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Abstract
The increased interest in deep learning applications, and their hard-to-detect biases result 
in the need to validate and explain complex models. However, current explanation methods 
are limited as far as both the explanation of the reasoning process and prediction results 
are concerned. They usually only show the  location in the  image that was important for 
model prediction. The lack of possibility to interact with explanations makes it difficult to 
verify and understand exactly how the model works. This creates a significant risk when 
using the  model. The risk is compounded by the  fact that explanations do not take into 
account the semantic meaning of the explained objects. To escape from the trap of static 
and meaningless explanations, we propose a tool and a process called LIMEcraft. LIME-
craft enhances the process of explanation by allowing a user to interactively select seman-
tically consistent areas and thoroughly examine the  prediction for the  image instance in 
case of many image features. Experiments on several models show that our tool improves 
model safety by inspecting model fairness for image pieces that may indicate model bias. 
The code is available at: http://​github.​com/​MI2Da​taLab/​LIMEc​raft.
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1  Introduction

Artificial Intelligence (AI) is rapidly becoming applicable in a variety of domains. Deep 
learning (DL) has already achieved significant results in many areas concerning com-
puter vision. However, despite these remarkable results achieved by DL, the decisions 
made by black-boxes still remain unclear for humans, due to difficulty in understanding 
the reasoning process of the neural network.The lack of interpretability results in criti-
cal issues considering model fairness and safety.

For this reason, explainability methods have begun to attract researchers’ attention. 
They have started to create various approaches to explain neural networks’ decision 
process. One vastly used method is Local Interpretable Model-Agnostic Explanations 
(LIME). It appears that explanation which marks important regions in the image is eas-
ily understandable for humans, and therefore used in many scientific studies.

However, so far, most of these methods consider it sufficient to mark only the area 
that affects the  model prediction. The  construction of explanations does not take into 
account the individual factors that contribute to the significance of a region in the model 
prediction.

In this paper, we propose a new process of explanation based on LIME with the pos-
sibility of inspection image features, such as: color, shape, position, and rotation for 
creation of Visual eXplanations. LIMEcraft also allows handcrafted superpixel selec-
tion, which eliminates non-interaction problems with explanation methods and improves 
the explanation quality of complex image instances. The human interaction process is 
described in Fig 1.

Fig. 1   Diagram summarizing the explanation process using LIMEcraft
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2 � Related works

2.1 � Perturbation‑based explainable algorithms

Perturbation-based explainable algorithms use a  technique of iteratively removing or 
changing parts of image features. The variety of perturbations shows how many types 
of distortions can be applied to images. Among such techniques, we can distinguish: 
occlusion (e.g. LIME by Ribeiro et al., 2016 or RISE by Petsiuk et al., 2018), DeCon-
volution and Occlusion Sensitivity (see Zeiler and Fergus, 2014), blurring (Fong & 
Vedaldi, 2017), conditional sampling (Prediction Difference Analysis by Zintgraf et al., 
2017), adding noise (Noise Sensitivity by Greydanus et al., 2018), substitution of exist-
ing features (IRT and OSFT by Burns et  al., 2019) or superimposing another image 
(Ribeiro et al., 2018). Based on a model response, the importance of those image fea-
tures is calculated. Then, the attribution of each feature is computed and the results are 
shown. However, such techniques do not measure the  importance of particular image 
features, only the  location of parts of the  image is important. The  lack of investiga-
tion which image features (color, position, shape, brightness) play the most crucial role, 
makes these methods prone to errors.

One of the  most popular techniques that use occlusion to check the  importance of 
regions in an  image is called Local Interpretable Model-Agnostic Explanations Ribeiro 
et  al. (2016 [LIME]). LIME is a  model-agnostic explanation algorithm. Model-agnostic 
means that the architecture of the model does not have an influence on the possibility to 
explain the model. The explanation is local—it focuses on one specific prediction rather 
than considering the model globally. The LIME algorithm works with tabular data, text, 
and images. As for images, it divides them into superpixels based on the quick shift algo-
rithm (Vedaldi & Soatto, 2008). Quick shift is a fast mode-seeking algorithm that segments 
an image by localizing clusters of pixels in both spatial and color dimensions. Then, a data-
set with some superpixels occluded is generated. Each perturbed instance gets the prob-
ability of belonging to a class. On this locally weighted dataset, the linear model is trained. 
The highest positive and negative weights for a specific class are presented in the original 
image by addition, respectively, a green or a red semitransparent mask on the most impor-
tant superpixels.

2.2 � Methods based on LIME

Following the success of LIME algorithm, many scientists started to be interested in devel-
oping this method to make it even more efficient and effective. The  greatest number of 
LIME modifications are for tabular data, e.g., DLIME (Zafar & Khan, 2019), GraphLIME 
(Huang et  al., 2020), Tree-LIME (Li et  al., 2019), ALIME (Shankaranarayana & Runje, 
2019), LIME-SUP (Hu et al., 2018). However, methods based on LIME for the images are 
also developed and published in scientific journals, namely: Anchor LIME (Ribeiro et al., 
2018), LIMEAleph (Rabold et  al., 2020), KL-LIME (Peltola, 2018), MPS-LIME (Shi 
et al., 2020), and NormLIME (Ahern et al., 2019).

Anchor LIME (Ribeiro et al., 2018), instead of hiding some superpixels from the origi-
nal image, superimposes another image over the rest of the superpixels. Authors stress that 
the method might seem unnatural, but it allows to predict the model’s behavior on unseen 
cases.
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A LIME-based approach Kullback Leibler divergence, called KL-LIME (Peltola, 2018), 
is designed for  explaining the  predictions of Bayesian predictive models. The  proposed 
method combines methods from Bayesian projection predictive variable selection with 
LIME algorithm. In KL-LIME, parameters of the interpretable model are found by mini-
mizing the Kullback-Leibler divergence from the predictive model.

LIME-Aleph (Rabold et  al., 2020) combines an explanation generated by LIME with 
logic rules obtained by the Inductive Logic Programming system Aleph. The authors claim 
that in LIME it is not clear if the classification decision is made due to the presence of 
specific parts of the image or because of the specific relation between them. Their approach 
is capable of identifying the  relationship between elements as an  important explanatory 
factor.

The method of superpixels selection is replaced in MPS-LIME (Shi et al., 2020) with 
Modified Perturbed Sampling (MPS) operation. MPS-LIME converts superpixels into 
an undirected graph. The authors claim that their method does not ignore the complicated 
correlation between image features and improves the algorithm efficiency.

LIME is a method for a local explanation, while NormLIME (Ahern et al., 2019) tries to 
aggregate local explanations and create a global, class-specific explanation.

2.3 � Limitations of existing algorithms

There are some weaknesses of the LIME method. The definition of superpixels does not 
take into account the semantic meaning of objects in the image, and consequently, some-
times different objects are located within a single superpixel. This is especially visible in 
images with many overlapping objects and in medical images.

Moreover, despite many attempts to improve the LIME algorithm, it is often considered 
non-robust. Alvarez-Melis and Jaakkola (2018) show that perturbation-based methods are 
especially prone to instability. Small changes in the  input image, such as adding Gauss-
ian noise, should not significantly affect explanations. However, due to the fully automatic 
selection of the superpixels, LIME depends strongly on nonsemantic input image features 
and is particularly sensitive to noise.

A suggestion that the existing explanation techniques are vulnerable to attacks of adver-
sarial classifiers is made by Slack et al. (2020). They claim that LIME is not sufficient for 
ascertaining the discriminatory behavior of classifiers in sensitive applications and is not 
reliable. Their approach can be used to scaffold a biased classifier. Predictions of the clas-
sifier on the input data still remain biased, but the post hoc explanations of the scaffolded 
classifier look innocuous.

Moreover, Rahnama and Boström (2019) claim that LIME suffers from data and 
label shift. Their experiments show that the  instances generated by LIME’s algorithm 
are distinctly different from training instances drawn from the  underlying distribution. 
Based on the  obtained results, they conclude that random perturbations of the  features 
of the  explained instance cannot be considered a  reliable method of generating data in 
the LIME method.

Schallner et al. (2020) stress that the selection of a suitable superpixel algorithm should 
be considered. They conduct several experiments comparing different superpixel algo-
rithms. Finally, they say that for each problem, the superpixel selection algorithm should 
be consulted with domain experts. In some situations, it is important to generate superpix-
els of significantly different sizes depending on the semantic meaning of the content.
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To sum up, LIME is sensitive to small changes in the input image, such as adding noise 
or an adversarial attack. Random feature perturbations are unreliable because LIME suf-
fers from data and label shift. The  choice of an  optimal segmentation algorithm affects 
the LIME results and should be consulted with a domain expert. As we will show below, 
for partially covered or noisy features, automatic segmentation leads to worse results than 
expert-assisted segmentation.

3 � LIMEcraft

3.1 � Motivation

During our work with medical images, we discovered that LIME prefers sharp bounda-
ries between superpixels. It also needed further clarification on which kind of image fea-
tures the prediction of a specific part of the image was made. Our motivation was to create 
a solution that not only works better on LIME’s corner cases, but also gives more detailed 
insight into the model’s strengths and weaknesses.

The weakness of LIME is that the  division into superpixels is unacceptable when 
objects are partially covered or the image is noisy. LIME also fails when there are many 
elements that interfere with the  way superpixels are constructed, e.g. zebra stripes. The 
lack of semantic understanding of the image makes LIME unsafe for many medical images 
and for images taken in the natural environment when some objects are partially obscured 
by others, as presented in Fig.  2. For this reason, we create an opportunity to manually 
select superpixels.

The next problem that we wanted to address is the lack of understanding of the image 
features that mostly contribute to the model prediction. The location of the most important 
superpixel does not provide us with complete information about whether the  model has 
learned the correct features. Without careful verification, we cannot be sure that a car of 
any color will be correctly recognized by the model as a car and classified into the cor-
rect class. Image features’ inspection may also help us to investigate the possibility of bias 
based on, e.g., skin color.

The LIME algorithm is prone to the presence of noise. Noise can greatly interfere with 
how superpixels are formed, and thus, due to the large differences in superpixel sizes, also 
change the areas that are marked by LIME as relevant to the model. Although our solution 

Fig. 2   Examples of division into superpixels by LIME and by our algorithm of skin lesion (Vargas et al., 
2020) and car photo. For each pair, the left image shows the automatic LIME segmentation and the right 
one a LIMEcraft segmentation supported by the user who outlined the skin lesion of interest (first pair) or 
the car (second pair). LIME uses quick shift algorithm, and LIMEcraft uses manual or predefined super-
pixel selection, and then, segmentation based on K-means clustering algorithm
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cannot fully eliminate this instability, it limits an  uncontrolled splitting into superpixels 
and improves the reliability testing capabilities of the model.

In summary, LIME’s weaknesses are: (1) uninformative/misleading segmentation, due 
to the lack of semantic understanding of the image during the creation of superpixels, (2) 
lack of understanding of the  image features that mostly contributed to the model predic-
tion, (3) and sensitivity to the presence of noise.

3.2 � Different types of superpixels’ selection

In LIMEcraft there are two main ways of selecting segments called “superpixels”: seman-
tic and non-semantic. The first one can be done by a user using a tool, which allows draw-
ing an irregular path of shape, or by uploading a prepared mask of superpixels. Such func-
tionalities lead to greater influence on proper image analysis.

After manual or predefined superpixel selection, the  next step is the  non-seman-
tic selection of superpixels. In this step, only previously selected areas are divided into 
smaller pieces. Such automatic segments are generated using image segmentation based 
on the  K-means clustering algorithm. Moreover, we can determine into how many seg-
ments the areas selected will be divided. LIMEcraft suggests how many superpixels will 
be optimal for each case. It calculates how many superpixels should be inside and outside 
the selected areas to maintain the same size of the superpixels. However, in some cases, 
the user may want to increase the number of superpixels inside the selected areas to obtain 
more detailed results. It might be helpful when the object inside the  selection has small 
details and the rest of the image is just a little diverse background.

The potential use-case scenario is to manually define objects that should not be com-
bined in the same superpixel. Such an image could be, for example, a complex cityscape 
partially obscured by tree branches, an X-ray image in which there are naturally small dif-
ferences in the brightness of areas while these areas belong to other internal organs, a pho-
tograph of undergrowth in which there are many objects similar in color.

Checking the  responsibility of a  network to classify lung lesions can be an  exam-
ple of using the mask loading functionality. The neural network was trained on the data 
with lesions label, and then validated on an  external database, as recommended by 
Hryniewska et al. (2021). For external validation, the dataset for lesions detection was cho-
sen, so the  database contained not only the  names of lesions present on the  images but 
also their location. The masks of lesions can be easily uploaded into LIMEcraft to verify 
whether they are important for the model’s prediction. The dashboard shows how much of 
the whole image has a positive impact on the prediction of the model (green color), nega-
tive (red color), and neutral (without color). It might be useful to assess the importance of 
the selected areas (when the superpixels are not exactly the same size).

3.3 � Inspection of image feature importance

The interface we have created makes it possible to analyze the impact of image perturba-
tion on the  prediction of the  model. The  user can edit the  color, shape, and position of 
the selected area, and then subject the edited image to the LIMEcraft algorithm.

Color edition enables to manipulate the values of individual channels of the  image 
(RGB), so the  brightness can also be adjusted. Moreover, we can rotate the  selected 
area and change its position. The  moved piece can also be completely removed. In 
the  edited area, the  inpainting algorithm based on“biharmonic equation” (Damelin & 
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Hoang, 2018) is applied. The selected area may also be expanded according to a user-
defined“power”value. For values greater than 1, it will be enlarged, and for values less 
than 1, it will be shrunk.

In order to be able to better understand the changes that have occurred as a result of 
the perturbation of the image, the report in a form of a table is generated. It compares 
the percentages of probabilities for the predicted classes.

It is crucial to see how the model responds to a change in individual image elements. 
For example, for microscope images, the  shapes and colors of cells may be relevant 
to a  classification task. However, position and rotation should not significantly affect 
the prediction of the trained model. By running such experiments using LIMEcraft, we 
can observe whether the model has learned to recognize objects by the correct features.

3.4 � Interactive user interface

In contrast to the fully automated approach of the LIME algorithm, our LIMEcraft algo-
rithm incorporates the human into the process of explainability. It gives them the ability 
to influence the division into superpixels, the choice of the number of superpixels, and 
a more detailed analysis of the model by comparing the prediction results for the origi-
nal image and the one subjected to perturbations.

The undeniable advantage of the  dashboard is that it can be used by people unfa-
miliar with programming, because the  interface is very intuitive and user-friendly. 
The interface is presented in Fig. 3.

The interactive User Interface gives the  human more control over the  quality of 
the model and, as a  result, the  safety of the created models. An  important aspect that 
cannot be ignored is the variety of biases that a model may have. With an  interactive 
interface, different possibilities (image modifications) can be tested to ensure safety and 
fairness. A good example to consider here would be the possibility of changing the skin 
color of a person in a photo.

Fig. 3   An example of the  user interface for code available on http://​github.​com/​MI2Da​taLab/​LIMEc​raft 
allowing to outline features of interest and analyze the explanations yourself

http://github.com/MI2DataLab/LIMEcraft
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3.5 � Algorithm in details

LIMEcraft algorithm is based on LIME. However, there are some key differences between 
both of them. As presented in Algorithm 1, LIMEcraft algorithm includes the possibility to 
define mask for the selected image, and then, to choose the number of superpixels inside and 
outside the mask. The next important innovation is a functionality to edit image, which pro-
vides the insight into the model’s robustness. Moreover, LIME and LIMEcraft have different 
segmentation algorithms. LIME uses quick shift algorithm. In LIMEcraft, besides manual or 
predefined superpixel selection, segmentation is based on K-means clustering algorithm.
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4 � Method evaluation

4.1 � Relevance of image features to correctness of prediction

We test the  ability to evaluate a  model for skin lesion classification using LIMEcraft. 
First of all, we select a database for classification of skin lesions (Mader, 2019). Then, we 
choose model architecture: MobileNet and image input size: 224 × 224 × 3. The neural 
network uses the base pretrained on Imagenet. While classifying into 7 classes, it achieves 
64.6% of sparse categorical accuracy.

To investigate if the model is predicting class label based on skin lesions, not artifacts, 
such as hair, we conduct several tests using LIMEcraft. We select a  mask (presented in 
Fig. 4b), and we run several experiments of feature importance.

The color edition, visible in Fig. 4e, changes the model prediction from class melano-
cytic nevis (54.79%) to benign keratosis-like (99.80%).

LIMEcraft results obtained after shape edition (power of expansion: 1.4), in Fig.  4g, 
do not change model’s confidence so drastically, because it drops only 8.5%. However, it 
changes the most probable class to melanoma with 52.86% of probability.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4   Model inference results for skin lesion classification using the LIMEcraft algorithm. The input image 
shows a lesion called melanocytic nevi. Superpixels colored to green mean that this part of the image con-
tributes positively to the prediction, while red parts show negative impact (Color figure online)
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In Fig. 4i, we remove hair and the prediction of class melanocytic nevi decreases to 
33.54%. The most probable class for this case is melanoma.

The last conducted experiment covers many different image editions, namely: 10px 
shift into right and down direction, 180◦ rotation, and change of patient’s skin color.

Based on (Stieler et al., 2021)’s work, it can be presumed that changes such as rota-
tion and shift of the  skin lesion should not change the  prediction of the  model. On 
the other hand, changing the color and boundaries may change the features of the lesion.

Figure 5 partially confirms our assumptions. The color of the lesion had a large effect 
on the prediction of the model. Hair removal does not drastically change the model’s 
prediction. Nevertheless, there are some disturbing findings. A combination of several 
changes: skin color, shape, and rotation had a  great influence on model classification 
result. This result may become the basis for speculating that the model could be biased.

Nevertheless, it is very important to note that results obtained by using the LIME-
craft algorithm should be evaluated by a  domain specialist. It is up to the  special-
ist to determine whether a  given change in the  input image should cause a  change in 
the model response.

4.2 � Noise example‑based sensitivity analysis

Slack et al. (2020) state that LIME can be easily manipulated to hide biases. It stresses 
the fact that such explanations are untrustworthy and not safe in usage.

We want to examine if LIMEcraft improves the  robustness of model explanations. 
Alvarez-Melis and Jaakkola (2018) add Gaussian noise to the  input image and check 
how strongly the  output generated by explanation varies. They show that the  LIME 
explanation is highly vulnerable to small changes in input image due to the presence of 
sparse superpixels.

Fig. 5   Radar plot of the model’s confidence in class selection for a skin lesion called melanocytic nevi
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To test LIMEcraft safety, we train on MNIST dataset small neural network with only 
one convolutional layer with relu activation, max-pooling, flattening, and one dense 
layer. It receives 98.07% accuracy on the test set.

Then, we perturb the image with number 7 by adding Gaussian noise that varies in 
intensity. The input image has pixel intensities between [0, 1] and the values out of this 
range are clipped. In Fig.  6 saved masks of superpixels generated by both LIME and 
LIMEcraft are presented. In order to obtain more comparable evaluation results for both 
algorithms, the same segmentation algorithm is chosen - based on K-means clustering.

In the experiment presented in Fig. 7, it appears that, thanks to the manual selection 
of superpixel covering the number, LIMEcraft is more stable in case of the presence of 

Fig. 6   Images of digit 7 perturbed with Gaussian noise of � strength and images showing the significance 
of superpixels on the classification of digit 7 ( −1 negatively affects prediction, 0 has no significant effect, 1 
positively affects) generated by the LIME and LIMEcraft algorithms

Fig. 7   Box plot of the noise level dependence of the 10 images from the MNIST database on the similarity 
of the masks generated by LIMEcraft and LIME computed by Euclidean distance for each pair of images
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noise. The Euclidean distance for strongly noisy images is not as high as for LIME algo-
rithm. Not changing the outer border of the 7 number in LIMEcraft leads to an improve-
ment in robustness to perturbations in the input. It is also worth noting that for no noise 
or low noise values, the masks generated by LIMEcraft are comparable to the  results 
achieved by LIME. Thus, it can be concluded that LIMEcraft improves the repeatability 
of the obtained explanations.

4.3 � Evaluation with human subjects

The user study consisted of a pilot user study, and then a formal user study of 20 people. 
After the pilot study, the remarks reported by users were used to improve LIMEcraft and 
any ambiguities in the survey were clarified before proceeding with the formal user study.

The aim of the participants was to follow the  instructions to complete a  task and fill 
a  questionnaire. Participants tested ImageNet model of Inception v3 architecture with 5 
different non-medical images available in Github repository of LIMEcraft: https://​github.​
com/​MI2Da​taLab/​LIMEc​raft. They had to assess a model quality by seeing what a model 
has learned and to check the model’s safety using the LIME and LIMEcraft explanations. 
Using a questionnaire, we wanted to assess whether people think LIMEcraft enhances their 
explanatory abilities and what features of LIMEcraf are most important to them.

In the formal user study, 15 men and 5 women of varying age participated. No strong 
correlation was discovered between sex and responses. Users’ experience in using AI mod-
els and LIME differed. The AI experience declared by users had a  Gaussian-like distri-
bution. 40% of the people did not know LIME, and the  remaining number of users was 
roughly equally distributed between those who knew the method poorly, moderately, and 
well. The median time required to participate in the experiment and respond was 38 min-
utes and the interquartile range was 34 minutes.

In Fig.  8, in all questions, LIMEcraft was rated better than LIME. The bigger differ-
ences are visible in questions about how well the superpixel boundaries were chosen and 
how would the ability to change the number of superpixels be rated.

The most appreciated functionalities provided by the LIMEcraft tool were abilities to 
select own superpixels and interact with the  explanation method. Suprisingly, the  users 
disagreed on whether the image modifications made it easier to detect model weaknesses. 
Also, opinions were divided on whether users would like to use LIMEcraft in the future.

In examining the correlation between responses, it was noted that the greater the famili-
arity with LIME, the lower ratings users gave in response to the questions:“How would you 
rate the  automatic superpixel division?”, and“How well were the  superpixel boundaries 
chosen?”. It might lead to the conclusion that experienced LIME users have already dis-
covered its weaknesses. Users more experienced in AI and LIME did not rate the ability to 
catch model weaknesses by image modifications so highly.

The user study has shown that LIMEcraft is a self-sufficient, end-to-end tool for model 
exploration. The functionality related to superpixel selection is especially valuable. The 
ability to edit the image is less desirable than choosing own superpixels. The majority of 
people appreciated LIMEcraft under each of the criteria studied.

4.4 � LIMEcraft versus other explanatory methods

Various explanation algorithms are used to explain image models (Samek et  al., 
2019). Apart from explanations that work by perturbing input data, e.g., LIME and 

https://github.com/MI2DataLab/LIMEcraft
https://github.com/MI2DataLab/LIMEcraft
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LIMEcraft, there are other popular methods that are based on gradients, e.g., Grad-CAM 
and Grad-CAM++.

Grad-CAM and Grad-CAM++ produce heatmaps that are calculated as a  result of 
the  features extracted from the final convolutional layer of the model. The heatmaps are 
coarse, as presented in Fig.  9. While comparing them to perturbation-based approaches, 
it is important to stress that they do not produce results with sharp boundaries of attention 
maps. Moreover, gradient-based algorithms show only areas where the attention of a model 
is present or absent, and do not take into account negative influence in predicting a class.

Since LIMEcraft and LIME are both perturbation-based algorithms, it is worth noting 
the differences between them. As presented in Table 1, LIMEcraft offers more possibilities 
for exploring specific regions than LIME and is more robust to noise. However, it cannot be 
applied directly to text or tabular data. Taking a human-in-the-loop of explanation makes 

Fig. 8   Stacked column chart showing the responses of 20 users to a survey designed to evaluate and com-
pare LIMEcraft and LIME. Each row is related to a separate question. The colors encode the respondents’ 
answers and are then converted to numbers according to the legend. On the right side of the chart is the sum 
of the ratings of all respondents (Color figure online)
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LIMEcraft not work as an automatic tool, but it provides the possibility to add semantic 
meaning to the explanation process.

As shown in Fig. 9, in the first row, the sharp boundaries are easily identified by LIME. 
However, LIME divided the  lesion into only two parts. The superpixels in the  rest of 
the image are much smaller, which means that the most important part of the image can-
not be examined in detail. LIMEcraft offers a  solution to overcome this limitation. The 
ability to manipulate the number of superpixels into which an image is divided in selected 
region provides the possibility to fine-tune the size of the superpixels. When we want small 

Fig. 9   Model inference results for skin lesion classification using following explanation’s algorithms: 
LIMEcraft, LIME (Ribeiro et al., 2016), Grad-CAM (Selvaraju et al., 2019), Grad-CAM++ (Chattopadhay 
et  al., 2018). In LIMEcraft and LIME, superpixels colored green indicate that this part of the  image has 
a  positive impact on prediction, while red parts have a  negative one. Grad-CAM and Grad-CAM++ are 
typically presented in“hot-to-cold”color scale. The red color shows the  areas that have the most positive 
influence on model prediction, while blue presents the most negative impact. The first row shows the lesion 
with sharp borders. In the  second one, only the  wounded part was selected in LIMEcraft. The lesion in 
the last row has blurred borders (Color figure online)

Table 1   Comparison of LIMEcraft and LIME

LIMEcraft LIME

Human-in-the-loop process Fully automatic process
Image data, audio data (transformed into a spectro-

gram)
Image, text, tabular data

Segmentation can be corrected Segmentation cannot be corrected
Required masks (ready mask can be used) Not required masks
Opportunity to focus explanations in a specific area. Lack of ability to focus explanations in a specific area
Opportunity to check what kind of image features 

contribute the most in explanation
Lack of opportunity to check what kind of image 

features contribute the most in explanation
More robust to noise Less robust to noise
Object of interest don’t have to have sharp bounda-

ries
Object of interest should have sharp boundaries

Opportunity to check how important are colored 
superpixels

Lack of opportunity to check how important are 
colored superpixels
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details, we divide the part of the image into more superpixels; whenever we want a more 
global result, we divide it into fewer superpixels.

In the  second row of Fig.  9, in comparison to LIMEcraft, LIME does not deal well 
with a  lesion of varying colors. In some places, the  lesion and the  unchanged skin are 
in the  same superpixel. The lack of semantic information in the explained image is also 
shown in the third row.

Gradient-based methods versus perturbation-based methods are different approaches in 
explainability. LIMEcraft can be used to combine those two perspectives. The heatmap 
generated by gradient-based methods can be changed into masks and then used as ready 
input masks into LIMEcraft. It brings us a closer look at the hidden space of the explained 
model.

5 � Conclusions

To our knowledge, LIMEcraft is the  first LIME-based tool that allows the  user to be 
directly involved in the construction of an explanation. In this explanation tool, the user 
can influence: (1) the superpixel constructions of the interpretable space on which LIME 
is based, (2) the specific aspects of the image to study how the operation affects the pre-
diction of the  model and its explanation, (3) the  level of  detail of  the  obtained results. 
Moreover, operations such as perturbations of colors, shapes, and positions allow the user 
to study the sensitivity of the model to changes.

The ability to select a mask for LIMEcraft allows domain knowledge to be introduced 
into the process of explaining. In addition, it makes it possible to apply the method to cases 
where the object under study is partially obscured or blends in color with its surroundings. 
By checking the relevance of each image feature, we can verify that the model is not biased 
and that it has learned the  correct features, which will result in increasing the  model’s 
safety and trustworthiness.

LIMEcraft might be applied to other inputs, such as audio data, because audio is often 
transformed into a  spectrogram that is an  image. Using LIMEcraft, rectangular-shaped 
superpixels can be created, which would allow the audio to be divided by frequency. Also, 
the  concept of bringing human-in-the-loop can be applied to the  explanation process of 
tabular data, and humans can define the  thresholds for specific data transformations, e.g. 
grouping and discretization of variables.

Incorporating the  human into the  process of explainability allows to benefit from 
the knowledge they have. However, if a person does not expect an element to be important, 
e.g., if they do not notice a lesion, they will not mark it. For this reason, it is also important 
to be aware of the risk of introducing bias into the model. This is still an open problem that 
needs further research.

We provided code and a web application that can serve others to evaluate the safety and 
robustness of their models.
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