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Abstract
Despite of its importance for safe machine learning, uncertainty quantification for neural 
networks is far from being solved. State-of-the-art approaches to estimate neural uncer-
tainties are often hybrid, combining parametric models with explicit or implicit (dropout-
based) ensembling. We take another pathway and propose a novel approach to uncertainty 
quantification for regression tasks, Wasserstein dropout, that is purely non-parametric. 
Technically, it captures aleatoric uncertainty by means of dropout-based sub-network dis-
tributions. This is accomplished by a new objective which minimizes the Wasserstein dis-
tance between the label distribution and the model distribution. An extensive empirical 
analysis shows that Wasserstein dropout outperforms state-of-the-art methods, on vanilla 
test data as well as under distributional shift in terms of producing more accurate and sta-
ble uncertainty estimates.

Keywords Safe machine learning · Regression neural networks · Uncertainty estimation · 
Aleatoric uncertainty · Dropout · Object detection

1 Introduction

Having attracted great attention in both academia and digital economy, deep neural 
networks (DNNs, Goodfellow et  al. (2016)) are about to become vital components of 
safety-critical applications. Examples are autonomous driving (Bojarski et  al., 2016; 
Pomerleau, 1988) or medical diagnostics (Liu et  al., 2014), where prediction errors 
potentially put humans at risk. These systems require methods that are robust not only 
under lab conditions (e.g. i.i.d. data sampling), but also under continuous domain 
shifts. Besides shifts in the data, the data distribution itself poses further challenges. 
Critical situations are (fortunately) rare and thus strongly under-represented in datasets. 
Despite their rareness, these critical situations have a significant impact on the safety 
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of operations. This calls for comprehensive self-assessment capabilities of DNNs and 
recent uncertainty mechanisms can be seen as a step in that direction.

While a variety of approaches to model uncertainty of DNN predictions in regres-
sion tasks has been established, stable uncertainty quantification is still an open problem. 
Widely used techniques like Kendall and Gal (2017) and Lakshminarayanan et al. (2017) 
combine parametric and non-parametric (ensembling-based) mechanisms to account for 
aleatoric uncertainty (data noise) and epistemic uncertainty (model weight uncertainty). 
The employed parametric mechanisms represent uncertainty estimates by dedicated net-
work output variables, which are often interpreted as variance parameters of Gaussian dis-
tributions. These modeling techniques are sometimes also referred to as “direct modeling” 
(Feng et al., 2020).

In this work, we take a different approach and propose to model (aleatoric) uncertainty 
in DNNs in a novel, fully non-parametric way. We introduce Wasserstein dropout (W-drop-
out) that is designed to capture heteroscedastic (i.e. input-dependent) data noise by means 
of its sub-network distribution (see Fig. 1). It builds on the idea of matching the network 
output distribution, resulting from randomly dropping neurons, to the (factual or implicit) 
data distribution by minimizing the Wasserstein distance.

In detail, we contribute

Fig. 1  Wasserstein dropout (left column) employs sub-networks to model aleatoric uncertainty, i.e. the het-
erogeneous noise of (in this case, toy) datasets is reflected by the sub-network distributions of the trained 
models. This is in contrast to other uncertainty methods like MC dropout (right column) that use sub-net-
work distributions to model epistemic uncertainty. This type of uncertainty is small after training a model 
on the densely sampled toy datasets and consequently MC dropout’s sub-network distributions are signifi-
cantly more narrow compared to Wasserstein dropout. The ground truth data is shown in blue. Each gray 
line represents the outputs of one of 500 random sub-networks that are obtained by applying dropout-based 
sampling to the trained full network. For details on the data sets (‘toy-hf’, ‘toy-noise’), the neural architec-
ture and the uncertainty methods please refer to Sect. 4 and references therein (Color figure online)
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• by deriving a novel and surprisingly simple Wasserstein-based learning objective for 
sub-networks that simultaneously optimizes task performance and uncertainty quality,

• by conducting an extensive empirical evaluation where W-dropout outperforms state-
of-the-art uncertainty techniques w.r.t. various benchmark metrics, not only in-data but 
also under data shifts,

• and by introducing two novel uncertainty measures: a non-saturating calibration score 
and a measure for distributional tails that allows to analyze worst-case scenarios w.r.t. 
uncertainty quality.

The remainder of the paper is organized as follows: first, we present related work on uncer-
tainty estimation in neural networks in Sect. 2. Next, Wasserstein dropout is introduced in 
Sect. 3. We study the uncertainties induced by Wasserstein dropout on various datasets in 
Sect. 4, paying special attention to safety-relevant evaluation schemes and metrics. An out-
look in Sect. 5 concludes the paper.

2  Related work

Approaches to estimate predictive uncertainties can be broadly categorized into three 
groups: Bayesian approximations, ensemble approaches and parametric models.

Monte Carlo dropout (Gal and Ghahramani, 2016) is a prominent representative of the 
first group. It offers a Bayesian motivation, conceptual simplicity and scalability to appli-
cation-size neural networks (NNs). This combination distinguishes MC dropout from other 
Bayesian neural network (BNN) approximations like in Blundell et al. (2015) and Ritter 
et al. (2020). A computationally more efficient version of MC dropout is one-layer or last-
layer dropout (see e.g. Kendall and Gal (2017)). Alternatively, analytical moment propaga-
tion allows sampling-free MC-dropout inference at the price of additional approximations 
(e.g. Postels et  al. (2019)). Further extensions of MC dropout target tuned performance 
by learning layer-specific drop rates using Concrete distributions (Gal et  al., 2017), the 
integration of aleatoric uncertainty (Kendall and Gal, 2017), using a parametric approach 
and input-dependent dropout distributions (Fan et al., 2021). Note that dropout training is 
used—independent from an uncertainty context—for better model generalization (Srivas-
tava et  al., 2014). An alternative sampling-based approach is SWAG which constructs a 
Gaussian model weight distribution from the (last segment of the) training trajectory (Mad-
dox et al., 2019).

Ensembles of neural networks, so-called deep ensembles (Lakshminarayanan et  al., 
2017), pose another popular approach to uncertainty modeling. Comparative studies of 
uncertainty mechanisms (Gustafsson et al., 2020; Snoek et al., 2019) highlight their advan-
tageous uncertainty quality, making deep ensembles a state-of-the-art method. Fort et al. 
(2019) argue that ensembles capture the multi-modality of loss landscapes thus yielding 
potentially more diverse sets of solutions. When used in practice, these ensembles addi-
tionally include parametric uncertainty prediction for each of their members.

The third group are the before mentioned parametric modeling approaches that extend 
point estimations by adding a model output that is interpreted as variance or covariance 
(Heskes, 1996; Nix and Weigend, 1994). Typically, these approaches optimize a (Gauss-
ian) negative log-likelihood (NLL, Nix and Weigend (1994)) and can be easily integrated 
with other approaches, for a review see Khosravi et al. (2011). A more recent representa-
tive of this group is, e.g., deep evidential regression (Amini et al., 2020), which places a 
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prior distribution on Gaussian parameters. A closely related model class is deep kernel 
learning. It approaches uncertainty modeling by combining NNs and Gaussian processes 
(GPs) in various ways, e.g., via an additional layer (Iwata and Ghahramani, 2017; Wilson 
et al., 2016), by using networks as GP kernels (Garnelo et al., 2018) or by matching NN 
residuals with a GP (Qiu et al., 2020).

In the context of object detection, the number of applicable uncertainty methods is lim-
ited by the complexity of the employed NNs. Nonetheless, several variants can be encoun-
tered. For instance, MC dropout, see e.g. Bhattacharyya et al. (2018) or Miller et al. (2018), 
or parametric approaches, see He et al. (2019), can scale to network sizes relevant for such 
applications. Hall et al. (2020) stress the importance of uncertainty estimation for bound-
ing box detection.

The quality of uncertainties is typically evaluated using negative log-likelihood (Blei 
and Jordan, 2006; Gal and Ghahramani, 2016; Walker et al., 2016), expected calibration 
error (ECE, Naeini et al. (2015), Snoek et al. (2019)) and its variants and by considering 
correlations between uncertainty estimates and model errors, e.g., area under the sparsifica-
tion error curve (AUSE, Ilg et al. (2018)) for image tasks. Moreover, it is common to study 
how useful uncertainty estimates are for solving auxiliary tasks such as out-of-distribution 
classification (Lakshminarayanan et al., 2017) or robustness w.r.t. adversarial attacks. An 
alternative approach is the investigation of qualitative uncertainty behaviors: Kendall and 
Gal (2017) check if the epistemic uncertainty decreases when increasing the training set 
and Wirges et al. (2019) study how the level of uncertainty depends on the distance of the 
object to a car for some 3D environment regression task.

3  Wasserstein dropout

Before we lay out our dropout-based approach to modeling aleatoric uncertainty, we ana-
lyze some central properties of Monte Carlo dropout. The latter also employs sub-net-
works, however, for the purpose of modeling epistemic uncertainty (Gal and Ghahramani, 
2016): Given a neural network f� ∶ ℝ

d
→ ℝ

m with parameters � , MC dropout samples sub-
networks f𝜃 by randomly dropping nodes from the main model f� yielding for each input 
xi a distribution D𝜃(xi) over network predictions. During MC dropout inference the final 
prediction is given by the mean of a sample from D𝜃(xi) , while the uncertainty associated 
with this prediction can be estimated as a sum of its variance and a constant uncertainty 
offset. The value of the latter term requires dataset-specific optimization. During MC drop-
out training, minimizing the objective function, e.g., the mean squared error (MSE), shifts 
all sub-network predictions towards the same training targets. For a more formal explana-
tion of this behavior, and without loss of generality, let f� be a NN with one-dimensional 
output. The expected MSE for a training sample (xi, yi) under the model’s output distribu-
tion D𝜃(xi) is given by

with sub-network mean 𝜇𝜃(xi) = E𝜃[f𝜃(xi)] and variance 𝜎2

𝜃
(xi) = E𝜃[f

2

𝜃
(xi)] − E𝜃[f𝜃(xi)]

2 . 
Therefore, training simultaneously minimizes the squared error between sub-network mean 
𝜇𝜃(xi) and target yi as well as the variance 𝜎2

𝜃
(xi).

As we, in contrast, seek to employ sub-networks to model aleatoric uncertainty, mini-
mizing the variance over the sub-networks is not desirable for our purpose. Instead, we 
aim at explicitly fitting the sub-network variance 𝜎2

𝜃
(xi) to the input-dependent, i.e. 

(1)E𝜃

[
(f𝜃(xi) − yi)

2
]
=
(
𝜇𝜃(xi) − yi

)2
+ 𝜎2

𝜃
(xi) ,
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heteroscedastic, data variance. That is to say, we not only match the mean values as in 
(1) but seek to match the entire data distribution Dy(xi) by means of the model’s output 
distribution D𝜃(xi) . This output distribution is induced by applying Bernoulli dropout to 
all activations of the network. The matchings are technically realized by minimizing a dis-
tance measure between the two distributions D𝜃(xi) and Dy(xi) . While, in principle, various 
distances could be used, we, however, require two properties: i) the distance needs to be 
non-saturating, i.e. it needs to grow monotonously and unboundedly with the actual mis-
match between the distributions. This is needed (or desirable) as for safety reasons we want 
to penalize strong mismatches. Additionally, ii) we require the distance to have a simple, 
closed form. This is needed for subsequent, bootstrap-inspired approximations (see below). 
The (squared) 2-Wasserstein distance (Villani, 2008) fulfills both of these properties1 and 
is therefore employed in the following. Assuming that both distributions D𝜃(xi) and Dy(xi) 
are Gaussian2 then yields a compact analytical expression

with 𝜇𝜃(xi) = E𝜃[f𝜃(xi)] and 𝜎2

𝜃
(xi) = E𝜃[(f𝜃(xi) − E𝜃[f𝜃(xi)])

2] , and �y, �y defined analo-
gously w.r.t. the data distribution.

In practice however, (2) cannot be readily used as the distribution of y given xi is typi-
cally not accessible. Instead, for a given, fixed value of xi from the training set only a single 
value of yi is known. Therefore, we take yi as a (rough) one-sample approximation of the 
mean �y(xi) resulting in �y(xi) ≈ yi and �2

y
(xi) ≈ Ey[(y − yi)

2] . However, �2
y
(xi) cannot be 

inferred from a single sample. Inspired by parametric bootstrapping (Dekking et al., 2005; 
Hastie et al., 2009), we therefore approximate the empirical data variance (for a given mean 
value yi and input xi ) with samples from our model, i.e., we approximate Ey[(y − yi)

2] by

Inserting our approximations �y(xi) ≈ yi and 𝜎y(xi) ≈ (𝜇𝜃(xi) − yi)
2 + 𝜎2

𝜃
(xi) into (2) 

yields the Wasserstein dropout loss (W-dropout) for a data point (xi, yi) from the training 
distribution:

Considering a mini-batch of size M instead of a single data point, we arrive at the optimi-
zation objective WS2

batch
=

1

M

∑M

i=1
WS2

2
(xi) . In practice, 𝜇𝜃(xi) ≈

1

L

∑L

l=1
f𝜃l (xi) and 

𝜎2

𝜃
(xi) ≈

1

L

∑L

l=1
f 2
𝜃l
(xi) − (

1

L

∑L

l=1
f𝜃l (xi))

2 are approximated by empirical estimators using a 

(2)

WS2
2
(xi) = WS2

2

[
D𝜃(xi),Dy(xi)

]

= WS2
2

[
N(𝜇𝜃(xi), 𝜎𝜃(xi)),N(𝜇y(xi), 𝜎y(xi))

]

=
(
𝜇𝜃(xi) − 𝜇y(xi)

)2
+
(
𝜎𝜃(xi) − 𝜎y(xi)

)2
,

(3)E𝜃[(f𝜃(xi) − yi)
2] = (𝜇𝜃(xi) − yi)

2 + 𝜎2

𝜃
(xi).

(4)WS
2

2
(xi) ≈ (𝜇𝜃(xi) − yi)

2 +

[√
𝜎2

𝜃
(xi) −

√
(𝜇𝜃(xi) − yi)

2 + 𝜎2

𝜃
(xi)

]2
.

1 This is in contrast to other widely used metrics. The KS statistic, for example, is saturating and therefore 
violates the first requirement whereas the KL divergence possesses a more involved structure that violates 
the second requirement.
2 An assumption shared by, e.g., the NLL optimization or the ECE. While different distributions, for exam-
ple exponentially decaying or mixtures, could be used in principle, we restrict the scope here to this stand-
ard Gaussian case.
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sample size L. In contrast to MC dropout we require thereby L stochastic forward passes 
per data point during training (instead of one), while at inference procedures are exactly the 
same.

Besides the regression tasks considered here our approach could be useful for other 
objectives which use or benefit from an underlying distribution, e.g., Dirichlet distributions 
to quantify uncertainty in classification, as discussed in the conclusion.

4  Experiments

We first outline the scope of our empirical study in Sect. 4.1 and begin with experiments 
on illustrative and visualizable toy datasets in Sect. 4.2. Next, we benchmark W-dropout on 
various 1D datasets (mostly from the UCI machine learning repository (Duam and Graff, 
2017)) in Sect. 4.3, considering both in-data and distribution-shift scenarios. In Sect. 4.4, 
W-dropout is applied to the complex task of object detection using the compact Squeeze-
Det architecture (Wu et al., 2017).

4.1  Benchmark approaches and evaluation measures

In this subsection, we present the considered benchmark approaches (first paragraph) and 
evaluation measures for uncertainty modeling. Aside established measures (second para-
graph), we propose two novel uncertainty scores: an unbounded calibration measure and an 
uncertainty tail measure for the analysis of worst-case scenarios w.r.t. uncertainty quality 
(third and forth paragraph). A brief overview of the technical setup (last paragraph) con-
cludes the subsection.

Benchmark approaches
We compare W-dropout networks to archetypes of uncertainty modeling, namely 

approximate Bayesian techniques, parametric uncertainty, and ensembling approaches. 
From the first group, we pick MC dropout (abbreviated as MC, Gal and Ghahramani 
(2016)) and Concrete dropout (CON-MC, Gal et al. (2017)). The variance of MC is given 
as the sample variance plus a dataset-specific regularization term. The networks employ-
ing these methods do not exhibit parametric uncertainty outputs (see below). We addi-
tionally consider SWA-Gaussian (SWAG , Maddox et  al. (2019)), which samples from a 
Gaussian model weight distribution that is constructed based on model parameter config-
urations along the (final segment of the) training trajectory. While these sampling-based 
approaches integrate uncertainty estimation into the structure of the entire network, para-
metric approaches model the variance directly as the output of the neural network (Nix and 
Weigend, 1994). Such networks typically output mean and variance of a Gaussian distribu-
tion (�, �2) and are trained by likelihood maximization. This approach is denoted as PU 
for parametric uncertainty. Ensembles of PU-networks (Lakshminarayanan et  al., 2017), 
referred to as deep ensembles, pose a widely used state-of-the-art method for uncertainty 
estimation (Snoek et al., 2019). Deep evidential regression (PU-EV, Amini et al. (2020)) 
extends this parametric approach and considers prior distributions over � and � . Kendall 
and Gal (2017) consider drawing multiple dropout samples from a parametric uncertainty 
model and aggregating multiple predictions for � and � . We denote this approach PU-MC. 
Moreover, we consider ensembles of non-parametric standard networks. We refer to the 
latter ones as DEs while we call those using additionally PU-based uncertainty PU-DEs. 
All considered types of networks provide estimates (�i, �i) where �i is obtained either as 
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direct network output (PU, PU-EV), by sampling (MC, CON-MC, SWAG, W-dropout) or 
as an ensemble aggregate (DE, PU-DE). For PU-MC, a combination of parametric output 
and sampling is employed. Throughout this section, we subsume PU, PU-EV, PU-DE and 
PU-MC as “parametric methods".

Standard evaluation measures
In all experiments we evaluate both regression performance and uncertainty quality. 

Regression performance is quantified by the root-mean-square error 
√
1∕N

∑
i(�i − yi)

2 
(RMSE, Bishop (2006)). Another established metric in the uncertainty community is 
the (Gaussian) negative log-likelihood (NLL), 1∕N

∑
i

�
log �i + (�i − yi)

2∕(2�2
i
) + c

�
 , a 

hybrid between performance and uncertainty measure (Gneiting and Raftery, 2007), see 
Appendix C.2 for a discussion. Throughout the paper, we ignore the constant c = log

√
2� 

of the NLL. The expected calibration error (ECE, Kuleshov et  al. (2018)) in contrast is 
not biased towards well-performing models and in that sense a pure uncertainty meas-
ure. It reads ECE =

∑B

j=1
�p̃j − 1∕B� for B equally spaced bins in quantile space and 

p̃j = |{ri|qj ≤ q̃(ri) < qj+1}|∕N the empirical frequency of data points falling into such a 
bin. Their normalized prediction residuals ri are defined as ri = (�i − yi)∕�i . Further, q̃ is 
the cdf of the standard normal distribution N(0, 1) and [qj, qj+1) are equally spaced inter-
vals on [0, 1], i.e., qj = (j − 1)∕B.

An unbounded uncertainty calibration measure
A desirable property for uncertainty measures is a signal that grows (preferentially lin-

early) with the misalignment between predicted and ideal uncertainty estimates, especially 
when handling strongly deviating uncertainty estimates. As the Wasserstein metric fulfils 
this property, we not only use it for model optimization but propose to consider the 1-Was-
serstein distance of normalized prediction residuals (WS) as a complementary uncertainty 
evaluation measure. It is generally applicable and by no means restricted to W-dropout 
networks. In detail, the 1-Wasserstein distance (Villani, 2008), also known as earth mover’s 
distance (Rubner et al., 1998), is a transport-based measure, denoted by dWS , between two 
probability densities, with Wasserstein GANs (Arjovsky et al., 2017) as its most prominent 
application in machine learning. In the context of uncertainty estimation, we use the Was-
serstein distance to measure deviations of uncertainty estimates {ri}i from ideal (Gauss-
ian)3 calibration that is given if yi ∼ N(�i, �i) with accompanying normalized residuals of 
ri ∼ N(0, 1) , i.e. we calculate dWS

(
{ri}i,N(0, 1)

)
 . As ECE, this is a pure uncertainty meas-

ure. However, it is not based on quantiles but directly on normalized residuals and can 
therefore resolve deviations on all scales. For example, two strongly ill-calibrated uncer-
tainties would result in (almost) identical ECE values while WS would resolve this differ-
ence in magnitude. Let us compare ECE and WS more systematically: we consider normal 
distributions N(�, 1) and N(0, �) (see Fig.  2) that are shifted (top left panel, dark blue) 
and squeezed/stretched (bottom left panel, dark blue), respectively. Their deviations from 
the ideal normalized residual distribution (the standard normal, red) are measured in terms 
of both ECE (r.h.s., blue) and WS (r.h.s., orange). For large values of |�| and � , ECE is 
bounded while WS increases linearly showing the better sensitivity of the latter towards 
strong deviations. For small values, � → 0 , ECE takes its maximum value, WS a value of 
1. In Fig. 3, we visualize these value pairs (WS(�) , ECE(�) ) (gray lines), i.e. � serves as 
curve parameter. The upper ‘branch’ corresponds to 0 < 𝜎 < 1 , the lower ‘branch’ to 𝜎 > 1 . 
For comparison, the pairs (WS, ECE) of various networks trained on standard regression 

3 As stated before, Gaussianity, while not always given, is a standard assumption for uncertainty modeling 
and typically used in ECE and NLL.
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datasets are visualized (see Sect. 4.3 for experimental details and results). They approx-
imately follow the theoretical �-curve, emphasizing that both under- and overestimating 
variance is of practical relevance. A given WS value allows, due to lacking saturation for 
underestimation, to distinguish these two cases more easily compared to ECE. While one 
might rightfully argue that the higher sensitivity of WS leads to a certain susceptibility to 
potential outliers, this can be addressed by regularizing the normalized residuals or by fil-
tering extreme outliers.

A novel uncertainty tail measure
We furthermore introduce a measure for distributional tails that allows to analyze worst-

case scenarios w.r.t. uncertainty quality, thus reflecting safety considerations. Such poten-
tially critical worst-case scenarios are signified by the above mentioned outliers, where 

Fig. 2  Comparison of the proposed Wasserstein-based measure (WS) and the expected calibration error 
(ECE). We measure the deviation between a standard normal distribution N(0, 1) (lhs, red) and shifted nor-
mal distributions N(�, 1) (top left, dark blue) and squeezed/stretched normal distributions N(0, �) (bottom 
left, dark blue), respectively. The resulting ECE values (orange) and WS values (blue) on the rhs emphasize 
the higher sensitivity of WS in case of large distributional differences. For details on ECE and WS, see text 
(Color figure online)

Fig. 3  Dependency between the Wasserstein-based measure and the expected calibration error for Gaussian 
toy data (gray curves) and for 1D standard datasets (point cloud, see Sect. 4.3 for details). The toy curves 
are obtained by plotting (WS(�) , ECE(�) ) from Fig. 2 (bottom right). For 1D standard datasets, uncertainty 
methods are encoded via plot markers, data splits via color. Datasets are not encoded and cannot be distin-
guished (see Appendix C for more details). Each plot point corresponds to a cross-validated trained network 
(Color figure online)
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the locally predicted uncertainty strongly underestimates the actual model error. A better 
understanding of uncertainty estimates in these scenarios might allow to determine lower 
bounds on operation quality of safety-critical systems. For this, we consider normalized 
residuals ri = (�i − yi)∕�i based on the prediction estimates (�i, �i) for a given data point 
(xi, yi) . As stated, we restrict our analysis to uncertainty estimates that underestimate model 
errors, i.e., |ri| ≫ 1 . These cases might be more harmful than overly large uncertainties, 
|ri| ≪ 1 , that likely trigger a conservative system behavior. We quantify uncertainty qual-
ity for worst-case scenarios as follows: for a given (test) dataset, the absolute normalized 
residuals {|ri|}i are calculated. We determine the 99% quantile q0.99 of this set and calcu-
late the mean value over all |ri| > q0.99 , the so-called expected tail loss at quantile 99% 
( ���

0.99
 , Rockafellar and Uryasev (2002)). The ETL0.99 thus measures the average uncer-

tainty quality of the worst 1%.
Technical setup
For the first two parts we use almost identical setups of 2 hidden layers with ReLu acti-

vations, using 50 neurons per layer for the toy datasets and 100 for the 1D standard data-
sets. All dropout-based networks (MC, CON-MC, W-dropout) apply Bernoulli dropout to 
all hidden activations. For W-dropout networks, we sample L = 5 sub-networks in each 
optimization step, other values of L are considered in Appendix B. On the smaller toy data-
sets, we afford L = 10 . For MC and W-dropout, the drop rate is set to p = 0.1 (see Appen-
dix B for other values of p). The drop rate of CON-MC in contrast is learned during train-
ing and (mostly) takes values between p = 0.2 and p = 0.5 . For ensemble methods (DE, 
PU-DE) we employ 5 networks. All NNs are optimized using the Adam optimizer (Kingma 
and Ba, 2015) with a learning rate of 0.001. Additionally, we apply standard normalization 
to the input and output features of all datasets to enable better comparability. The number 
of training epochs and cross validation runs depends on the dataset size. Further techni-
cal details on the networks, the training procedure, and the implementation of the uncer-
tainty methods can be found in Appendix A.1. In using a least squares regression, we make 
the standard assumption that errors follow a Gaussian distribution. This is reflected in the 
(standard) definitions of above named measures, i.e., all uncertainty measures quantify the 
set of outputs {(�i, �i)} relative to a Gaussian distribution.

4.2  Toy datasets

To illustrate qualitative behaviors of the different uncertainty techniques, we consider two 
ℝ → ℝ toy datasets. This benchmark puts a special focus on the handling of aleatoric het-
eroscedastic uncertainty. The first dataset is Gaussian white noise with an x-dependent 
amplitude, see first row of Fig.  4. The second dataset is a polynomial overlayed with a 
high-frequency, amplitude-modulated sine, see fourth row of Fig. 4. The explicit equations 
for the toy datasets used here can be found in Appendix A.2.

While the uncertainty in the first dataset (‘toy-noise’) is clearly visible, it is less 
obvious for the fully deterministic second dataset (‘toy-hf’). There is an effective 
uncertainty due to the insufficient expressivity of the model though, as the shallow 
networks employed are empirically not able to fit (all) fluctuations of ‘toy-hf’ (see fifth 
row of Fig.  4). One might (rightfully) argue that this is a sign of insufficient model 
capacity. But in more realistic, e.g., higher dimensional and sparser datasets the dis-
tinction between true noise and complex information becomes exceedingly difficult to 
make and regularization is actively used to suppress the modeling of (ideally) unde-
sired fluctuations. As the Nyquist-Shannon sampling theorem states, with limited data 
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deterministic fluctuations above a cut-off frequency can no longer be resolved (Landau, 
1967). They therefore become virtually indistinguishable from random noise.

The mean estimates of all uncertainty methods (second and fifth row in Fig.  4) look 
alike on both datasets. They approximate the noise mean and the polynomial, respectively. 
In the latter case, all methods rudimentarily fit some individual fluctuations. The variance 
estimation (third and sixth row in Fig. 4) in contrast reveals significant differences between 
the methods: MC dropout variants and other non-parametric ensembles are not capable 
of capturing heteroscedastic aleatoric uncertainty. This behavior of MC is expectable as 
it was primarily introduced to account for model uncertainty. The non-parametric DE is 
effectively optimized in a similar fashion. In contrast, NLL-optimized PU networks have 
a home-turf advantage on these datasets since the parametric variance is explicitly opti-
mized to account for the present heteroscedastic aleatoric uncertainty. W-dropout is the 
only non-parametric approach that accounts for the presence of this kind of uncertainty. 
While the results look similar, the underlying mechanisms are fundamentally different. 
On the one hand explicit prediction of the uncertainty, on the other hand implicit mod-
eling via distribution matching. Accompanying quantitative evaluations can be found in 
Table 7 in Appendix A.2. To collect further evidence that W-dropout approximates the true 
ground truth uncertainty �true appropriately, we fit it to ‘noisy line’ toy datasets in Appen-
dix A.2. Both large and small �true values are correctly matched, indicating that W-dropout 
is not just adding an uncertainty offset but flexibly spreads/contracts its sub-networks as 
intended. In the following, we substantiate the corroborative results of W-dropout on toy 
data by an empirical study on 1D standard datasets and an application to a modern object 
detection network.

Fig. 4  Comparison of uncertainty approaches (columns) on two 1D toy datasets: a noisy one (top) and a 
high-frequency one (bottom). Test data ground truth (respective first row) is shown with mean estimates 
(resp. second row) and standard deviations (resp. third row). The light green dashed curve (third row) indi-
cates the ground truth uncertainty. Similar uncertainty approaches (columns) are grouped together, W-drop-
out is highlighted by a yellow frame (Color figure online)
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4.3  Standard 1D regression datasets

Next, we study standard regression datasets, extending the dataset selection in Gal and 
Ghahramani (2016) by adding four additional datasets: ‘diabetes’, ‘abalone’, ‘california’, 
and ‘superconduct’. Table  8 in Appendix A.3 provides details on dataset sources, pre-
processing and basic statistics. Apart from train- and test-data results, we study regres-
sion performance and uncertainty quality under data shift. Such distributional changes 
and uncertainty quantification are closely linked since the latter ones are rudimentary 
“self-assessment” mechanisms that help to judge model reliability. These judgements gain 
importance for model inputs that are structurally different from the training data.

Data splits
Natural candidates for such non-i.i.d. splits are splits along the main directions of data 

in input and output space, respectively. Here, we consider 1D regression tasks. Therefore, 
output-based splits are simply done on a scalar label variable (see Fig. 5, right). We call 
such a split label-based (for a comparable split, see, e.g., Foong et  al. (2019)). In input 
space, the first component of a principal component analysis (PCA) provides a natural 
direction (see Fig.  5, left). Projecting the data points onto this first PCA-axis yields the 
scalar values the PCA-split is based on. Note that these projections are only considered for 
data splitting, they are not used for model training. Splitting data along such a direction in 
input or output space in, e.g., 10 equally large chunks, creates 2 outer data chunks and 8 
inner data chunks. Training a model on 9 of these chunks such that the remaining chunk 
for evaluation is an inner chunk is called data interpolation. If the remaining test chunk is 
an outer chunk, it is data extrapolation. For example, for labels running from 0 to 1, (label-
based) extrapolation testing would consider only data with a label larger 0.9, while training 
would be performed on the smaller label values. We introduce this distinction as extrapola-
tion is expected to be considerably more difficult than ‘bridging’ between feature combina-
tions that were seen during training.

More general information on training and dataset-dependent modifications to the 
experimental setup are relegated to the technical Appendix A.1. The presented results are 
obtained as follows: for each of the 14 standard datasets, we calculate (for each uncertainty 
method) the per-dataset scores: RMSE, mean NLL, ECE and WS. To improve statistical 
significance, these scores are 5- or 10-fold cross-validated, i.e. averages across a respec-
tive number of folds. Given the (fold-averaged) per-dataset scores for all 14 standard data-
sets, we calculate and visualize their mean and median values as well as quantile intervals 

input space output space input space output space

NN NN

Fig. 5  Scheme of two non-i.i.d. splits: a PCA-based split in input space (left) and label-based split in output 
space (right). While datasets appear to be convex here, they are (most likely) not in reality
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(see Figs. 6 and 7). For high-level summaries of the results on in-data and out-of-data test 
sets please refer to Table 1 and Table 2, respectively. While the mean values characterize 
the average behavior of the uncertainty methods, the displayed 75% quantiles indicate how 
well methods perform on the more challenging datasets. A small 75% quantile value thus 
hints at consistent stability of an uncertainty mechanism across a variety of tasks.

Regression quality
First, we consider regression performance, see Table 1 and the first two panels in the 

top row of Fig. 6. Averaging the RMSE values across the 14 datasets yields almost iden-
tical test results for all uncertainty methods (see Table 1). On training data (Fig. 6, first 
panel in top row) in contrast, we find the parametric methods to exhibit larger train data 

Table 1  Regression performance (RMSE) and uncertainty quality (NLL, ECE, WS) of W-dropout and vari-
ous uncertainty benchmarks. W-dropout yields the best uncertainty scores while providing a competitive 
RMSE value. Each number is the average across 14 standard 1D (test) datasets. The figures in this table 
correspond to the blue crosses in the second columns of Figs.  6 and 7, respectively. See text for further 
details

Bold values indicate the best value that was reached for a given evaluation measure

unc. method RMSE ( ↓) NLL ( ↓) ECE ( ↓) WS ( ↓)

SWAG 0.456 7.695 0.828 1.847
DE 0.407 6.184 0.796 1.628
PU 0.447 1.47 × 10

7 0.614 2.10 × 10
6

PU-EV 0.442 2.838 0.626 49.180
PU-DE 0.418 0.307 0.515 0.542
PU-MC 0.420 0.250 0.565 0.433
MC 0.412 0.190 0.788 0.643
CON-MC 0.436 1.513 0.669 0.964
W-Dropout 0.421 − 0.428 0.501 0.430

Table 2  Out-of-data analysis of W-dropout and various uncertainty benchmarks. Regression performance 
(RMSE) and uncertainty quality (NLL, ECE, WS) are displayed. As for in-domain test data, W-dropout out-
performs the other uncertainty methods without sacrificing regression quality. Each number is obtained by 
two-fold averaging: firstly, across two types of out-of-data test sets (label-based and PCA-based splits) and 
secondly, across 14 standard 1D datasets. The figures in this table are based on the blue crosses in the last 
four columns of Figs. 6 and 7, respectively. See text for further details

Bold values indicate the best value that was reached for a given evaluation measure

unc. method RMSE ( ↓) NLL ( ↓) ECE ( ↓) WS ( ↓)

SWAG 0.641 27.602 1.138 3.818
DE 0.599 14.055 0.988 2.554
PU 0.632 1.50 × 10

7 0.968 1.55 × 10
6

PU-EV 0.611 6.290 0.941 44.447
PU-DE 0.594 1448.391 0.783 5.892
PU-MC 0.591 397.022 0.823 3.215
MC 0.589 2.330 0.923 1.207
CON-MC 0.621 13.820 0.963 2.109
W-Dropout 0.615 2.287 0.763 1.203
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Fig. 6  Root-mean-square errors (RMSEs ( ↓ ), top row) and expected calibration errors (ECEs ( ↓ ), bottom 
row) of different uncertainty methods under i.i.d. conditions (first and second panel in each row) and under 
various kinds of data shift (third to sixth panel in each row, see text for details). W-dropout (light blue 
background) is compared to 8 benchmark approaches. Each blue cross is the mean over 14 1D regression 
datasets. Orange line markers indicate median values. The gray vertical bars reach from the 25% quantile 
(bottom horizontal line) to the 75% quantile (top horizontal line) (Color figure online)

Fig. 7  Negative log-likelihoods (NLLs ( ↓ ), top row) and Wasserstein distances ( ↓ , bottom row) of different 
uncertainty methods under i.i.d. conditions (first and second panel in each row) and under various kinds of 
data shift (third to sixth panel in each row, see text for details). W-dropout (light blue background) is com-
pared to 8 benchmark approaches. Each blue cross is the mean over ECE values from 14 standard regres-
sion datasets. Orange line markers indicate median values. The gray vertical bars reach from the 25% quan-
tile (bottom horizontal line) to the 75% quantile (top horizontal line) (Color figure online)
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RMSEs which could be due to NLL optimization favoring to adapt variance rather than 
mean. However, this regularizing NLL training comes along with a smaller generalization 
gap, leading to competitive test RMSEs (see Table 1 and the second panel in the top row of 
Fig. 6). W-dropout is on a par with the benchmark approaches, i.e. our optimization objec-
tive does not lead to degraded regression quality.4 Next, we investigate model performance 
under data shift, visualized in the third to sixth panel in the top row of Fig. 6. For interpola-
tion setups (fourth and sixth panel), regression quality is comparable between all methods. 
As expected, performances under these data shifts are (slightly) worse compared to those 
on i.i.d. test sets. The more challenging extrapolation setups (third and fifth panel) amplify 
the deterioration in performance across all methods. Again, W-dropout yields competitive 
RMSE values (see also Table 2).

Expected calibration errors
Figure 6 (bottom row) provides average ECE values of the outlined uncertainty meth-

ods under i.i.d. conditions (first and second panel), under label-based data shifts (third and 
fourth panel) and under PCA-based data shifts (fifth and sixth panel). On training data, PU 
performs best, followed by PU-EV and all other methods. Interestingly, both SWAG and 
W-dropout show a relatively broad range of ECE values on the various training datasets. 
This could be interpreted as a form of over-estimation of the present uncertainty and for 
W-dropout this effect occurs on mostly smaller datasets with lower data variability. How-
ever, looking at the i.i.d. test results (Table 1 and second panel in the bottom row of Fig. 6) 
we find W-dropout to provide the lowest averaged ECE (Table  1), followed by the PU-
based (implicit) ensembles of PU-DE and PU-MC. The calibration quality of W-dropout 
is moreover the most consistent one across the datasets as can be seen from its small 75% 
quantile value (Fig. 6, second panel in bottom row).

Looking at the stability w.r.t. data shift, i.e., extra- and interpolation based on label-split 
or PCA-split, again W-dropout reaches the smallest calibration errors (followed by PU-DE 
and PU-MC, see Table 2). Regarding the 75% quantiles, W-dropout consistently provides 
one of the best results on all out-of-data (OOD) test sets.

Negative log-likelihoods
For the unbounded NLL (see Table 1 and the top row of Fig. 7), the results are more 

widely distributed compared to the (bounded) ECE values. W-dropout reaches the smallest 
mean value on i.i.d. test sets, followed by MC and PU-MC (Table 1). The mean NLL value 
of PU is above the upper plot limit in Fig. 7 (second panel in the upper row) indicating 
a rather weak stability of this method. On PCA-interpolate and PCA-extrapolate test sets 
(Fig. 7, last two panels in the upper row), MC, PU-MC and W-dropout networks perform 
best. On label-interpolate and label-extrapolate test sets, only MC and W-dropout networks 
are in first place when considering average values, followed by PU-EV. The mean NLLs 
of many other approaches are above the upper plot limit. Averaging all these OOD results 
in Table 2, we find W-dropout to provide the overall smallest NLL values, narrowly fol-
lowed by MC. Note that median results are not as widely spread and PU-DE, MC, PU-MC 
and W-dropout perform comparably well. These qualitative differences between mean and 
median behavior indicate that most methods perform poorly ‘once in a while’. A notewor-
thy observation as stability across a variety of data shifts and datasets can be seen as a 
crucial requirement for an uncertainty method. W-dropout models yield high stability in 
that sense w.r.t. NLL.

4 This observation does not only hold relative to the other uncertainty methods but, moreover, relative to a 
deterministic network, see Fig. 12 and surrounding discussions in Appendix A.3.



3175Machine Learning (2024) 113:3161–3204 

1 3

Wasserstein distances
Studying Wasserstein distances, we again observe the smallest scores on test data for 

W-dropout, followed by PU-MC and PU-DE (see Table 1 and the second panel in the bot-
tom row of Fig. 7). While PU provides the best WS value on training data, its generali-
zation behavior is less stable: on test data, its mean and 75% quantile take high values 
beyond the plot range. Under data shift (Table 2 and third to sixth panel in bottom row of 
Fig. 7), W-dropout and MC are in the lead, CON-MC and DE follow on ranks three and 
four. On label-based data shifts, MC and W-dropout outperform all other methods by a 
significant margin when considering average values. As for NLL, we find the mean values 
for PU-DE and PU-MC to be significantly above their respective median values indicating 
again weaknesses w.r.t. the stability of parametric methods. Here as well, not only good 
average results, but also consistency over the datasets and splits, is a hallmark of Wasser-
stein dropout.

Epistemic uncertainty
Summarizing these evaluations on 1D regression datasets, we find W-dropout to yield 

better and more stable uncertainty estimates than the state-of-the-art methods of PU-DE 
and PU-MC. We moreover observe advantages for W-dropout under PCA- and label-
based data shifts. These results suggest that W-dropout induces uncertainties which 
increase under data shift, i.e., it approximately models epistemic uncertainty. This con-
jecture is supported by Fig. 8 that visualizes the uncertainties of MC dropout (blue) and 
W-dropout (orange) for transitions from in-data to out-of-data. As expected, these shifts 

Fig. 8  Extrapolation behavior of W-dropout (orange) and MC dropout (blue). Two extrapolation “direc-
tions” (rows) and two datasets (columns) are considered. The vertical bar in each panel separates training 
data (left) from out-of-data (OOD, right). Scatter points show the predicted standard deviation for indi-
vidual data points. The colored solid lines show averages over points in equally-sized bins and reflect the 
expected growth of epistemic uncertainty in the OOD-region. For details on the data splits and extrapola-
tions please refer to Sect. 4.3 and Appendix A.3 (Color figure online)
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lead to increased (epistemic) uncertainty for MC dropout. This holds true for W-dropout 
that behaves highly similar under data shift indicating that it “inherits" this ability from 
MC dropout: both approaches match sub-networks to training data and these sub-networks 
“spread” when leaving the training data distribution. Since W-dropout models hetero-
scedastic, i.e. input-dependent, aleatoric uncertainty, we notice a higher variability of its 
uncertainties in Fig. 8 compared to the ones of MC dropout.

For further (visual) inspections of uncertainty quality, see the residual-uncertainty scat-
ter plots in Appendix A.4. A reflection on NLL and comparisons of the different uncer-
tainty measures on 1D regression datasets can be found in Appendix A.3.

Expected tail loss
For both toy and standard regression datasets, we calculate the expected tail loss at the 

99% quantile (ETL0.99 ) on test data. Doing this for all trained networks yields a total of 110 
ETL0.99 values per uncertainty method when including cross-validation. As a tail measure, 
the ETL0.99 evaluates a specific aspect of the distribution of uncertainty estimates. Studying 
such a property is useful if the uncertainty estimate distribution as a whole is appropriate, 
as measured e.g. by the ECE. We thus restrict the ETL0.99 analysis to the three methods that 
provide the best ECE values, namely PU-MC, PU-DE and W-dropout. The mean and max-
imum values of their ETL0.99 ’s are reported in Table 3. While none of these methods gets 
close to the ideal ETL0.99 ’s of the desired N(0, 1) Gaussian, W-dropout networks exhibit 
significantly less pronounced tails and therefore higher stability compared to PU-MC and 
PU-DE. This holds true over all considered test sets. Deviations from standard normal 
increase from the i.i.d. train-test split over the PCA-based train-test split to the label-based 
one. We attribute the lower stability of PU-DE to the nature of the PU networks that com-
pose the ensemble, although their inherent instability (see Table  9 in Appendix A.3) is 
largely suppressed by ensembling. Considering the tail of the distribution of the prediction 
residuals |ri| , however, reveals that regularization of PU by ensembling might not work in 
every single case. It is then unlikely that larger ensemble are able to fully cure this instabil-
ity issue. Regularizing PU by applying dropout (PU-MC) leads to only mild improvement. 
W-dropout networks in contrast encode uncertainty into the structure of the entire network 
thus yielding improved stability compared to parametric approaches. Further analysis 
shows that the large normalized residuals ri = (�i − yi)∕�i , which cause the large ETL0.99 

Table 3  Study of worst-case scenarios for different uncertainty methods: W-dropout (W-Drop), PU-DE and 
PU-MC are compared to the ideal Gaussian case for i.i.d. and non-i.i.d. data splits. Uncertainty quality in 
these scenarios is quantified by the expected tail loss at the 99% quantile (ETL

0.99
 ). Each mean and max 

value is taken over the ETLs of 110 models trained on 15 different datasets

Measure Split N(0, 1) W-Drop PU-DE PU-MC

mean ETL
0.99

i.i.d. 2.89 4.68 7.77 6.24
max ETL

0.99
i.i.d. 3.01 8.86 31.14 91.75

mean ETL
0.99

label 2.89 7.28 86.79 44.00
max ETL

0.99
label 3.01 93.55 2267.93 1224.27

mean ETL
0.99

pca 2.89 5.93 9.78 8.62
max ETL

0.99
pca 3.01 18.35 64.13 93.49



3177Machine Learning (2024) 113:3161–3204 

1 3

values, correspond (on average) to large absolute errors (�i − yi).5 This underpins the prac-
tical relevance of the ETL analysis, as large absolute errors are more harmful than small 
ones in many contexts, e.g. when detecting traffic participants.

Dependencies between uncertainty measures
All uncertainty-related measures (NLL, ECE, WS, ETL) relate predicted uncertainties 

to actually occurring model residuals. Each of them putting emphasize on different aspects 
of the considered samples: NLL is biased towards well-performing models, ECE measures 
deviations within quantile ranges, Wasserstein distance resolves distances between normal-
ized residuals and ETL focuses on distribution tails. The empirically observed dependen-
cies between WS and ECE are visualized in Fig. 3. Additionally to WS and ECE, we con-
sider Kolmogorov–Smirnov (KS) distances (Stephens, 1974) on normalized residuals in 
Fig. 21 in Appendix C.

While all these scores are expectably correlated, noteworthy deviations from ideal cor-
relation occur. Therefore, we advocate for uncertainty evaluations based on various meas-
ures to avoid overfitting to a specific formalization of uncertainty. The top panel of Fig. 21 
reflects the higher sensitivity of the Wasserstein distance compared to ECE: we observe 
two “slopes", the first one corresponds to models that overestimate uncertainties, i.e., 
𝜎𝜃 > |𝜇𝜃 − yi| on average. In these scenarios, WS is typically below 1 as 1 would be the WS 
distance between a delta distribution at zero (corresponding to 𝜎𝜃 → ∞ ) and the expected 
N(0, 1) Gaussian. The second “slope" contains models that underestimate uncertainties, 
i.e., 𝜎𝜃 < |𝜇𝜃 − yi| . WS is not bounded in these scenarios and is thus—unlike ECE—able to 
resolve differences between any two uncertainty estimators.

4.4  Application to object regression

After studying toy and standard regression datasets, we turn towards the challenging task 
of object detection (OD), namely the SqueezeDet model (Wu et al., 2017), a fully convo-
lutional neural network. First, we adopt the W-dropout objective to SqueezeDet (see the 
following paragraph). Next, we introduce the six considered OD datasets and sketch cen-
tral technical aspects of training and inference. Since OD networks are often employed 
in open-world applications (like autonomous vehicles or drones), they likely encounter 
various types of concept shifts during operations. In such novel scenarios, well-calibrated 
“self-assessment” capabilities help to foster safe functioning. We therefore evaluate Was-
serstein-SqueezeDet not only in-domain but on corrupted and augmented test data as well 
as on other object detection datasets (see last paragraphs of this subsection).

Architecture
SqueezeDet takes an RGB input image and predicts three quantities: (i) 2D bounding 

boxes for detected objects (formalized as a 4D regression task), (ii) a confidence score 
for each predicted bounding box and (iii) the class of each detection. Its architecture is as 
follows: First, a sequence of convolutional layers extracts features from the input image. 
Next, dropout with a drop rate of p = 0.5 is applied to the final feature representations. 
Another convolutional layer, the ConvDet layer, finally estimates prediction candidates. 

5 They are (on average) not due to small absolute residuals ≪ 1 that go along with even smaller uncertainty 
estimates.
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In more detail, SqueezeDet predictions are based on so-called anchors, initial bounding 
boxes with prototypical shapes. The ConvDet layer computes for each such anchor a con-
fidence score, class scores and offsets to the initial position and shape. The final predic-
tion outputs are obtained by applying a non-maximum-suppression (NMS) procedure to 
the prediction candidates. The original loss of SqueezeDet is the sum of three terms. It 
reads LSqueezeDet = Lregres + Lconf + Lclass with the bounding box regression loss Lregres , a 
confidence-score loss Lconf and the object-classification loss Lclass . Our modification of the 
learning objective is restricted to the L2 regression loss:

with ��ijk and ��G
ijk

 being estimates and ground truth expressed in coordinates relative to the 
k-th anchor at grid point (i, j) where � ∈ {x, y,w, h} . See Wu et al. (2017) for descriptions 
of all other loss parameters. Applying W-dropout component-wise to this 4D regression 
problem yields

where

with ���ijk
=
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)2 being the 
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ijk
 for � ∈ {x, y,w, h}.

Datasets
We train SqueezeDet networks on six traffic scene datasets: KITTI (Geiger et al., 2012), 

SynScapes (Wrenninge and Unger, 2018), A2D2 (Geyer et al., 2020), Nightowls (Neumann 
et al., 2018), NuImages (NuScenes) (Caesar et al., 2020) and BDD100k (Yu et al., 2020). 
They differ from each other in dataset size (the large BDD100k dataset contains almost 
20 times more images than the small KITTI dataset, see Table 4), time of day (Nightowls 
comprises only nighttime images) and data acquisition (SynScapes is simulation-based). 
For further information on the datasets, see Table 10 in Appendix A.5. We employ image 
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Table 4  Basic statistics of the 
harmonized object detection 
datasets. Dataset size and 
number of annotated objects are 
reported for train data (first two 
columns) and test data (last two 
columns). For details on dataset 
harmonization, see text and 
references therein

Dataset Train Test

# Images # Objects # Images # Objects

KITTI 3622 15,254 3387 12,673
SynScapes 19,998 906,827 4998 226,390
A2D2 22,731 121,320 4186 36,544
Nightowls 30,064 50,225 6595 10,766
NuImages 58,803 410,462 14,377 97,014
BDD100k 69,281 843,963 9919 123,752
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sizes of 672 × 384 and rescale all datasets (except for KITTI6) accordingly. To facilitate 
cross-dataset model evaluations (see paragraphs on OOD analyses in this section), we 
group the various object classes of the six datasets into three main categories: ‘pedestrian’, 
‘cyclist’ and ‘vehicle’ (see Table 11 in Appendix A.5 for the object class mapping). Some 
static or rare object classes are discarded.

Technical aspects We compare MC-SqueezeDet, i.e., standard SqueezeDet with acti-
vated dropout at inference, with W-SqueezeDet that uses W-dropout instead of the original 
MSE regression loss. All models are trained for 300, 000 mini-batches of size 20. After 
training, we keep dropout active and compute 50 forward passes for each test image. The 
detections from all forward passes are clustered using k-means (Bishop, 2006).7 The num-
ber of clusters is chosen for each image to match the average number of detections across 
the 50 forward passes. Each cluster is summarized by its mean detection and standard devi-
ation. To ensure meaningful statistics, we discard clusters with 4 or less detections. The 
cluster means are matched with ground truth. We exclude predictions from the evaluation 
if their IoU with ground truth is ≤ 0.1 . For each dataset, SqueezeDet’s maximum number 
of detections is chosen proportionally to the average number of ground truth objects per 
image.

In-data evaluation
To assess model performance, we report the mean intersection over union (mIoU) and 

RMSE (in pixel space) between predicted bounding boxes and matched ground truths. The 
quality of the uncertainty estimates is measured by (coordinate-wise) NLL, ECE, WS and 
ETL. Table 5 shows a summary of our results on train and test data for the KITTI dataset. 
The results for NLL, ECE, WS and ETL have been averaged across the 4 regression coordi-
nates. MC-SqueezeDet (abbreviated as MC-SqzDet) and W-SqueezeDet (W-SqzDet) show 
comparable regression results in terms of RMSE and mIoU, with slight advantages for MC-
SqueezeDet. At this point, we only consider versions of SqueezeDet that provide uncer-
tainty scores. For a discussion regarding performance degradation w.r.t. the deterministic 

Table 5  Regression performance and uncertainty quality of SqueezeDet-type networks on KITTI data. 
W-SqueezeDet (W-SqzDet) is compared with the default MC-SqueezeDet (MC-SqzDet). The values of 
NLL, ECE and WS are aggregated across their respective four dimensions, for details see Appendix A.5 
and Table 12 therein

Bold values indicate the best value that was reached for a given evaluation measure

Measure Train Test

MC-SqzDet W-SqzDet MC-SqzDet W-SqzDet

mIoU (↑) 0.705 0.691 0.695 0.694
RMSE (↓) 8.769 9.832 14.666 14.505

NLL (↓) 8.497 2.770 25.704 6.309

ECE (↓) 0.615 0.193 0.825 0.433

WS (↓) 1.421 0.315 2.831 0.900

ETL
0.99

22.358 8.853 42.101 18.223

6 For KITTI, we crop images in x-direction to avoid strong distortions due to its high aspect ratio. In 
y-direction, only a minor upscaling is applied.
7 Using the density-based clustering technique HDBSCAN (Campello et  al., 2013) yields comparable 
results especially w.r.t. the relative ordering of the methods.
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SqueezeDet (approximately 10% , see Table 13), please refer to Appendix A.5. Considering 
uncertainty quality, we find substantial advantages for W-SqueezeDet across all evaluation 
measures. These advantages are due to the estimation of heteroscedastic aleatoric uncer-
tainty during training (see also the test statistics ‘trajectories’ during training for BDD100k 
in Fig. 18 in Appendix A.5).

The test RMSE and ECE values of all six OD datasets are visualized as diago-
nal elements in Fig.  9. The (mostly) ‘violet’ RMSE diagonals for MC-SqueezeDet and 
W-SqueezeDet (top row of Fig.  9) again indicate comparable regression performances. 
Datasets are ordered by size from small (top) to large (bottom). The large NuImages test set 
occurs to be the most challenging one. Regarding ECE (bottom row of Fig. 9), W-Squeeze-
Det performs consistently stronger, see the ‘violet’ W-SqueezeDet diagonal (smaller val-
ues) and the ‘red’ MC-SqueezeDet diagonal (higher values). These findings qualitatively 
resemble those on the standard regression datasets and indicate that W-dropout works well 
on a modern application-scale network.

To analyze how well these OD uncertainty mechanisms function on test data that is 
structurally different from training data, we consider two types of out-of-data analyses in 
the following: first, we study SqueezeDet models that are trained on one OD dataset and 
evaluated on the test sets of the remaining five OD datasets. A rather ‘semantic’ OOD 
study as features like object statistics and scene composition vary between training and 
OOD test sets. Second, we consider networks that are trained on one OD dataset and evalu-
ated on corrupted versions (defocus blur, Gaussian noise) of the respective test set, thus 

Fig. 9  In-data and out-of-data evaluation of MC-SqueezeDet (lhs) and W-SqueezeDet (rhs) on six OD data-
sets. We consider regression quality (RMSE, top row) and uncertainty quality (ECE, bottom row). For each 
heatmap entry, the row label refers to the training dataset, the column label to the test dataset. Thus, diago-
nal matrix elements are in-data evaluations, non-diagonal elements are OOD analyses. W-SqueezeDet pro-
vides substantially smaller ECE values both in-data and out-of-data
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facing changed ‘low-level’ features, i.e. less sharp edges due to blur and textures overlayed 
with pixel noise, respectively.

Out-of-data evaluation on other OD datasets
We train one SqueezeDet on each of the six OD datasets and evaluate each of these 

models on the test sets of the remaining 5 datasets. The resulting OOD regression scores 
and OOD ECE values are visualized as off-diagonal elements in Fig. 9 for MC-Squeeze-
Det (left column) and W-SqueezeDet (right column). Since datasets are ordered by size 
(a rough proxy to dataset complexity), the upper triangular matrix corresponds to cases 
in which the evaluation dataset is especially challenging (“easy to hard"), while the lower 
triangular matrix subsumes easier test sets compared to the respective i.i.d. test set (“hard 
to easy"). Accordingly, we observe (on average) lower RMSE values in the lower triangular 
matrix for both SqueezeDet variants. The ECE values of W-SqueezeDet are once more 
smaller (‘violet’) compared to MC-SqueezeDet (‘red’). The ECE diagonal of W-Squeeze-
Det is visually more pronounced compared to the one of MC-SqueezeDet since uncertainty 
calibration is effectively optimized during the training of W-SqueezeDet. The Nightowls 
dataset causes a cross-shaped pattern, indicating that neither transfers of Nightowls mod-
els to other datasets nor transfers from other models to Nightowls work well. This behav-
ior can be understood as the feature distributions of Nightowls’ nighttime images diverge 
from the (mostly) daytime images of the other datasets. The high uncertainty quality of 
W-SqueezeDet is underpinned by the evaluations of NLL and WS (see Fig. 17 and text in 
Appendix A.5).

Out-of-data evaluation on corrupted datasets
In contrast to the analysis above, we now focus on ‘non-semantic’ data shifts due to 

technical distortions. For each test set, we generate a blurred and a noisy version.8 Two 
examples of these transformations can be found in Fig.  16 in Appendix A.5. In accord-
ance with previous results, W-SqueezeDet provides smaller ECE values compared to MC-
SqueezeDet on most blurred and noisy test sets (see Table 6). We observe a less substantial 

Table 6  Out-of-data evaluation of MC-SqueezeDet (MC-SqzDet) and W-SqueezeDet (W-SqzDet) on dis-
torted OD datasets. Each model is trained on the original dataset and evaluated on two modified versions 
of the respective test set: a blurred one (first two columns) and a noisy one (last two columns), see text for 
details. We report the expected calibration error (ECE) and find W-SqueezeDet to perform better than MC-
SqueezeDet on most datasets

Bold values indicate the best value that was reached for a given evaluation measure

Dataset Defocus blur Gaussian noise

MC-SqzDet W-SqzDet MC-SqzDet W-SqzDet

KITTI 1.034 1.082 1.021 1.084
SynScapes 1.081 0.503 0.941 0.910

A2D2 0.921 0.295 1.143 0.617

Nightowls 1.067 0.803 0.992 0.682

NuImages 0.908 0.332 0.760 0.849
BDD100k 1.012 0.390 0.833 0.633

8 We employ the imgaug library (https:// github. com/ aleju/ imgaug) and apply defocus blur (severity of 
“1") and additive Gaussian noise (i.i.d. per pixel, drawn from the distribution N(0, 20) ), respectively.

https://github.com/aleju/imgaug
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deterioration of uncertainty quality for blurring compared to adding pixel noise, possibly 
because the latter one more strongly affects short-range pixel correlations that the networks 
rely on.

5  Conclusion

The prevailing approaches to uncertainty quantification rely on parametric uncertainty 
estimates by means of a dedicated network output. In this work, we propose a novel type 
of uncertainty mechanism, Wasserstein dropout, that quantifies (aleatoric) uncertainty in 
a purely non-parametric manner: by revisiting and newly assembling core concepts from 
existing dropout-based uncertainty methods, we construct distributions of randomly drawn 
sub-networks that closely approximate the actual data distributions. This is achieved by a 
natural extension of the Euclidean metric ( L2-loss) for points to the 2-Wasserstein metric 
for distributions. In the limit of vanishing distribution width, i.e. vanishing uncertainty, 
both metrics coincide. Assuming Gaussianity and making a bootstrap approximation, the 
metric can be replaced by a compact loss objective affording stable training. To the best 
of our knowledge, W-dropout is the first non-parametric method to model aleatoric uncer-
tainty in neural networks. It outperforms the ubiquitous parametric approaches, as, e.g., 
shown by our comparison to deep ensembles (PU-DE).

An extensive additional study of uncertainties under data shift further reveals advan-
tages of W-dropout models compared to deep ensembles (PU-DE) and parametric mod-
els combined with dropout (PU-MC): the Wasserstein-based technique still provides (on 
average) better calibrated uncertainty estimates while coming along with a higher stabil-
ity across a variety of datasets and data shifts. In contrast, we find parametric uncertainty 
estimation (PU) to be prone to instabilities that are only partially cured by the regularizing 
effects of explicit or implicit (dropout-based) ensembling (PU-DE, PU-MC). With respect 
to worst-case scenarios, W-dropout networks are by a large margin better than either 
PU-DE or PU-MC. This makes W-dropout especially suitable for safety-critical applica-
tions like automated driving or medical diagnosis where (even rarely occurring) inadequate 
uncertainty estimates might lead to injuries and damage. Furthermore, while our theoreti-
cal derivation focuses on aleatoric uncertainty, the presented distribution-shift experiments 
suggest that W-dropout is also able to capture epistemic uncertainty. Finding a theoretical 
explanation for that is subject of future research.

With respect to computational demands, W-dropout is roughly equivalent to MC drop-
out (MC) and, in fact, could be used as a drop-in replacement for the latter. While L-fold 
sampling of sub-networks increases the training complexity, we observe an increase of 
training time that is significantly below L in our implementation. Inference is performed in 
the same way for both methods and thus also their run-time complexities are equivalent. In 
comparison to deep ensembles, W-dropout’s use of a single network reduces requirements 
on training and storage at the expense of multiple forward passes during inference. This 
property is shared with MC and approaches exist to reduce the prediction cost, for instance 
last-layer MC allows sampling-free inference (see also Postels et al. (2019)).

In addition to the toy and 1D regression experiments, SqueezeDet is selected as a rep-
resentative of large-scale object detection networks. We find the above mentioned prop-
erties of Wasserstein dropout to carry over to Wasserstein-SqueezeDet, namely the 
enhanced uncertainty quality and its increased stability under different types of data shifts. 
At the same time observed performance losses are minimal. Overall, our experiments 
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on SqueezeDet show that W-dropout scales to larger networks relevant for practical 
applications.

When intending to employ uncertainty estimation as a safeguard against model errors, 
distributional properties of the normalized residuals gain importance. To address such 
properties we introduce the ETL as a measure for rare and critical cases where uncertainty 
is strongly underestimated. While we find that W-dropout leads to more Gaussian residu-
als compared to our benchmarks we still observe remaining deviations. A priori, it is not 
clear whether the aleatoric uncertainty in complex data is Gaussian or whether such rare 
cases could be better described with more heavy-tailed distributions. If this is the case, the 
question arises of whether dropout mechanisms are flexible enough to model distributions 
outside the Gaussian regime, which we investigated in Sicking et al. (2020).

Taking a step back, the idea of exchanging the distributions allows to apply our frame-
work to a variety of tasks beyond regression and makes the migration from single point 
modelling to full distributions a rather general concept. Replacing, e.g., Gaussians with 
Dirichlet distributions makes an application to classification conceivable, where Malinin 
and Gales (2018) employ parametric (Dirichlet) distributions to quantify uncertainty. Con-
ceptually, our findings suggest that distribution modeling based on sampling generalizes 
better compared to parameterized counterparts. An observation that might find applications 
far outside the scope of uncertainty quantification.

Appendix A Extension to the empirical study

This part accompanies our paper “Wasserstein Dropout” and provides further in-depth 
information. Large parts of the empirical evaluation on toy data and standard regression 
datasets can be found in Sect. A, including details on the datasets, more granular evalua-
tions and additional toy data experiments. Details on the object detection datasets and sup-
plementary evaluations of SqueezeDet are located in Sect. A.5. As W-dropout exhibits the 
hyper-parameters p (drop rate) and L (sample size), we test various values in Sect. B, find-
ing no strong correlation between result and parameter choices. We close with a discussion 
on the relation between uncertainty measures and their respective sensitivity in Sect. C.

Complementing the evaluation sketched in the body of the paper, Sect. 4, we provide 
more details on the training setup and benchmark approaches in the following subsection. 
Further information on the toy dataset experiments can be found in Sect. A.2. The same 
holds for the 1D regression experiments in Sect. A.3, which we extend by evaluations on 
dataset level that were skipped in the main text. A close look at the predicted uncertainties 
(per method) on these datasets is given via scatter plots in Sect. A.4. Details on OD dataset 
preprocessing and SqueezeDet results are found in the last subsection.

A.1 Experimental setup

The experimental setup used for the toy data and 1D regression experiments is presented 
in two parts: first, technical details of the benchmark approaches we compare with and sec-
ond, a description of the neural networks and training procedures we employ.

For MC dropout, we choose the regularization coefficient � by grid search on the set 
� ∈ {0, 10−6, 10−5, 10−4, 10−3, 10−2} and find � = 10−6 to provide the best overall results 
for the 1D regression datasets. A variant of MC dropout that optimizes its layer-specific 
drop rates during training is Concrete dropout (CON-MC): all its initial drop rates are 
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set to pinitial = 0.1 . The hyper-parameters wr = l2∕(�N) and dr = 2∕N are determined by 
the number of training datapoints N, prior length scale l = 10−3 and �(N) ∈ [10−3, 2] that 
decreases monotonically with N. For PU and PU-EV networks, we ensure positivity con-
straints using softplus (Glorot et al., 2011) and optimize Gaussian NLL and t-distribution 
NLL, respectively. The regularization coefficient of PU-EV is set to � = 10−2 , determined 
by a grid search considering the parameter range � ∈ {10−4, 10−3, 10−2, 0.1, 0.5} . For 
SWAG, we start to estimate the low-rank Gaussian proxy (rank r = 20 ) for the NN weight 
distribution after training for n/2 epochs, with n being the total number of training epochs.

We categorize the toy and 1D regression datasets as follows: small datasets {toy-hf, 
yacht, diabetes, boston, energy, concrete, wine-red}, large datasets {toy-noise, abalone, 
kin8nm, power, naval, california, superconduct, protein} and very large datasets {year}. 
For small datasets, NNs are trained for 1000 epochs using mini-batches of size 100. All 
results are 10-fold cross validated. For large datasets, we train for 150 epochs and apply 
5-fold cross validation. We keep this large-dataset setting for the very large ‘year’ dataset 
but increase mini-batch size to 500.

All experiments are conducted on Core Intel(R) Xeon(R) Gold 6126 CPUs 
and NVidia Tesla V100 GPUs. Conducting the described experiments with cross 
validation on one CPU takes 20 h for toy data, 130 h for 1D regression datasets and approxi-
mately 100 h for object regression on the GPU.

A.2 Toy datasets: systematic evaluation and further experiments

The toy-noise and toy-hf datasets are sampled from fnoise(x) ∼ N(0, exp(−0.02 x2)) 
for x ∈ [−15, 15] and fhf (x) = 0.25 x2 − 0.01 x3 + 40 exp(−(x + 1)2∕ 200) sin(3 x) for 
x ∈ [−15, 20] , respectively. Standard normalization is applied to input and output values. 
Detailed evaluations of the considered uncertainty methods on these datasets are given in 
Table 7.

To illustrate the capabilities and limitations of MC dropout regarding the modeling 
of aleatoric uncertainty, we consider the toy-noise dataset again and systematically vary 
MC’s regularization parameter � (see Fig. 10, � decreases from left to right). As MC drop-
out’s uncertainty estimates contain an additive constant term proportional to � , tuning 
this parameter allows to model the average aleatoric uncertainty (the ideal � in Fig.  10 
is between � = 10−6 and � = 10−5 ). Input dependencies of noise (heteroscedasticity) can 
however not be incorporated, i.e. even an optimized � causes systematic over- and under-
estimations of the data uncertainty in many cases. This is in contrast to W-dropout.

Having shown that W-dropout can approximate input-dependent data uncertainty appro-
priately (see Fig. 1), we now analyze its ability to match ground truth uncertainties �true 
more systematically. Therefore, we fit a ‘noisy line’ toy dataset that is given by (xi, yi) with 
xi ∼ U(−1, 1) and yi ∼ N(0, �true) . The ground truth standard deviations take the values 
�true = 0, 0.1, 0.2, 0.5, 1, 2, 5, 10 . Fig.  11 emphasizes that W-dropout provides accurate 
uncertainty estimates for both small and large noise levels. Minor x-dependent fluctuations 
(see ‘whiskers’ in Fig. 11) decrease monotonically with �true. 

A.3 Standard regression datasets: systematic evaluation

An overview on the 1D regression datasets providing basic statistics and information on 
preprocessing is given in Table  8. Evaluations of RMSE, NLL, ECE and WS on data-
set level can be found in Table 9. Moreover, we extend our evaluation by a deterministic 
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network which we obtain as one of the members of the DE ensemble. For better overview, 
we reproduce Fig. 6 (top row) with this member added, see Fig. 12. The small performance 
deterioration of this member compared to the full DE ensemble can be attributed to the 
averaging over the outcomes of the five ensemble components which suppresses stochastic 
fluctuations. 

A.4 Residual‑uncertainty scatter plots

Visual inspection of uncertainties can be helpful to understand their qualitative behavior. 
We scatter model residuals �i − yi (respective x-axis in Fig. 14) against model uncertain-
ties �i (resp. y-axis in Fig. 14). For a hypothetical ideal uncertainty mechanism, we expect 
(yi − �i) ∼ N(0, �i) , i.e., model residuals following the predictive uncertainty distribution. 
More concretely, 68.3% of all (yi − �i) would lie within the respective interval [−�i, �i] and 
99.7% of all (yi − �i) within [−3 �i, 3 �i] . Fig. 13 visualizes this hypothetical ideal. It is gen-
erated as follows: We draw 3, 000 standard deviations �i ∼ U(0, 2) and sample residuals ri 
from the respective normal distributions, ri ∼ N(0, �i) . The pairs (ri, �i) are visualized. By 
construction, uncertainty estimates now ideally match residuals in a distributional sense.

Geometrically, the described Gaussian properties imply that 99.7% of all scatter points, 
e.g., in Fig.  14, should lie above the blue 3� lines and 68.3% of them above the yellow 
1� lines. For toy-noise, abalone and superconduct (first, third and fourth row in Fig. 14), 
PU, PU-DE and W-dropout qualitatively fulfill this requirement while MC, MC-LL and 
DE tend to underestimate uncertainties. This finding is in accordance with our systematic 
evaluation. The naval dataset (second row in Fig. 14) poses an exception in this regard as 

Table 7  Regression performance and uncertainty quality of networks with different uncertainty mecha-
nisms. All scores are calculated on the test set of toy-hf and toy-noise, respectively

Measure Dataset Swag de pu pu-ev pu-de

RMSE ( ↓) toy-hf 0.696 0.660 0.691 0.691 0.690
NLL ( ↓) toy-hf 85.331 52.444 −0.098 1.855 −0.100

ECE ( ↓) toy-hf 1.472 1.584 0.548 0.500 0.524
WS ( ↓) toy-hf 9.043 7.413 0.233 0.242 0.243
RMSE ( ↓) toy-noise 1.006 1.006 1.006 1.006 1.006
NLL ( ↓) toy-noise 6934.498 1.14 × 10

4 −0.374 1.555 −0.374

ECE ( ↓) toy-noise 1.541 1.642 0.062 0.098 0.084
WS ( ↓) toy-noise 63.760 83.590 0.028 0.064 0.048

Measure Dataset pu-mc con-mc mc w-drop

RMSE ( ↓) toy-hf 0.694 0.701 0.696 0.678
NLL ( ↓) toy-hf −0.083 17.616 13.370 −0.055

ECE ( ↓) toy-hf 0.544 1.380 1.352 0.428
WS ( ↓) toy-hf 0.233 4.356 3.830 0.222
RMSE ( ↓) toy-noise 1.007 0.995 1.006 1.013
NLL ( ↓) toy-noise −0.370 6.57 × 10

4 1.723 −0.330

ECE ( ↓) toy-noise 0.066 1.730 0.645 0.107
WS ( ↓) toy-noise 0.030 5.03 × 10

4 0.693 0.054
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Fig. 10  MC dropout and aleatoric uncertainty. The regularization parameter � of MC dropout allows to 
model the average (homoscedastic) noise level of a dataset. As the regularizer is not input-dependent, it 
does not capture the x-dependency of the noise level, i.e. the heteroscedasticity of the dataset, see third row

Fig. 11  Standard deviation 
�w-drop of W-dropout (y-axis) 
when fitted to a toy dataset with 
ground truth standard deviation 
�gt (x-axis, see text for details). 
The bisecting line is shown in 
gray. While �w-drop exhibits fluc-
tuations (black ‘whiskers’ at 10% 
and 90% quantile), it provides 
on average accurate estimates 
of the ground truth uncertainty. 
Both mean value (blue cross) 
and median value (orange bar) of 
�w-drop are close to the bisector 
(Color figure online)

Table 8  Details on 1D regression datasets. Ground truth (gt) is partially preprocessed to match the 1D 
regression setup

Dataset # features # data points Source Remarks

Yacht 6 308 UCI
Diabetes 7 442 StatLib
Boston 13 506 StatLib
Energy 8 768 UCI Only the “cooling load” label is used.
Concrete 8 1030 UCI
Wine-red 11 1599 UCI
Abalone 7 4176 UCI The categorical input feature “sex” is omitted.
kin8nm 8 8192 Delve
Power 4 9568 UCI
Naval 16 11,934 UCI Only the “turbine” label is used.
California 8 20,640 StatLib
Superconduct 81 21,263 UCI
Protein 9 45,730 UCI
Year 90 515,345 UCI
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all uncertainty methods lead to comparably convincing uncertainty estimates. The small 
test RMSEs of all methods on naval indicate relatively small aleatoric uncertainties and 
model residuals. Epistemic uncertainty might thus be a key driving factor and coherently 
MC, MC-LL and DE perform well.

A.5 Object detection: systematic evaluation

We report basic information on the object detection (OD) datasets and their harmonization 
in the first paragraph of this subsection. Supplementary evaluations of SqueezeDet can be 
found subsequently in the second paragraph.

Details on OD datasets
The six OD datasets we consider are diverse in multiple dimensions as they capture traf-

fic scenes from three continents (Asia, Europe and North America) and cover a broad set of 

Fig. 12  Root-mean-square errors (RMSEs ( ↓ )) of different network types under i.i.d. conditions (first and 
second panel) and under various kinds of data shift (third to sixth panel). W-dropout (light blue back-
ground) is compared to 9 benchmark approaches including a deterministic model (light green background). 
Each blue cross is the mean over 14 1D regression datasets. Orange line markers indicate median values. 
The gray vertical bars reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top hori-
zontal line) (Color figure online)

Fig. 13  Prediction residuals (x-axis) and predictive uncertainty (y-axis) for a hypothetical ideal uncertainty 
mechanism. The Gaussian errors are matched by Gaussian uncertainty predictions at the exact same scale. 
68.3% of all uncertainty estimates (plot points) lie above the orange 1�-lines and 99.7% of them above the 
blue 3�-lines (Color figure online)
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scenarios ranging from cities and metropolitan areas over country roads to highways (see 
Table 10). They moreover differ in the average number of objects per image (see Table 4) 
that reaches its highest values for the simulation-based SynScapes dataset.9 Finally, both 
random and sequence-based train-test splits are considered. This variety is moreover 
reflected in the numerous object classes the different datasets provide. Their mappings to 
three main categories (‘pedestrian’, ‘cyclist’, ‘vehicle’) can be found in Table 11. Rare or 

Fig. 14  Prediction residuals (respective x-axis) and predictive uncertainty (respective y-axis) for different 
uncertainty mechanisms (columns) and datasets (rows). Each light blue dot in each plot corresponds to one 
test data point. Realistic uncertainty estimates should lie mostly above the blue 3�-lines. The datasets toy-
noise, naval, abalone and superconduct are shown, from top to bottom (Color figure online)

Table 10  General information on the object detection datasets

Dataset Place of data collection Type Train/test split

KITTI Metropolitan area of Karlsruhe Real Semi-custom (sequence-based)
SynScapes Simulation (only urban scenes) Synthetic Custom (random split)
A2D2 Highways and cities in Germany Real Custom (sequence-based)
Nightowls Several cities across Europe Real Pre-defined
NuImages Boston and 3 diverse areas of Singapur Real Pre-defined
BDD100k New York, San Francisco Bay, Berkeley Real Pre-defined

9 For A2D2, 2D bounding boxes are inferred from semantic segmentation ground truth.
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irregular classes are removed. For KITTI, we moreover discard ‘van’, ‘truck’ and ‘person-
sitting’, following the original SqueezeDet paper. To analyze uncertainty quality on dis-
torted images, blurred and noisy versions of the test datasets are created. Figure 16 shows 
these transformations for two exemplary images from BDD100k (top row) and SynScapes 
(bottom row), respectively.  

Comparison with the deterministic SqueezeDet
A comparison of the results of the deterministic SqueezeDet, MC-SqueezeDet and 

W-SqueezeDet for the KITTI test dataset can be found in Table 13. There, we additionally 
consider the mean average precision (mAP) score of these networks as well as the closely 
related measures of precision and recall.10 In contrast to the regression results on the 1D 
standard datasets, we observe more pronounced deviations between the different types of 
SqueezeDet and, in particular, note that the deterministic SqueezeDet yields OD scores 
that are 5−15% better than the ones of MC- and W-SqueezeDet. This finding equally con-
cerns mAP and the regression scores of mIoU and RMSE. The OD capabilities of the two 
probabilistic networks are comparable, see also Fig. 15. It shows that performance losses 
are less caused by our specific version of dropout but rather generally by using dropout-
based techniques (Table 12).

This performance gap between deterministic and probabilistic models can be understood 
when recalling that the anchor-based object proposals of SqueezeDet are piped through a 
multi-step post-processing to obtain the “final” detections. Dropout-enhanced models, in 
particular, require an additional step of clustering the stochastic proposals which may in 
some cases cause incorrect cluster assignments. Moreover, fewer resulting proposals can 
be matched with ground truth objects (see the precision values in Table 13). This might be 
attributed to the stochastic nature of the bounding boxes which leads to slightly increased 
errors and therefore, and in combination with the IoU threshold, to less matched proposals. 
Early experiments suggested that changes to the post-processing routines can contribute to 
mitigating large parts of these performance losses. As demonstrated in Fig. 15, we believe 

Table 11  Harmonization of the object detection datasets. The various object classes of the six object detec-
tion datasets (rows) are grouped into the three main categories “vehicle”, “pedestrian” and “cyclist” (col-
umns). Some classes are too rare or irregular and are thus discarded

Dataset Vehicle Cyclist Pedestrian Discarded

KITTI Car Cyclist Pedestrian Van, truck, 
tram, person-
sitting, misc, 
dontcare

SynScapes Car, motorbike, truck, bus Cyclist Pedestrian Train
A2D2 Car, truck Cyclist Pedestrian –
Nightowls Motorbike Cyclist Pedestrian Ignore-area
NuImages Car, motorbike, truck, vehicle-other Cyclist Pedestrian Movable-object
BDD100k Car, motorbike, truck, bus, trailer, vehicle-other Cyclist Pedestrian, 

other-
person

Train, rider, 
traffic-light, 
traffic-sign

10 In object detection, average precision (AP) can be understood as the area under the precision-recall curve 
that is obtained when sorting all predicted bounding boxes (for a given dataset) by their confidence scores.
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that the questions of performance and W-dropout are detached and therefore relegate a 
deeper exploration of proposal matching to future work.

Further results on SqueezeDet
Coordinate-wise regression results and uncertainty scores for MC-SqueezeDet and 

W-SqueezeDet on KITTI are shown in Table 12. While we observe noteworthy differences 
between coordinates, the relative ordering of MC-SqueezeDet and W-SqueezeDet for a 
given measure remains the same (Fig. 17).

Analyzing in-data and out-of-data NLL and WS values for all six datasets (see 
Fig. 17), we find results that qualitatively resemble those on ECE in Fig. 9. W-SqueezeDet 

Table 12  Regression 
performance and uncertainty 
quality of SqueezeDet-type 
networks on KITTI train/test 
data. W-SqueezeDet is compared 
with MC-SqueezeDet

Bold values indicate the best value that was reached for a given evalu-
ation measure

Measure MC-SqzDet W-SqzDet MC-SqzDet W-SqzDet
Train Test

mIoU (↑) 0.705 0.691 0.695 0.694
RMSE (↓) 8.769 9.832 14.666 14.505

NLLx (↓) 14.793 2.808 34.827 6.941

NLLy 6.135 2.170 13.364 3.808

NLLw 6.916 3.305 36.384 8.579

NLLh 6.146 2.796 18.241 5.908

ECEx (↓) 0.560 0.148 0.748 0.330

ECEy 0.659 0.180 0.835 0.419

ECEw 0.523 0.147 0.888 0.520

ECEh 0.716 0.296 0.83 0.465

WSx (↓) 1.729 0.283 3.06 0.830

WSy 1.370 0.299 2.260 0.680

WSw 1.145 0.243 3.485 1.203

WSh 1.442 0.437 2.517 0.888

ETL
0.99,x 34.443 9.316 55.772 21.310

ETL
0.99,y 18.202 7.677 26.675 11.772

ETL
0.99,w 19.914 10.835 53.408 23.202

ETL
0.99,h 16.872 7.584 32.547 16.608

Table 13  Regression 
performance and uncertainty 
quality of SqueezeDet-type 
networks on KITTI test data. 
W-SqueezeDet (W-SqzDet) is 
compared with MC-SqueezeDet 
(MC-SqzDet) and the 
deterministic network (SqzDet). 
Extending our set of measures, 
we additionally report mean 
average precision (mAP) as well 
as (class-averaged) recall and 
precision

Bold values indicate the best value that was reached for a given evalu-
ation measure

Measure SqzDet MC-SqzDet W-SqzDet

mAP (↑) 0.692 0.618 0.619
recall (↑) 0.758 0.686 0.688
precision (↑) 0.324 0.296 0.277
mIoU (↑) 0.730 0.695 0.694
RMSE (↓) 13.058 14.666 14.505
NLL (↓) – 25.704 6.309

ECE (↓) – 0.825 0.433

WS (↓) – 2.831 0.900

ETL
0.99

– 42.101 18.223
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outperforms MC-SqueezeDet on the respective i.i.d. test set and also under data shift. For 
both uncertainty approaches, some NLL values are affected by outliers.

Finally, Fig. 18 visualizes how various regression and uncertainty (test) scores evolve 
during model training on the BDD100k dataset. MC-SqueezeDet (dashed) and W-Squeeze-
Det (solid) ‘converge’ with comparable speed (no changes to test RMSE and mIoU after 
100,000 training steps) and reach similar final performances. W-SqueezeDet’s explicit 
optimization of uncertainty estimates yields larger standard deviations (center panel) and 
smaller values for NLL, ECE, WS and ETL compared to MC-SqueezeDet (center right 
panel, bottom row). For the unbounded scores NLL, WS and ETL, W-SqueezeDet exhibits 
higher stability during training.  

Appendix B Stability w.r.t. hyper‑parameters p and L

W-dropout possesses two hyper-parameters: the neuron drop rate p and the sample size L 
used to calculate the empirical estimates 𝜇𝜃(xi) and 𝜎𝜃(xi) . Here, we analyze the impact of 
these parameters on the quality of accordingly trained models.

Fig. 15  Recall-precision curves 
of the deterministic SqueezeDet 
(blue), MC-SqueezeDet (orange) 
and W-SqueezeDet (green) for 
the object class “vehicle” in 
the KITTI test dataset. The AP 
values of the respective networks 
(for class “vehicle”) are given by 
the areas under the curves (Color 
figure online)

Fig. 16  Two exemplary object detection images from BDD100k (top row, real-world image) and SynScapes 
(bottom row, synthetic image), respectively. For each original image (left column), two corrupted versions 
are generated: a blurred one (middle column) and a noisy one (right column), see text for details
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For p = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 , we observe only relatively small differences in both 
RMSE (see top panel of Fig. 19) and ECE (see bottom panel of Fig. 19). On train data, 
RMSE slightly deteriorates with increasing p, i.e., with decreasing complexity of the sub-
networks. For ECE, we find minor improvements with growing drop rate which might 
be explained by the fact that the L sub-networks in a given optimization step overlap less 
for higher p-values, thus allowing them to approximate the actual data distribution more 
closely. We choose p = 0.1 as the complexity of the resulting sub-networks is only mildly 
reduced compared to the deterministic full network.

Studying the impact of sample size L = 4, 5, 8, 10, 20 , we find RMSE (see top panel of 
Fig. 20) to be largely stable w.r.t. this parameter. For ECE (see bottom panel of Fig. 20, 
train scores grow with L, indicating a certain over-estimation of the present aleatoric 
uncertainties. This artefact is not generalized to test data though, where we observe broadly 
similar mean values and 75% quantiles. Under data shift, certain fluctuations of ECE occur 
as sample size L changes, however there is no clear trend. We thus choose the rather small 
L = 5 to keep the computational overhead down.

Appendix C In‑depth investigation of uncertainty measures

In the following, we employ the Kolmogorov-Smirnov distance as a supplementary uncer-
tainty score and compare it with expected calibration error (ECE) and Wasserstein distance 
(WS). Finally, limitations of negative log-likelihood (NLL) for uncertainty quantification 
are discussed.

Fig. 17  In-data and out-of-data evaluation of MC-SqueezeDet (lhs) and W-SqueezeDet (rhs) on six OD 
datasets. We consider the negative log-likelihood (NLL, top row) and the Wasserstein measure (WS, bottom 
row). For each heatmap entry, the row label refers to the training dataset and the column label to the test 
dataset. Thus, diagonal matrix elements are in-data evaluations, non-diagonal elements are OOD analyses



3196 Machine Learning (2024) 113:3161–3204

1 3

C.1 Dependencies between uncertainty measures

Extending the analysis of empirically observed dependencies between WS and ECE in 
Fig. 3, we additionally consider Kolmogorov-Smirnov (KS) distances (Stephens, 1974) in 
Fig.  21 (middle and bottom panel). These KS-distances are calculated between samples 
of normalized residuals and a standard Gaussian. Different from the Wasserstein distance, 
the KS-distance is not transport-based but determined by the largest distance between 
the empirical CDFs of the two samples. It is therefore bounded to [0,  1] and unable to 
resolve differences between two samples that both strongly deviate from a standard Gauss-
ian. Again, we find the dependencies between these measures to clearly deviate from ideal 
correlation.

The data splits in Figs. 3 and 21 are color-coded as follows: train is green, test is blue, 
PCA-interpolate is green-yellow, PCA-extrapolate is orange-yellow, label-interpolate 
is red and label-extrapolate is light red. The mapping between uncertainty methods and 
plot markers reads: SWAG is ‘triangle’, MC is ‘diamond’, MC-LL is ‘thin diamond’, DE 
is ‘cross’, PU is ‘point’, PU-DE is ‘star’, PU-MC is ‘circle’, PU-EV is ‘pentagon’ and 
W-dropout is ‘plus’. The data base of this visualization are the 14 standard regression data-
sets. Some Wasserstein distances lie above the x-axis cut-off and are thus not visualized.

Fig. 18  Various test statistics of W-SqueezeDet (solid lines) and MC-SqueezeDet (dashed lines) during 
model optimization on the BDD100k dataset. We consider performance scores (recall, RMSE, IoU, see first 
and second row) and uncertainty measures (NLL, ECE, WS, ETL, see second and third row). W-Squeeze-
Det yields comparable task performance while providing clearly better uncertainty estimates
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C.2 Discussion of NLL as a measure of uncertainty

Typically, DNNs using uncertainty are often evaluated in terms of their negative log-like-
lihood (NLL). This property is affected not only by the uncertainty, but also by the DNNs 
performance. Additionally, it is difficult to interpret, sometimes leading to counterintuitive 
results, which we want to elaborate on here. As a first example, take the likelihood of two 
datasets x1 = {0} and x2 = {0.5} , each consisting of a single point, with respect to a normal 
distribution N(0, 1) . Naturally, we find x1 to be located at the maximum of the considered 
normal distribution and deem it the more likely candidate. But, if we extend these datasets 
to more than single points, i.e., x̃1 = {0, 0.1, 0,−0.1, 0} and x̃2 = {0.5,−0.4, 0,−1.9,−0.7} , 
it becomes obvious that x̃2 is much more likely to follow the intended Gaussian distribu-
tion. Nonetheless, NLL(x̃2) ≈ 1.4 > 0.9 ≈ NLL(x̃1) , where

Fig. 19  Dependence of Wasserstein dropout on drop rate p. Root-mean-square errors (RMSEs ( ↓ ), 
top row) and expected calibration errors (ECEs ( ↓ ), bottom row) are shown for neuron drop rates of 
p = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 under i.i.d. conditions (first and second panel in each row) and under various 
kinds of data shift (third to sixth panel in each row, see text for details). W-dropout with p = 0.1 (used for 
evaluations on toy and 1D regression data) is highlighted by a light blue background. Each blue cross is the 
mean over 10 standard regression datasets. Orange line markers indicate median values. The gray vertical 
bars reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top horizontal line) (Color 
figure online)
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This may be seen as a direct consequence of the point-wise definition of NLL, which does 
not consider the distribution of the elements in x̃i . From this observation also follows that 
a model with high prediction accuracy will have a lower NLL score as a worse performing 
one if uncertainties are predicted in the same way. Independent of whether those reflected 
the “true” uncertainty in either case. This issue can be further substantiated on a sec-
ond example. Consider two other datasets z1, z2 drawn i.i.d. from Gaussian distributions 
N(0, �i) with two differing values 𝜎1 < 𝜎2 . If we determine the NLL of each with respect to 
its own distribution the offset term in Eq. (C1) leads to NLL(z2) = NLL(z1) + log (�2∕�1) 
with log (𝜎2∕𝜎1) > 0 . Although both accurately reflect their own distributions, or uncer-
tainties so to speak, the narrower z1 is more “likely”. This offset makes it difficult to assess 
reported NLL values for systems with heteroscedastic uncertainty. While smaller is typ-
ically “better”, it is highly data- (and prediction-)dependent which value is good in the 
sense of a reasonable correlation between performance and uncertainty.  

(C1)NLL(y) ∶= log
√
2��2 +

1

N

N�

i=1

(yi − �)2

2�2
.

Fig. 20  Dependence of Wasserstein dropout on sample size L. Root-mean-square errors (RMSEs 
( ↓ ), top row) and expected calibration errors (ECEs ( ↓ ), bottom row) are shown for sample sizes of 
L = 4, 5, 8, 10, 20 under i.i.d. conditions (first and second panel in each row) and under various kinds of 
data shift (third to sixth panel in each row, see text for details). W-dropout with L = 5 (used throughout the 
rest of the paper) is highlighted by a light blue background. Each blue cross is the mean over 10 standard 
regression datasets. Orange line markers indicate median values. The gray vertical bars reach from the 25% 
quantile (bottom horizontal line) to the 75% quantile (top horizontal line) (Color figure online)
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Fig. 21  Dependencies between the three uncertainty measures ECE, Wasserstein distance and Kolmogorov-
Smirnov distance. Uncertainty methods are encoded via plot markers, data splits via color. Datasets are not 
encoded and cannot be distinguished (see text for more details). Each plot point corresponds to a cross-val-
idated trained network. The clearly visible deviations from ideal correlations point at the potential of these 
uncertainty measures to complement one another
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