is too large, 
the features may simply be independent, or obtaining appropriate correlations may require 
some input pre-processing (Zhao et al., 2006). The use of only simple Pearson correlation 
coefficient, on such raw data, may not be an appropriate statistical measure to ensure the 
synthetic inputs to be realistic here. (Check Appendix B for more insights into this.)

5  Experiments

This section describes our experimental setup, and details of NNs and datasets used in our 
experiments.

5.1  Experimental setup

All experiments were carried out on CentOS-7 system running on a 3.1GHz 6 core Intel 
i5-8600. Our UnbiasedNets framework was implemented on MATLAB. The NN training 
was carried out using Keras.

Fig. 4  Redundancy minimization by 50% in a two-dimensional input space
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However, the setup did not make use of any special libraries and, hence, can be easily 
re-implemented using any programming language(s). Bias detection (and counterexam-
ple generation) was carried out using SMV models with applied noise in the range of 
1–40% of the actual input values, using a timeout of 5 minutes for each input.

5.2  Datasets and neural network architecture

We experimented on the Leukemia dataset (Golub et al., 1999), which is composed of 
the genetic attributes of Leukemia patients classified between Acute Lymphoblast Leu-
kemia (ALL) and Acute Myeloid Leukemia (AML). The training dataset consists of 38 
input samples (with 27 and 11 inputs indicating ALL and AML, respectively), while 
the testing dataset contains 34 inputs (with 20 and 14 ALL and AML inputs, respec-
tively). We trained a single hidden layer (20 neurons), fully-connected ReLU-based NN, 
using the top-5 most essential genetic features from the dataset extracted using Mini-
mum Redundancy and Maximum Relevance (mRMR) feature selection technique (Khan 
et al., 2018). A learning rate of 0.5 for 40 epochs followed by another 40 epochs with a 
learning rate of 0.2 were used during training.

We also experimented on the Iris dataset (Dua & Graff, 2017; Fisher, 1936), which is 
a multi-label dataset, with characteristics of three iris plant categories as input features. 
The dataset has an equal number of inputs from all output classes. We split the dataset 
into training and testing datasets, with 120 and 30 inputs, respectively, while ensuring 
an equal number of inputs from all classes in each dataset. A fully-connected ReLU-
based two-hidden layer (15 neurons each) NN was trained with a learning rate of 0.001 
for 80 epochs, using a training to validation split of 4:1.

Since UnbiasedNets is a data-centric bias alleviation framework, we compare the 
framework to well-acknowledged open-source state-of-the-art data-centric approaches: 
RUS, ROS, SMOTE (Chawla et al., 2002) and ADASYN (He et al., 2008). The Python 
toolbox imbalanced-learn implements all of the aforementioned techniques, 
except RUS, and was used for the generation of testing datasets. Since these approaches 
require the number of inputs to be different in each class, 50% of the inputs from the 
Iris dataset were randomly selected to create a sub-dataset with an unequal number of 
inputs for the classes. RUS was implemented on MATLAB, removing inputs from class 
with more inputs to ensure both classes have the same number of inputs in the case 
of the Leukemia dataset and removing 25% samples from each class in the case of the 
Iris dataset. To avoid overfitting during retraining of NNs using augmented datasets, 
the number of training epochs was reduced proportionally to the increase in the size of 
datasets.

All NNs considered in the experiments were trained to the training and testing accu-
racies of over 90% . In addition, the experiments for each bias alleviation approach were 
repeated 10 times to ensure conformity.

6  Results and analysis

This section elaborates on the empirical results obtained from our experiments followed by 
comparison and analysis of UnbiasedNets to the data-centric bias alleviation approaches.
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6.1  Observations

As the number of output classes increases, ensuring an unbiased NN becomes a more 
challenging task. This was clearly observed in our experiments (Table 2), wherein the 
multi-label classifiers had a higher bias and at the same time, their bias reduction was 
substantially less effective in all bias alleviation approaches.

As discussed in Sect. 3, lower BR indicates that the difference in the ratio of misclas-
sified to correctly classified inputs is low, implying that the NN is less biased towards 
any output class. As summarized in Table  2, our UnbiasedNets framework outper-
formed all the DC bias alleviation techniques while obtaining optimum BR values for 
both binary and multi-label datasets. Moreover, in the case of the Iris dataset, using 
classical data-centric approaches to generate dataset with an equal number of inputs 
from each class seems to exacerbate the robustness bias. Although UnbiasedNets may 
not always reduce the robustness bias, the data diversification ensures that the dataset 
remains balanced.

Table 2  Comparison of B
R
 

values (average ± standard 
deviation) obtained for the 
NNs trained on original and 
diversified datasets, using 
open-source state-of-the-art 
approaches and UnbiasedNets 

The bias of the network trained on original dataset is given in bold, 
and that of the network trained diversified dataset is given in bold ital-
ics.

Approach Robustness bias ( B
R
) of Networks trained 

on:

Leukemia dataset Iris dataset

Original 0.2228 0.4732
RUS 0.1710 ± 0.07 0.5042 ± 0.11
ROS 0.2213 ± 0.07 0.8059 ± 0.36
SMOTE 0.1452 ± 0.08 0.7709 ± 0.72
ADASYN 0.2434 ± 0.06 ADASYN not 

suited for 
dataset

UnbiasedNets 0.1236 ± 0.05 0.4906 ± 0.15

Fig. 5  Variation in B
R
 results for NNs trained on RUS, SMOTE, ADASYN, ROS, and the diversified Unbi-

asedNets datasets
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This success of biased can also be seen in Fig. 5, which shows the variation in BR 
values over the repeated experiments. It is clearly evident that the individual experi-
ments leading to a decrease in average robustness bias are far more compared to vice 
versa. Hence, we advocate executing several instances of experiments in order to obtain 
dataset instances that offer the best bias alleviation.

Additionally, it can be seen from the box plots that NNs trained using the UnbiasedNets 
datasets demonstrate considerably low interquartile ranges and the lowest average BR val-
ues. Even though RUS illustrates competitive BR values, the use of RUS is not appropriate 
for small datasets, since the approach involves the deletion of real input samples and may 
hence diminish the learning capability of the NN. The remaining approaches, i.e., ROS, 
SMOTE, and ADASYN, present a large variation in BR results, deeming the approaches 
less effective for alleviation of robustness bias.

6.2  Analysis

Our work focuses on robustness bias, which is exhibited by a trained NN in the presence of 
inputs having higher robustness to noise for certain output classes as compared to others. 
From our experiments, we confirm the hypothesis that having an equal number of inputs 
(as in the case of Iris dataset) is in fact insufficient to ensure an unbiased network.

In the case of the datasets where the number of inputs in each class is different, the 
known approaches like RUS, ROS, SMOTE, and ADASYN may reduce the bias. But for 
most datasets, they may be inadequate for robustness bias alleviation mainly for two rea-
sons: (1) they rely on the naive definition of balanced datasets and only ensure the num-
ber of inputs for each class is equal, which overlooks the requirement of each class to be 
equally-represented (concept explained in Sect. 3.1) in the input, and (2) during data aug-
mentation, new inputs are only added in between the existing inputs, which neither diver-
sifies the dataset sufficiently nor ensures that the new inputs are valid candidates for the 
augmented dataset. UnbiasedNets, on other hand, uses counterexample analysis from the 
bias detection stage to obtain the required number of inputs in each class for a potentially 
equally-represented dataset. It also uses noise tolerance, which allows us to diversify the 
data beyond the bounds of the existing training dataset, which is subsequently validated by 
leveraging feature correlations, to alleviate bias in NN.

In the case of the Iris dataset, ROS and SMOTE were observed to significantly worsen 
robustness bias. This may be partially due to the deletion of inputs from the dataset to cre-
ate an unequal number of inputs in the classes, which reduces the data available for NN 
training. However, RUS retained the BR value close to the original dataset, even though the 
approach also employs input deletion. This suggests that the data augmentation by ROS 
and SMOTE may actually contribute to an exacerbation of bias rather than alleviation. In 
the case of UnbiasedNets, even though the improvement in bias is often small, the results 
clearly suggest that diversifying the training dataset by adding realistic synthetic inputs and 
reducing redundancy in dataset is a potential direction to alleviate bias in NNs, unlike the 
other approaches.
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7  Discussion

UnbiasedNets aims to diversify the dataset so as to (potentially) achieve a balanced dataset. 
While the diversification goal for obtaining a completely unbiased network may not always 
be achieved, UnbiasedNets rarely aggravates the bias due to its precise perception of bal-
anced datasets, unlike existing DC techniques. This section discusses the various aspects of 
NNs, which contribute to the challenge of data diversification and ultimately the persisting 
bias in trained networks.

7.1  Input resemblance

As seen from Table 2, the greater the number of output classes, the higher the robustness 
bias in the NN. This implies that the higher the number of output classes, the more likely 
is the dataset imbalanced, and the more unlikely it is to obtain a trained NN that is equally 
robust for all output classes. A likely explanation for this could in fact be a close resem-
blance of inputs from the different classes, for datasets with a higher number of output 
classes.

For instance, consider the case of hand-written digits (from the MNIST dataset), which 
comprises of 10 output classes. As shown in Fig.  6, it is possible for inputs from some 
classes to closely resemble inputs from other classes—for example, digit 0 may resem-
ble a 6, and digit 2 may resemble a 3. With inputs having likely resemblance to multiple 
classes, it is challenging to generate realistic synthetic inputs, and hence obtain successful 
data diversification for reducing the bias.

A more careful study of the example provided above also reveals that the difference 
between the closely resembling inputs blur when their semantic distance is smaller (Kenett, 
2019), as shown in Fig. 6. Yet, the syntactic rules for output classification stay intact even 
for these closely resembling inputs. For instance, a single loop forms the digit 0, while an 
arc of a length comparable to half the circumference of the loop is required in addition to 
the loop to syntactically define the digit 6. Hence, the addition of such syntactic rules for 
the generation of synthetic inputs [similar to the approach taken in neuro-symbolic learn-
ing (Sarker et al., 2021)] may improve the data diversification.

Fig. 6  Inputs from one output class may resemble inputs from other classes, as observed in the MNIST 
dataset
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7.2  Curse of dimensionality

Another challenge to data diversification is the large number of input neurons comprising 
the NN inputs—a challenge often referred to as the “curse of dimensionality" in the NN 
analysis literature (Wu et al., 2020). This implies that as the number of input neurons for 
the NN increase, the computational requirements for its analysis increase exponentially.

To understand this from the perspective of data diversification, let us consider the exam-
ple of an image dataset. Data diversification determines input feature bounds directly from 
the raw input data to generate inputs such that the synthesized inputs x belong to the valid 
input D , i.e., x ∈ D . However, various transformations, like affine, homographic and pho-
tometric transforms associated with image inputs may tremendously change the inputs, 
while still keeping the inputs realistic (Pei et al., 2017). Hence, for a practical image data-
set, inputs belonging to even a single output class will have individual inputs that have 
undergone different transformations. As a result, the bounds of each input feature obtained 
from the inputs, for such a dataset, will be very large. This hinders the generation of syn-
thetic data using these bounds, in turn making the data diversification halt at the data vali-
dation step since the search input space is too large for the randomly generated inputs to be 
realistic. (See Appendix B for details on the experimental analysis carried out to test the 
stated hypothesis on a real-world image dataset, MNIST.)

Towards this end, appropriate input pre-processing and the use of feature correlation 
knowledge to determine the bounds of the correlated input features (rather than raw input 
features) could potentially extend the applicability of UnbiasedNets framework to a larger 
variety of datasets.

8  Conclusion

The overall performance of Neural Networks (NNs), particularly those relying on super-
vised training algorithms, is largely dependent on the training data available. However, the 
data used to train NNs may often be biased towards specific output class(es), which may 
propagate as robustness bias in the trained NN. But, unlike checking the testing accuracy 
of the trained NN, determining the bias in a NN is not a straightforward task. Existing 
works often rely on large datasets and aim at addressing biases by ensuring an equal num-
ber of inputs from each output class. However, as shown by our detailed experiments, such 
approaches are not always successful. This paper proposes a novel bias alleviation frame-
work UnbiasedNets, which initially detects and quantifies the extent of bias in a trained NN 
and then uses a methodological approach to diversify the training datasets by leveraging 
the NN’s noise tolerance and K-means clustering. To the best of our knowledge, this is the 
first framework specifically addressing the robustness bias problem. We show the efficacy 
of UnbiasedNets, using both binary and multi-label classifiers in our experiments, and also 
demonstrate how the existing bias alleviation may rather exacerbate the bias instead of alle-
viating it. We also discuss the challenges in robustness bias alleviation in certain datasets, 
and elaborate on the potential future research direction for addressing the robustness bias 
problem in trained NNs.
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Appendix A: Ablation studies

UnbiasedNets provide an overall framework for data diversification, leveraging K-means 
clustering and the noise tolerance of the trained NNs. As elaborated in Sect. 4, the method-
ology involves the perceptive addition of synthetic inputs to the existing dataset and conse-
quently, minimizing the redundancy in the dataset using input deletion based on K-means 
clustering. This section provides ablation studies for both our novel synthetic input gen-
eration and deletion (i.e., redundancy minimization), to show the individual effectiveness 
of each component of the UnbiasedNets. The studies make use of the NN trained on the 
Leukemia dataset (described in detail in Sect.  5.2). This is followed by a discussion to 
highlight the strengths and weaknesses of the components, motivating the sequential use of 
components, as adapted in our framework.

A.1 Synthetic input generation

Here, the feature bounds are determined for individual input features using the bounds 
from the training dataset and the noise tolerance of the trained NN for synthetic input gen-
eration. These details of the process are elaborated in Sects. 4.2.1–4.2.4 and Algorithm 1. 
Synthetic inputs are generated for genetic attributes of AML leukemia (i.e., the output class 
with less number of samples in the training dataset). The updated dataset is validated (as 
elaborated in Sect. 4.2.6) to ensure realistic input generation. Consequently, to avoid over-
fitting during training using this updated dataset, the number of training epochs is reduced 
to 56, using the learning rates of 0.5 and 0.2 for 28 epochs each, respectively.

A.2 Input deletion

In this study, the inputs are deleted from the output class with more input samples in the 
training dataset, as described in Sect.  4.2.5. The objective here is to leverage K-means 
clustering to reduce the redundancy in the training dataset, thereby potentially obtaining 
a balanced dataset for training. Again, the number of epochs used for training is updated 
to avoid overfitting, i.e., 69 epochs are used each with the learning rates of 0.5 and 0.2, 
respectively, during training.

Fig. 7  UnbiasedNets, along with both its constituent components, i.e., synthetic input generation and input 
deletion, successfully diversifies the training dataset. This consequently reduces the bias in trained NN, as 
indicated by the lower B

R
 values
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A.3 Results and discussion

The experiments based on studies provided earlier in the section were repeated 10 times to 
ensure conformity. The resulting BR from the experiments are summarized in Fig. 7. It is 
clearly evident that both components of UnbiasedNets, i.e., synthetic input generation and 
input deletion, aid in the reduction of bias in the trained network.

Additionally, input deletion appears to provide the best overall reduction in the bias of 
the trained NN. However, it must be noted that the learning capability of NNs is data-
driven, i.e., the more the training data available, the more likely is the trained NNs to per-
form well in real-world applications (Mayer et al., 2016; Xu et al., 2018). Hence, to ensure 
optimal classification performance and generalization capabilities for trained NNs, the use 
of input deletion, standalone, is counter-intuitive.

Bias reduction using synthetic input generation, on the other hand, appears only slightly 
better than that using UnbiasedNets. However, since the selection of synthetic input sam-
ples is made using the existing data samples, it is possible for the new inputs to closely 
resemble the existing samples. Hence, not all synthetic inputs may add to the diversity of 
data.

UnbiasedNets leverages the strengths of both synthetic input generation (by providing 
a larger training dataset and potentially adding diversity to the data) and input deletion 
(by removing closely resembling input samples), to provide an overall data diversification 
framework proposed in Sect. 4. Hence, the framework not only diversifies the training data-
set, but also reduces the bias in the trained NN (albeit not as significantly as its individual 
components), as observed in Fig. 7.

Appendix B: Robustness bias alleviation for image datasets

To test the hypothesis (given in Sect. 7) that input feature bounds obtained directly from 
the raw input data are often too large for realistic synthetic input generation, we consider 
the problem of diversifying the MNIST (image) dataset. Details of the experiment, results, 
and analysis are as follows:

Experimental setup

We trained a LeNet-5 model on the MNIST dataset, which comprises of 60,000 training 
and 10,000 testing inputs, using Keras. Training and testing accuracies of 99.23% and 
98.78% respectively, were achieved in 50 epochs using a batch size of 1024. The FGSM 
attack was implemented once for all inputs of the testing dataset using Adversarial Robust-
ness Toolbox (ART) (Nicolae et al., 2018). The adversarial noises were recorded for the 
counterexample analysis (as shown earlier in Fig. 2) and ultimately bias detection.

Results and analysis

The number of inputs from each class in the MNIST testing dataset varies only slightly, as 
depicted by Fig. 8a. Yet, as highlighted in Sect. 6, the larger the number of output classes, 
the higher the chances of large robustness bias in the trained network, despite having an 
equal number of inputs from each class. This was observed in our neural network trained 
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on the MNIST dataset (having 10 output classes), which achieved a robustness bias BR of 
0.84, as shown in Fig. 8b.

Moreover, the percentage difference between the correlation coefficients of training and 
testing datasets in MNIST is in the factor of 104 . This is often evident in datasets like imag-
ing datasets, which involve significant affine, homographic and photometric transforma-
tions leading to significantly different feature correlations in training and testing datasets. 
As hinted in Sect. 4.2.6, this suggests that the input features are either independent or the 
input requires some pre-processing to obtain appropriate feature correlation.

In the case of image inputs, the input features are already known to have spatial correla-
tion (Berryman, 1985), albeit its determination is a non-trivial problem, particularly using 
only raw inputs (Zhao et al., 2006). As expected, the resulting input feature bounds for the 
dataset are too large to enable the generation of realistic synthetic inputs to allow diversifi-
cation. Hence, the use of appropriate input pre-processing, more sophisticated feature cor-
relation measures (Zhao et al., 2006) and the inclusion of the correlated feature correlation 
knowledge during the bound determination process can potentially allow robustness bias 
alleviation for a wider range of machine learning datasets.
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