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Abstract

Automated Machine Learning (AutoML) has been used successfully in settings where
the learning task is assumed to be static. In many real-world scenarios, however, the data
distribution will evolve over time, and it is yet to be shown whether AutoML techniques
can effectively design online pipelines in dynamic environments. This study aims to auto-
mate pipeline design for online learning while continuously adapting to data drift. For this
purpose, we design an adaptive Online Automated Machine Learning (OAML) system,
searching the complete pipeline configuration space of online learners, including preproc-
essing algorithms and ensembling techniques. This system combines the inherent adapta-
tion capabilities of online learners with fast automated pipeline (re)optimization. Focusing
on optimization techniques that can adapt to evolving objectives, we evaluate asynchronous
genetic programming and asynchronous successive halving to optimize these pipelines
continually. We experiment on real and artificial data streams with varying types of con-
cept drift to test the performance and adaptation capabilities of the proposed system. The
results confirm the utility of OAML over popular online learning algorithms and under-
score the benefits of continuous pipeline redesign in the presence of data drift.
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1 Introduction

Machine learning has moved beyond static environments with the rise of streaming data
sources in every corner of life. This new era of data also introduced new challenges that
created a need to redefine old solutions. Online or stream learning addresses the research
questions arising from this transformation (Gomes et al., 2019). A more dynamic envi-
ronment naturally entails change, time constraints, and uncertainty. One of the main chal-
lenges of online learning is successful and timely adaptation to a change in data-generating
dynamics, known as concept drift (Gama et al., 2014). Machine learning algorithms are
usually also bounded by limited memory and can only do a single pass over the data sam-
ples in pursuit of this goal. Hence, online algorithms have emerged that cope with all these
challenges. However, these algorithms also come with hyperparameters that need to be
tuned to the task at hand and, since these tasks are dynamic in nature, they may need to be
retuned when concept drift occurs. Recent studies focus on online hyperparameter tuning
and algorithm selection (Veloso et al., 2018; Carnein et al., 2019). This also extends to the
data preprocessing techniques that need to be selected, tuned, and continuously adapted.
The rising interest in automated algorithm adaptation to underlying changes in the data
highlights the importance of updating both the model parameters and hyperparameters and
the need for a flexibile strategy to do so (Bakirov et al., 2021).

Automated machine learning (AutoML) has demonstrated its benefits in hyperparam-
eter tuning and algorithm selection in several machine learning scenarios (Thornton et al.,
2013; Feurer et al., 2015), maturing into a field with many alterations for batch data and
extensive comparative studies (Gijsbers et al., 2019). Some of the initial attempts in car-
rying these capabilities into the online world make use of well-known AutoML libraries,
adapted to data stream settings by re-optimizing pipelines as needed (Madrid et al., 2019;
Celik & Vanschoren, 2021). Separately, initial steps are taken to design AutoML systems
that automatically configure online learning algorithms (Wu et al., 2021). However, the
latter still lack fundamental AutoML features such as exploring a large space of learning
algorithms and including preprocessing steps in pipelines.

In this paper, we aim to combine the power of AutoML approaches to operate over a
wide gamut of pipeline configurations with the intrinsic adaptability of online learning
algorithms. We design a search space centered on online learning algorithms, ensembles,
and preprocessors. The search spans pipelines with one or more steps, focusing on algo-
rithm selection and hyperparameter optimization simultaneously. Available optimization
algorithms include but are not limited to asynchronous evolutionary algorithm and asyn-
chronous successive halving, due to their ability to adapt to evolving objectives (Celik &
Vanschoren, 2021). Our methods are integrated into a modular AutoML system (Gijsbers
and Vanschoren, 2021), thus allowing further extensions of the search space, optimizers,
and objective functions. Moreover, to ensure fast adaptation to concept drift, our system
introduces novel components such as backup ensembles and model stores. This Online
AutoML framework (OAML) is, to the best of our knowledge, the first to propose a flexible
and practical AutoML system for adaptive online learning pipelines.

We evaluate our system on a range of concept drift data with different concept drift
characteristics, and compare against popular adaptive learners. Our findings indicate that
optimizing complete pipelines works best for fast adaptation to concept drift and that the
system effectively leverages intermediate pipeline evaluations and updates.
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The remainder of the paper is organized as follows. Section 2 formulates our core prob-
lem and its intrinsic challenges. Following that, Sect. 3 provides the necessary background
on AutoML and Online Adaptive Learning. Section 4 introduces existing approaches with
a similar goal to ours. Our proposed method, OAML, is detailed in Sect. 5. Section 6
describes the design of our empirical evaluation, and we present and analyze the results in
Sect. 7. Section 8 concludes.

2 Problem definition

Finding the optimal configuration of machine learning pipelines is one of the main goals
of AutoML research. In the context of batch learning, the problem is described for a fixed
dataset D = {(xi, y),i=1,.., n} Combined algorithm selection and hyperparameter opti-
mization (CASH) (Thornton et al., 2013) is the search over learning algorithms A and asso-
ciated hyperparameter spaces A, for an optimal combination A’, that maximizes the per-
formance of prediction over k subsets of D (e.g., k cross-validation folds, yet it can also
be formulated with holdout evaluation). Equation 1 formalizes this optimization problem,
where L is an evaluation measure, and {X . y,r} and {X vals ym,} represent the training and
validation sets, respectively. The search can be extended to include preprocessing algo-
rithms as well as postprocessing steps, in which case A is the space of all possible pipelines
applicable to the specific machine learning problem.

k
" . 1 i
Al = *argmin VA €A % ZL(AJA, {X{r,y);r}, {Xcal,y{ul}> (1)
vieA, 7

However, in this study, the exceptions compared to the original problem are the temporal
dimension of data and that it is considered to be infinitely long. Some other constraints
online learning imposes are the requirement to process the data in order of arrival and
restricting the memory usage to a limited scale (Gama et al., 2014). AutoML for online
learning can be described similarly to the batch learning setting when the online system
allows for multi pass of data and a certain amount of memory to allow for the adaptation of
AutoML search algorithms. Single pass with zero memory systems would require further
changes to the problem description of CASH. Hence, not all data can be stored in memory,
which limits the range of possible algorithms to a set A,; C A. In addition, evaluation hap-
pens in a prequential way, where X, is the batch (or window) of data at time step ¢. Here
we count time steps between the batches of data, yet data can still arrive in single samples.
As shown in Equation 2, our objective is now to return the best online pipeline Aj’ ,ateach

time step ¢, where this pipeline is continually trained on the previous batch {X 1Yo } and
evaluated on the current one {X o yt}:

A/*U = *argmin VA € Ay, L<A]/1,r’ {Xr_l,yt_] }, {Xt,yt}) @)
VieA

Another big challenge of online learning are unpredictable shifts in the data distribution
resulting from data generating processes, known as concept drift. Although this shift can
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happen in several components of the underlying data distribution, the most interesting and
challenging case for supervised learning is a change in the posterior probabilities of output
variables, p,(y | X) at a certain time step t. This is known as real concept drift (Equation 3)
and affects the class boundary, thus requiring the learner to adapt to the change. Since
real concept drift can occur without affecting the input data distribution, p(X), it is mostly
detected through changes in the predictive performance of the learner.

X p, 61 X)#p, 6 1X) ©)

Concept drift can occur in many forms with different characteristics, where the duration,
transition and magnitude of the change are expected to have the biggest effect on a learner’s
ability to adapt (Webb et al., 2016). Therefore, in this research we will evaluate our meth-
ods on data with both abrupt and gradual drift, and typically with high drift magnitudes,
which are most challenging. Abrupt drift occurs when the concept changes suddenly and
the duration of this shift is smaller than a certain time period, usually over a single sample.
Gradual drift, on the other hand, occurs when the difference between concepts (i.e., the
drift magnitude) over a time period is smaller than a maximum value.

3 Background
3.1 AutoML

Different approaches to the CASH problem in combination with a variety of pipeline struc-
tures and search spaces have a vast amount of AutoML systems. Most differ mainly in
the optimization algorithm used to search the pipeline configuration space. Bayesian opti-
mization (BO) (Thornton et al., 2013; Feurer et al., 2015), one of the most widely and
successfully used methods in offline settings, fits a probabilistic surrogate model over the
evaluated pipelines in the search space and predicts the performance and uncertainty of
unseen configurations. Gaussian Processes are one of the most popular choices for the sur-
rogate model for smaller hyperparameter search spaces (Snoek et al., 2012) while Ran-
dom Forests are often used for larger spaces (Feurer et al., 2015). Evolutionary methods
are another effective approach for pipeline optimization (Olson et al., 2016; Gijsbers and
Vanschoren, 2021), in which pipelines are evolved with crossover and mutations through
genetic programming. GAMA (General Automated Machine Learning Assistant) (Gijsbers
and Vanschoren, 2021) is an AutoML library that uses asynchronous genetic program-
ming. This approach has also shown to be effective for adaptive learning with online data
(Celik & Vanschoren, 2021). Hence, we use GAMA’s genetic programming configuration
and search algorithms as one of our optimization methods, as explained in more detail in
Sect. 5. The library also includes other search algorithms such as Random Search, which
randomly samples hyperparameter configurations, and Asynchronous Successive Halving
(ASHA), which speeds up random search by asynchronous early stopping.
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3.2 Online adaptive learning

What distinguishes online learning from offline learning is the progress of data availability.
In online learning, data is received over time and used in arriving order for updating the
model (Gama et al., 2014). This is one of the main challenges for AutoML in online learn-
ing since existing search algorithms require access to all data a priori. The online model
can have partial access to previous data in case the model keeps a limited memory (Maloof
& Michalski, 2004). In general, though, the assumption is that past and future training
data is unavailable to the learner and each data sample only has a single pass through the
training of the learner. Another characteristic of online learning is anytime prediction: the
trained learner can be used for prediction at any given time.

Adaptation, updating the learning model or pipeline by retraining and/or re-tuning, is
required when data evolves over time and results in concept drift, making the previous
model obsolete. In online adaptive learning, the continuous cycle includes prediction, eval-
uation and training steps. Whether adaptation is required or not is determined in the evalu-
ation step, where a drift detector checks whether the current model suffers a negative per-
formance change. Some well-known drift detectors keep track of variables related to model
performance, while others use a data window approach. DDM (Drift Detection Method)
records the error-rate of the learner and fits a distribution over time (Gama et al., 2004). It
emits a drift alert when the confidence interval exceeds a certain threshold. Another bench-
mark method, EDDM (Early Drift Detection Method), monitors the distance between the
errors in addition to their frequency (Baena-Garica,2006). Both methods work well with
abrupt concept drift and have low memory footprints, yet EDDM is known to be superior
in detecting gradual drift. One drawback of EDDM is the occurence of false alarms in the
early stages of learning due to the small distance between initial errors. ADWIN (Adaptive
Sliding Window), a well-known window approach, compares the means of two subsets of
data and emits a drift signal when there is a significant difference between those means
(Bifet and Gavalda, 2007). ADWIN requires more memory and execution runtime com-
pared to error-rate monitoring methods, due to the need to maintain sliding windows.

When drift is detected at a certain time point, these methods can adapt the model
locally or globally depending on their adaptation strategy and the characteristics of the
drift (Gama et al., 2014). Discriminant classifiers or naive Bayes methods require model
replacement, i.e., delete the old model and train a completely new one. Yet, in some occa-
sions the drift characteristics can allow a model adaptation to restore the performance of
the learner. Decision trees allow that kind of adaptation due to their modular structure.
Celik and Vanschoren (2021) show that drift characteristics such as the magnitude and
duration of the drift influence the correct adaptation strategy to follow. In case the learner
keeps a limited memory of past samples, a forgetting mechanism is another critical aspect
to adapt successfully in concept drift scenarios. A straightforward and common approach
is a constant rate sliding window where data samples are erased and added at the same rate
as data flows. Smaller sliding windows contribute to faster adaptation to the new concept,
yet can lead to unstable and low performance due to insufficient training data. Dynamic
weighing of data is another possible forgetting mechanism, where the dynamic rate can be
adjusted in case of drift.

Prequential evaluation, also known as interleaved test-then-train, is the most widely
used evaluation approach, where each individual sample is first used to evaluate the
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performance and then to update the learner. This approach can also be applied in batches
of arriving samples (data chunk evaluation). Prequential accuracy is dynamic as the per-
formance is updated incrementally. This contributes to the difficulty of using AutoML for
online learning, since most AutoML libraries use cross-validation, which can’t be applied
here. Holdouts can be used if the temporal order of the data is respected. Although pre-
quential evaluation scores are shown to be more pessimistic compared to holdout evalua-
tion (Gama et al., 2013), it is widely used in adaptive online learning methods.

Among online learning methods, online bagging approaches are among the best per-
forming ones due to the advantages ensembles bring to smooth drift adaptation. Oza Bag-
ging (Oza and Russell, 2001) and its updated version Leveraging Bagging (Bifet et al.,
2010) simulate re-sampling in online settings. In the former, ensemble diversity is obtained
by increased randomization of the data, yet it also brings a heavier computational burden.
Another popular ensemble approach following a re-sampling strategy is the Adaptive Ran-
dom Forest (ARF) (Gomes et al., 2017). ARF also includes random feature re-sampling
for splitting the nodes, which contributes to diversity. Each base tree is monitored and
retrained individually in case of drifts. In order to reduce response times in the adapta-
tion process, base trees are trained in the background when the detector gives a warning
of a possible drift. These adaptive features make ARF one of the most well-performing
online learning methods. Among the non-ensemble learners, the Hoeffding Adaptive Tree
(Domingos & Hulten, 2000) is one of the fastest adapting approaches. It uses a drift detec-
tor to monitor and update individual branches.

4 Related work

Automating pipeline configuration in data streams gained interest over the last few years
with the increase of online learning use cases. Some research focuses on hyperparameter
tuning under concept drift, yet they restrict the optimization problem to a single learner.
For stream clustering, confStream (Carnein et al., 2019) keeps an ensemble of several
hyperparameter configurations of a stream learning algorithm, and uses their individual
performances to train a linear regression model that predicts which new configurations to
add. The evaluation shows an improvement over default clustering algorithm. SSPT (Sin-
gle-pass Self Parameter Tuning) (Veloso et al., 2018) is another auto-hyperparameter tun-
ing method that uses a heuristic search algorithm. The approach is problem agnostic and
again designed for a single learner and two hyperparameters.

Another line of research focuses on adapting a previously trained stream learning algo-
rithm in case of concept drift, by automatically selecting an appropriate adaptation strat-
egy. This approach is extended with automated adaptations of several ensemble stream
learners (Bakirov et al., 2021). However, these adaptation strategies can only be applied to
a single model.

A step from stream learning adaptation towards AutoML is taken by extending existing
AutoML libraries with several adaptation strategies, often based on drift detection, that
allow them to retrain or re-optimize models in online learning scenarios (Celik & Van-
schoren, 2021). These adaptive AutoML methods perform better than stream learning
algorithms across many tasks with various drift characteristics. Moreover, several AutoML
techniques are used to examine the effectiveness of different search algorithms (e.g.,
Bayesian Optimization or Evolutionary techniques) in adapting to concept drift. Like-
wise, Madrid et al. (Madrid et al., 2019) extend Autosklearn with a drift detector and two
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adaptation algorithms. The results corroborate the potential of AutoML for stream learn-
ing settings. However, in both studies, the underlying search spaces contain batch learning
algorithms designed for offline settings, instead of the online learning algorithms consid-
ered in this work.

ChaCha (Champion-Challengers) (Wu et al., 2021) is one of the most similar works to
our purpose as it uses an AutoML setting designed for online learning. The search space
of configurations is expanded progressively based on the online performance of existing
base learners. It also balances computational effort by categorizing choices based on their
learning cost and assigning resources only to the most promising ones. ChaCha is built on
the FLAML (Wu et al., 2021) library and uses algorithms from the Vowpal Wabbit online
machine learning library. The method considers only one base learning algorithm at a time
and focuses on finding promising hyperparameter settings for it. Therefore, it supports nei-
ther the optimization of complete pipelines (with preprocessing), nor the combined algo-
rithm selection and hyperparameter optimization problem typical of AutoML. To the best
of our knowledge, our online OAML system is the first to propose an automated system for
tuning and selecting online learning algorithms to create full pipelines including data and
feature preprocessing.

5 Online AutoML (OAML)

In this paper, we introduce an automated adaptive online learning method, OAML (Online
Automated Machine Learning), that is developed to solve the online CASH problem
described in Sect. 2. Currently it only supports classification tasks, yet it can easily be
extended to other supervised machine learning problems in the future. The model search
space comprises a large set of online learning classifiers, ensembles and preprocessors, all
implemented in the online learning library River (Montiel et al., 2020), which is described
further in Sect. 5.1.

Pipelines can include one or more of these algorithms, including data and feature pre-
processing steps. It performs an online model search that combines algorithm selection
and hyperparameter configuration, similar to offline versions of AutoML libraries. To the
best of our knowledge, this is the only automated online learning system that includes a
search space combining multiple online algorithms, preprocessors, as well as their hyper-
parameters. OAML can be constrained with a time budget for the pipeline design and the
optimized pipelines are used in the online learning phase. A constant-rate sliding window
approach is used to manage memory in a restricted way and also provide an up-to-date
training set for pipeline search. OAML uses prequential evaluation to validate online pipe-
lines according to a user-selected metric. It is publicly available, integrated into the open
source AutoML library GAMA..!

5.1 Search space design

The classifier algorithms in the search space mostly focus on adaptive ensemble meth-
ods since they are shown to be the most successful for online learning under concept drift
(Gama et al., 2014). Our selection includes Oza Bagging (Oza and Russell, 2001) with the
ADWIN drift detector, Leveraging Bagging (Bifet et al., 2010), Ada Boosting (Oza and

! https://github.com/openml-labs/gama/tree/oaml.
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Russell, 2001), and Adaptive Random Forests (Gomes et al., 2017). The base learners to be
considered in the ensemble methods are online versions of Logistic Regression, k-Nearest
Neighbors (KNN) Classifiers, Perceptrons and Hoeffding Trees. The base learners are cho-
sen without adaptive mechanisms since each ensembling method includes a drift detector.
The Hoeffding Adaptive Tree (HAT) (Hulten et al., 2001) is also added as an independent
single learner due to its efficiency.

The search space also includes online versions of preprocessing algorithms, including
data scaling and normalization, categorical variable encoding and feature extraction. The
selected methods are Adaptive Standard Scaler, Binarizer, Maximum Absolute Scaler,
MinMax Scaler, Normalizer, Robust Scaler, Standard Scaler and Polynomial Feature
Extender. We also aim to include further preprocessing techniques for missing value impu-
tation and feature selection.’

The details of these algorithms can be found in Montiel et al. (2020). A list of the main
hyperparameters for all these methods, with their defaults and value ranges, is shown in
Table 1. As mentioned earlier, there is limited research on hyperparameter optimization
in this setting, and the existing work only scarcely explored hyperparameter grids. Hence,
there is no go-to reference for these search intervals, and we had to design these based on
our own insight and application defaults.

5.2 Method overview

Figure 1 shows an overview of the structure of our method, with the different system mod-
ules and flow. A more formal description in pseudo-code is given in Sect. 5.2.2. The online
learning process begins with an initial AutoML search (shown on the left of Fig. 1) using
an initial batch of n, samples (x, ...,xno) of a data stream. The search algorithm § trains and
evaluates pipeline configurations with a classification metric M, over the initial batch of
data within the given time budget 7,,,,. The best-found single pipeline of the search, Py, is
fitted to the available data and the trained pipeline is passed to the online learning module
(shown on the right of Fig. 1) to be assigned as the online model A,. From now on, data
samples are assumed to arrive one by one, hence Py is used to predict the label for x, as J,.
When the real label y, is known to the model, the online evaluation metric M, is updated
with the feedback.® At this point, (y,,¥,) is also used to update the drift detector, Ap,. In
case of a drift signal, OAML is triggered to start a new AutoML pipeline search, possibly
in parallel, with the batch of the latest n; samples, where n, is the sliding window size. This
sliding window allows the search algorithm to have a restricted memory and discard out-
dated samples. This trigger, as shown in Fig. 1 at the Drift branch, restarts AutoML Search
and updates the online pipeline, A,,. Pipeline update phase in Online Learning corresponds
to the new AutoML run at the left side of the figure. In order to diminish the effect of drift
detector errors on the system performance, regular checkups are scheduled. If the pipe-
line is not changed over Max,,,;, iterations, the system gives an automatic trigger to start
another OAML search.

2 Some preprocessors could not yet be included since their implementation in River still contained bugs.
We are collaborating with the River developers to resolve these and extend the search space further.

3 The AutoML evaluation metric M, and online metric M, are usually the same, but could potentially be
defined differently. For instance, M, could be a cheaper approximation to speed up the search.
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Fig.1 OAML framework (described in Sect. 5.2)

The OAML framework allows different adaption strategies to update the old model after
concept drift has occured. Next, we describe three methods: Basic, Ensemble, and Model
Store.

5.2.1 OAML—basic

The adaptation strategy in OAML—Basic is global replacement, where the old model is
completely discarded and a new one is built from scratch. OAML search replaces the previ-
ous pipeline with the new one P} as soon as possible, and the online learning cycle begins
again. In case (y,, y,) does not trigger the drift detector, (x,,y,) is used to incrementally train
Py, and the updated pipeline predicts the new sample. OAML - Basic is expected to suit
adaptation to high and abrupt concept drift. It is also very scalable with a low memory
footprint since old models are discarded and only a limited amount of data is kept in mem-
ory at any time.
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Algorithm 1 OAML - Ensemble

IHPUtS: N, Ns, Mav M07 tmaaca S()7 D()7 (X7 y)7 Maxt’r‘ain; k where No > Ns
Initialization: OAMLSearch <~ S(), Ey = {}, ADD <~ D(), tirain <=0

1. Py <= argmin,  OAM Lscarch((Z0,90); s (Tngs Yno )

2: append Py to Ey

3:1<=mng+1

: t<0

5: AO <~ Pdk

6: while z; € X do > Test-then-train evaluation
7 predict g; < Ao (X;)

8: evaluate M, < M,(y;, ;)

9: train online model Ao (X5, y;)

10: update App < M, > Drift detection
11: if drift signal < App V @ — tyrain > MaZirqin then

12: tirain <t > Last training
13: t<=t+1 > Redesign pipelines
14: Xsliding = (xifnsa ) xi)? Ysliding = (yifns yeeny yz)

15: Et = Et—l

16: Pt* <~ argmintmuz}jwu OAMLSSGTCh(XSlidiTLg7 ysliding>

17: MEF < evaluate Ey(Xsiiding, Ystiding) > Ensemble evaluation
18: Mf* <« evaluate Pt* (Xslidingv yslidmg)

19: if Mf < Mf* then

20: if Ap = E; then

21: Do nothing

22: else

23: Ap < E;

24: end if

25: else

26: Ao <= P;

27: end if

28: append P} to By > Ensemble update
29: if |E;| > k then

30: Et-popfirst

31 end if

32: end if

33: end while

5.2.2 OAML—ensemble

OAML—Ensemble follows the same steps as the basic version except for the adapta-
tion phase. An ensemble of the best performing k pipelines is used to create a dynamic
backup ensemble E = {Pl* } Each pipeline in the ensemble has the same weight and the
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predictions are aggregated equally. When a drift occurs at time f and OAML is triggered to
start a new pipeline search, the output pipeline P} is not directly used to replace the old one
but instead compared with the backup ensemble, E,, based on their predictive performance
over the last sliding window ((x;_,, , ¥;_, ), ---» (¥, y,)). If the backup ensemble has a better
predictive score than the new pipeline, the current model A, is replaced with E,. The cur-
rent model A, can be either the ensemble or the previous single pipeline. The reason for
this design choice is to allow the model to adjust memory from long term to short term
depending on the drift. The ensemble is updated with the newly found pipeline P} and the
oldest pipeline in the ensemble is removed in case its length exceeds the limit k. This way,
the OAML system keeps a memory of previously learned pipelines and the global model
replacement strategy is relaxed. Older models can still partially affect the future decisions
with their votes in the ensemble until they are replaced. Algorithm - 1 shows the steps
of OAML—Ensemble in pseudocode, in which performance metrics are supposed to be
minimized.

5.2.3 OAML—model store

In order to understand the trade-offs of ensembling versus storing models based on their
online performance, OAML- Model Store is designed to keep k individual pipelines in
memory. This model store (MS,) is effectively a history of the best pipelines used earlier
in the data stream. Every time a new pipeline P} arrives, each pipeline in the model store,
P;f € MS,, is evaluated with the last n; samples of data ((x,_,_, y,—, ) .-, (%;,¥,)) and their
performances are compared with the new pipeline P;. The online model, A, is updated
with the best performing one among the model store pipelines and the new pipeline. If
the length of the model store is greater than k, the worst performing one is removed and
the newest pipeline is added to the store. OAML—Model Store keeps an extended mem-
ory similar to OAML—Ensemble, yet the update of this memory is based on individual
pipeline performance. Hence, data streams with repeating concepts could benefit from this
strategy.

6 Experiment design

In this section, we evaluate our online AutoML system with concept drift data streams, and
analyze the results from different perspectives in order to gain a better understanding of the
performance of OAML mechanisms. Our code, as well as the data streams and the results
of these experiments are publicly available for reproducibility in our github repository.*

6.1 Data streams

We evaluated our method on 6 well-known data streams from the concept drift literature
that are commonly used to test online algorithms’ adaptability. Three of these streams are
from real-world settings. Others are generated with the online machine learning library
MOA (Bifet et al., 2011). Artificial data is critical in online learning research since the
existence and characteristics of concept drift can only be certainly known in this setting.

4 https://github.com/openmI-labs/gama/tree/oaml.
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Drift is induced in these streams by altering the parameters of the generating function at
certain points. Table 2 presents an overview of all datasets used.

6.2 OAML configuration

OAML can be run with different settings that can be adjusted based on the application
requirements or preferences. The online learning system we assume relaxes the single pass
assumption since we do keep a sliding window of data for pipeline search. Still we do
restrict kept memory against the infinite flow of data. The initial batch size, n,, and sliding
window size, n,, determine how much data is fed into the automated pipeline design pro-
cess. In this paper, we use 5000 for both values as a result of initial ablation studies with
different streams. Optimal data memory is related to the existence of drift in data, the stor-
age capacity and speed requirements of the system, and its effect on the search algorithm
performance. Hence, they should be considered for application specific selection. The
AutoML budget, 7,,,,. is set to 600 seconds, as aligned with the batch size. We prioritize
predictive performance over speed yet OAML can further be adjusted for a faster system by
parallel processing of the online learning and automl modules. The online learning mod-
ule can be kept running with the anytime model while automl searches for a better pipe-
line. OAML allows choosing among several online learning metrics. In our experiments,
the performance metric is set to prequential accuracy for both the pipeline search (M)
and online learning phase (M,). As for the search algorithm, we mainly use an evolution-
ary search algorithm for evaluating the performance of OAML because of its adaptation
capability with drifting data (Celik & Vanschoren, 2021), yet we also conduct experiments
to compare different choices for the search algorithm. The drift detection algorithm is set
to EDDM due to its precision in detecting both gradual and abrupt drift, as explained in
Sect. 3.2. In order to decrease our dependency on the drift detector, the alternative trig-
ger for pipeline search, Max,,,;, is set to 50000 samples, considering the size of the data
streams.

6.3 Baselines and state of the art

We compare our method against the most competitive alternative techniques in this area.
First, we compare against Leveraging Bagging (Bifet et al., 2010), which has shown to
outperform many other online learning techniques in the literature. We also include the
Hoeffding Adaptive Tree (Hulten et al., 2001) as one of the strongest non-ensembling tech-
niques. Finally, we also compare against the state-of-the-art AutoML library for online
learning, ChaCha (Wu et al., 2021). Even though it does not construct entire pipelines, and
includes a much smaller model search space than OAML, it should be very competitive on
the datasets in this study since these datasets don’t require significant preprocessing.

7 Results

Here we present the results of our experiments. We first compare the different versions of
our method with each other and with the baselines described above, on both real-world
and synthetic datasets. Next, we analyse which pipelines are actually generated by OAML,
which components they contain, and whether the actively used pipelines come directly
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Fig.2 Prequential performance for artificial data streams: a SEA—High abrupt drift b HYPERPLANE—
High gradual drift ¢ SEA—High mixed drift

from the AutoML phase, or from the ensemble or model store. Finally, we also explore
which AutoML search algorithms perform best for the different types of concept drift.

7.1 OAML experiments with artificial data

Next, we evaluate the adaptability of the OAML framework on data streams with artifi-
cially controlled drifts, leading to both abrupt and gradual shifts in the underlying concepts.
Fig. 2a—c plot the results of data streams with gradual, abrupt and mixed drift, respec-
tively. As explained in Table 2, each drift is created with a high magnitude to see their
effects more clearly. Drift and retraining points are again shown with markers. The plots of
each OAML version include markers at the known drift points of the streams, showing that
models are retrained after the introduced drift points as expected. For SEA—High Abrupt
Drift data stream (Fig. 2a), OAML—Ensemble and HAT exhibit similar accuracy levels,
followed closely by ChaCha, with almost no drop in performance at the middle drift point.
This shows the fast adaptation capability of OAML since the SEA data has a sudden and
significant concept change. OAML—Basic, Model Store and Leveraging Bagging cannot
reach that level of adaptability.
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Fig.3 Prequential performance for Airlines data stream

For Hyperplane—High Gradual Drift data, ChaCha performs best, suggesting that
its model search technique (quite different from the evolutionary approach used here by
OAML) seems to perform well under gradual drift. This suggests that it would be inter-
esting to integrate it in OAML as well. OAML—Model Store outperforms most other
methods, showing a significant capability to adapt fast when drift is introduced slowly.
OAML—Model Store uses predictions of a single pipeline in a set of pipelines fit to prior
data. This is particularly fast adapting when the drift detector is triggered multiple times
that updates the set quickly as it is the case at the beginning of the data. Unlike Model
Store, OAML—Ensemble requires more than a single best pipeline and likely struggles
to form a good combination of pipelines with the data distribution shifting continuously.
Since also OAML-Ensemble catches up but OAML-Basic does not, keeping a certain
amount of memory seems to be work better under gradual drift.

Figure 2c shows the results of SEA—High Mixed Drift, which is designed to combine
the challenges of both drift types and identify the approach that handles that the best. In
this case, although quite close to HAT, OAML—Ensemble performs best across the whole
data stream. OAML—Ensemble has the advantage of an average prediction of a diverse
set of learners trained with different segments of prior data. Since the initial part of data
evolves with a gradual drift, these base learners are fit to various distributions. Likely,
the diversity helps the overall model to create a robust prediction least affected by abrupt
shifts. It can also be seen that OAML—Model Store first suffers, but recovers quite well
in the second half of the stream with an increase in performance with every concept drift
detected.

Overall, we see that, again, OAML—Ensemble can adapt to different types of drift and
outperform baselines while the speed of adaptation differs with the drift type. It can par-
ticularly handle sudden drift points better than the other versions, likely by combining the
average predictions of a diverse set of pipelines, which themselves may include ensemble
learners.

7.2 OAML experiments with real-world data
Evaluating OAML’s capability to handle real-world challenges is critical to assess its prac-

tical utility. The results on the real data streams are shown in Figs. 3, 4 and 5. Each line
plots the prequential accuracy of a different algorithm over the entire stream. The markers
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Fig.5 Prequential performance for Electricity data stream

on the plot lines indicate drift and retraining points, i.e. that either the drift detector trig-
gered an alarm at that point in the stream or it is regular retraining point.

For the Electricity data stream (Fig. 5), drift is detected often due to the quickly chang-
ing nature of data from day to day. After a couple of initial iterations, OAML with either
an ensemble or model store outperforms the remaining methods. The Model Store strat-
egy may benefit from cyclic effects in this data stream. OAML—Ensemble performs best
throughout the airlines (Fig. 3) and vehicle (Fig. 4) data streams, although it is tied with
ChaCha on the latter, which seems to have very little or very gradual concept drift.

Baseline online learners perform relatively good in Electricity data stream though they
fail to reach the level of OAML—Model Store. Note that we ran baselines with their default
configuration on all data streams. It is likely that optimizing them to each stream individu-
ally would yield better results. In fact, as shown in Sect. 7.3, OAML does exactly this: it
often uses a (tuned) Leveraging Bagging pipeline, while switching to HAT in other parts
of the stream. This underlines that, not surprisingly, the AutoML tuning typically yields a
significant improvement over untuned algorithms, and that OAML manages to bring these
benefits to dynamic environments.

Overall, OAML handles concept drift complexities that are sourced from different data
generating environments quite well, especially with the backup ensemble strategy.
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7.3 Pipeline analysis

In this section, we analyze the pipelines designed and updated while running OAML.

First, we analyze whether the actively used pipeline comes directly from the AutoML
optimizer, or whether it is recovered from the Model Store or the backup Ensemble.
OAML can decide to switch between them according to what seems best. Figure 6 shows
the switch points between these models throughout the data streams Airlines, Hyperplane-
Gradual and SEA-Mixed. Since OAML starts with a pipeline created by the AutoML
Model, all lines start as green. OAML-Ensemble tends to switch quickly to the ensem-
ble model (yellow), except for Hyperplane-Gradual, where the ensemble is occasionally
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replaced by a new AutoML model. The same holds for OAML-Model Store, although here
it is the Airlines data stream where new AutoML models are frequently injected. For SEA-
Mixed Drift, we see that the sudden recovery of OAML-Model Store, previously seen in
Fig. 2c, is due to a switch from the old AutoML model to the Model Store (red).

Gradual drift leads to more switches for both versions than the Mixed drift setting where
drift occurs with varying speeds. In that case, OAML keeps using the Ensemble or Model
Store options which handle these variations better. This also shows the benefit of pipeline
redesign since the models only switch to AutoML when the newly redesigned pipeline is
better than the Ensemble or all the pipelines in the Model Store.
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Looking deeper into the pipeline optimization phase, we examine exactly which mod-
els are used throughout the online learning process. Figure 7 shows how the used classi-
fier switches throughout the stream when using OAML-Basic, with the retraining points
marked in between.

It can be seen that each data stream experiences several model switches, and that the
model used can be an online ensemble or single online learner. Although ensemble learners
are more dominant, the Hoeffding Adaptive Tree (HAT) is also used in each data stream at
several points. For Hyperplane-Gradual data, changes between models are relatively slow,
which reflects the gradual drift effect on algorithm selection. With the SEA-Mixed stream,
we also see quicker jumps at the abrupt drift points in the middle of the stream. This is the
phase where OAML tries to find a fitting model to the new concept after a quick change.
When Fig. 7 shows the same color line segments before and after a retraining point, this
means that its hyperparameters were retuned instead of being replaced with a new model.
This can be observed in all three data streams with the HAT or ARF classifiers.

Furthermore, we evaluate what happens if we keep the initial pipeline found by OAML
active throughout the data stream instead of re-optimizing pipelines at the drift points. Fig-
ure 8 shows the results of this analysis for SEA-Mixed Drift data, where the initial pipeline
used as Adaptive Random Forest (ARF—Initial shown by solid black line) by OAML—
Basic. As a baseline, ARF with default hyperparameters is also included (ARF—Default
shown with black dashed line). Although ARF fluctuates in performance for different
applications due to the randomness inhibited in the model, overall it can be seen that the
fixed initial pipeline fails to reach the level of adaptive OAML in performance as data
starts to drift. Yet, it is quite robust and doesn’t get affected by the sudden drift point at the
middle as much as the OAML—Basic’s chosen Leveraging Bagging classifier. Looking at
the overall performance of the OAML versions, it is still clear that re-optimizing pipeline
design is likely to outperform the initially optimized one through a drifting data stream.
Fixing the initial pipeline (Train once strategy) is also found to be dominated by re-opti-
mizing the pipelines strategy in Celik and Vanschoren (2021).

Overall, our analysis shows that both hyperparameter tuning and algorithm selection are
used interchangeably by OAML, indicating that pipeline redesign can lead to a better per-
forming model as shown in the analysis of fixed pipelines.

@ Springer



1918 Machine Learning (2023) 112:1897-1921

Search Algorithms

o Models

€070 —— SEA Abrupt Drift - AsyncEA

8 -==-- SEA Abrupt Drift - Random Search
g 065 [ SEA Abrupt Drift - ASHA

—— HYPERPLANE Gradual Drift - AsyncEA
————— HYPERPLANE Gradual Drift - Random Search
"""" HYPERPLANE Gradual Drift - ASHA
—— SEA Mixed Drift - AsyncEA
---- SEA Mixed Drift - Random Search
------- SEA Mixed Drift - ASHA
0 100 200 300 400 500
Sample no (in thousands)

Fig.9 Performance comparison of search algorithms Random Search, ASHA and AsyncEA

7.4 AutoML search algorithm effect

In order to understand how the choice of search algorithm impacts drift adaptation in
OAML, we experimented with random search, asynchronous successive halving (ASHA)
and evolutionary algorithm (AsyncEA) on artificial data streams with different drift types.
This selection is based on prior research results ( Celik and Vanschoren (2021)) and can
be extended with different search algorithms. The results are shown in Fig. 9, where each
color represents a data stream and each line type a different search algorithm.

For SEA generated data, ASHA performs slightly better compared to others (red dotted
line), especially in the beginning of the stream. This could be due to the successive halving
strategy working well with quick adaptation to abrupt drifts present in these data streams.
ASHA will evaluate more pipelines randomly but quickly, while the evolutionary approach
may need more iterations to start evolving good pipelines. On the other hand, ASHA per-
formed less well on Hyperplane-Gradual, where more continuity is needed in the pipelines
to follow the gradual change, and hence evolutionary search algorithm adapts better (green
solid line plot). Overall, it can be observed that each algorithm adapts quite well without a
drastic drop in performance. This is aligned with previous findings (Celik & Vanschoren,
2021) that although some search algorithms fit better to specific drift types with differences
in computational cost, search algorithm selection doesn’t greatly affect the adaptation capa-
bility as much as the other algorithm design choices in online learning pipeline search.

8 Conclusion

We introduced a novel framework that enables AutoML methods to be applied effectively
in dynamic environments with evolving data streams. It automatically searches for optimal
pipelines that can contain preprocessing techniques and that exclusively use online learning
algorithms which adapt to gradual changes in the data. It also detects concept drift and can
automatically redesign or retune the pipelines when needed. As a result, it addresses both
the traditional challenges of AutoML, such as combined algorithm selection and hyperpa-
rameter optimization under time constraints, as well as new challenges particular to real-
world data streams, such as concept drift, memory restrictions, and forgetting mechanisms.

We defined a rich pipeline search space that includes many online learning algorithms,
ensembles, data and feature preprocessing steps. Our framework includes three strategies

@ Springer



Machine Learning (2023) 112:1897-1921 1919

to update the currently used pipelines after drift is detected: Basic, which fits a new pipe-
line every time drift is detected and replaces the old one; Model Store, which keeps a mem-
ory of the best performing prior pipelines and selects the best current one; and Ensemble,
which makes a backup ensemble from the best prior pipelines.

We evaluate the developed method on both real-world and artificial data streams with
concept drift and compare its performance with several baselines and state-of-the-art sys-
tems. The results show that OAML-Ensemble performs consistently well on data with vari-
ous kinds of concept drift, while OAML-Model Store performs best when there are cyclic/
seasonal processes underlying the data stream. We also examine how OAML behaves
by tracking the underlying changes in the generated pipelines through time. Our results
show that there is no online algorithm that is optimal across the life cycle of a data stream.
As the data changes over time, online learners in these pipelines are either replaced, or
their hyperparameters are re-optimized to adapt to the changing data. This demonstrates
the benefits of automating both algorithm selection and hyperparameter tuning for online
learning, in contrast to previous studies that focused only on either one of these. Currently,
OAML budgets a process time for the pipeline search, which is not needed in the baseline
online learners. Yet, it is possible to advance OAML by eliminating the need for the initial
waiting time for the first pipeline search and applying a continuous search algorithm that
can handle data flow by sample instead of batch. In addition, currently available public data
streams do not suffice to understand the importance of preprocessing in the search space,
which requires further collection of imperfect, concept drift data. In all, we believe that this
work opens up interesting avenues for further research.
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