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Abstract
Learning from positive and unlabeled (PU) data is an important problem in various appli-
cations. Most of the recent approaches for PU classification assume that the class-prior (the 
ratio of positive samples) in the training unlabeled dataset is identical to that of the test 
data, which does not hold in many practical cases. In addition, we usually do not know the 
class-priors of the training and test data, thus we have no clue on how to train a classifier 
without them. To address these problems, we propose a novel PU classification method 
based on density ratio estimation. A notable advantage of our proposed method is that it 
does not require the class-priors in the training phase; class-prior shift is incorporated only 
in the test phase. We theoretically justify our proposed method and experimentally demon-
strate its effectiveness.

Keywords Positive-unlabeled classification · Class-prior shift · Density ratio estimation

1 Introduction

Positive-unlabeled (PU) classification is a problem of training a binary classifier from 
only positive and unlabeled data (Letouzey et  al., 2000; Elkan & Noto, 2008). This 
problem is important when it is difficult to gather negative data, and appears in many 
applications, such as inlier-based outlier detection (Blanchard et al., 2010), land-cover 
classification (Li et  al., 2011), matrix completion (Hsieh et  al., 2015), and sequential 
data classification (Li et  al., 2009; Nguyen et  al., 2011). Several heuristic approaches 
for PU classification have been proposed in the past (Liu et al., 2003; Li & Liu, 2003), 
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which aim to identify negative samples in the unlabeled dataset, yet they heavily rely 
on the heuristic strategy and data separability assumption. One of the most theoreti-
cally and practically effective methods for PU classification was established by Ples-
sis et al. (2014, 2015), called unbiased PU classification. It rewrites the classification 
risk in terms of the distributions over positive and unlabeled samples, and obtains an 
unbiased estimator of the risk without negative samples. Although unbiased PU clas-
sification works well with simple models such as linear-in-parameter models, it easily 
suffers from overfitting with flexible models such as deep neural networks. To overcome 
this problem, a non-negative risk estimator (Kiryo et al., 2017) for PU classification was 
proposed.

Besides unbiased PU classification, various approaches for PU classification have 
also been proposed recently. For example, generative adversarial networks (GAN) have 
been applied to PU classification by Hou et al. (2018), which allows one to learn from 
a small number of positive samples. Zhang et al. (2019) introduced ambiguity to unla-
beled samples and performed PU label disambiguation (PULD) based on margin maxi-
mization to determine the true labels of all unlabeled examples. A variational approach 
and a data augmentation method based on Mixup (Zhang et al., 2018) were proposed by 
Chen et al. (2020) for PU classification without explicit estimation of the class-prior of 
the training data.

One of the drawbacks of these approaches is that the distribution of the test data must be 
identical to that of the training data, which may be violated in practice (Quionero-Candela 
et al., 2009). For example, the class-prior (the ratio of positive data) in the training unla-
beled dataset might be different from that of the test data, known as the class-prior shift 
problem. To cope with this problem, Charoenphakdee and Sugiyama (2019) showed that 
classification under class-prior shift can be written as cost-sensitive classification, and pro-
posed a risk-minimization approach and a density ratio estimation (Sugiyama et al., 2012) 
approach. In their study, both the class-priors of the training and test data are assumed to 
be given in advance, but this assumption does not hold in many practical cases. Therefore, 
we need to estimate them with the training and test data.

However, it is usually hard to obtain samples from the test distribution at the training 
time, and this is not natural because we do not know whether the prior shift would occur 
or not in advance. Furthermore, the training data would be inaccessible once the train-
ing has been completed, especially in privacy-concerned situations such as click analysis 
(McMahan et al., 2013), purchase prediction (Martínez et al., 2018), and voting prediction 
(Coletto et  al., 2015). In that kind of problem, the model is trained with data including 
personal information, and only the trained model is kept while the data must be discarded. 
This implies that we are not allowed to use training data when a classifier is adapted to an 
unknown test distribution.

To overcome these problems, we propose an approach based on density ratio estima-
tion (Sugiyama et al., 2012). Density ratio estimation for PU classification has appeared in 
several existing works (Charoenphakdee & Sugiyama, 2019; Kato et al., 2019), yet their 
studies have no guarantees on the theoretical relationship between binary classification and 
density ratio estimation. Our proposed method can train a classifier without given knowl-
edge of the class-priors, and adapt to the test-time class-prior shift without the training 
data. Table  1 summarizes comparisons of representative existing methods and our pro-
posed method. Our main contributions are: (i) We propose a method for PU classification 
under test-time class-prior shift with unknown class-priors, (ii) We theoretically justify the 
proposed method, and (iii) Experimental results show the effectiveness of the proposed 
method.
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2  Preliminaries

In this section, we introduce the notations, and review the concepts of unbiased/non-negative 
PU classification, cost-sensitive classification, and density ratio estimation.

2.1  Problem formulation

Let X ∈ ℝ
d and Y ∈ {± 1} be the input and output random variables, where d denotes the 

dimensionality of the input variable. Let p(x, y) be the underlying joint density of (X, Y) 
and p(x) be the input marginal density. We denote the positive and negative class-condi-
tional densities as

Let � = p(Y = +1) be the positive class-prior probability. Assume we have i.i.d. sample 
sets XP and XU from p+(x) and p(x) respectively, and let nP = ||XP

|| and nU = ||XU
|| , where 

|⋅| denotes the cardinality of a set. We denote the expectations over each class-conditional 
density as

and their empirical counterparts as

where f is an arbitrary function of x ∈ ℝ
d . Let g ∶ ℝ

d
→ ℝ be a real-valued decision func-

tion. The purpose of binary classification is to minimize the expected classification risk

(1)
p+(x) = p(x ∣ Y = +1)

p−(x) = p(x ∣ Y = −1).

(2)

�P[⋅] = �X∼p+
[⋅]

�N[⋅] = �X∼p−
[⋅]

�U[⋅] = �X∼p[⋅] = �X[⋅],

(3)

�̂P

[
f (X)

]
=

1

nP

∑

x∈XP

f (x)

�̂U

[
f (X)

]
=

1

nU

∑

x∈XU

f (x),

(4)R(g) = �X,Y

[
1{sign(g(X)) ≠ Y}

]
,

Table 1  Comparisons of representative existing PU classification methods. uPU was proposed by Plessis 
et al. (2014, 2015), nnPU was proposed by Kiryo et al. (2017), GenPU was proposed by Hou et al. (2018), 
PULD was proposed by Zhang et al. (2019), VPU was proposed by Chen et al. (2020), and PUa was pro-
posed by Charoenphakdee and Sugiyama (2019)

uPU nnPU GenPU PULD VPU PUa Ours

Excess risk bound and its con-
vergence rate analysis

✓ ✓ × ✓ × × ✓

Learning a classifier without 
given class-prior(s)

× × × × ✓ × ✓

Adaptable to test-time class-
prior shift

× × × × × ✓ ✓
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where 1{⋅} denotes the indicator function. Since the optimization problem based on the 
zero-one loss is computationally infeasible (Arora et al., 1997; Bartlett et al., 2006), a sur-
rogate loss function � ∶ ℝ × {± 1} → ℝ is used in practice. Classification risk with respect 
to surrogate loss is defined as

2.2  Unbiased/non‑negative PU classification

The surrogate classification risk can be written as

Since negative samples are unavailable in PU classification, we rewrite the expectation 
over the negative class-conditional distribution as

where p(x) = �p+(x) + (1 − �)p−(x) is used (Plessis et  al., 2014). Then, the risk can be 
approximated directly with XP and XU as

The empirical risk estimator R̂
�
(g) is unbiased and consistent (Niu et  al., 2016), i.e., 

�

[
R̂
�
(g)

]
= R

�
(g) where the expectation � is taken over all of the samples, and 

R̂
�
(g) → R

�
(g) as nP, nU → ∞.

Unbiased PU classification easily suffers from overfitting when we use a flexible model 
such as neural networks, because the model can be so powerful that it fits all of the given sam-
ples, and then the empirical risk goes negative (Kiryo et al., 2017). To mitigate this problem, a 
non-negative risk correction approach was proposed (Kiryo et al., 2017). Since

holds for any non-negative loss function, we correct the corresponding part of the expected 
risk to be non-negative. Approximating the expectations by sample averages gives the non-
negative risk estimator:

where (⋅)+ = max(0, ⋅) . The non-negative risk estimator is biased yet consistent, and its 
bias decreases exponentially with respect to nP + nU (Kiryo et al., 2017).

2.3  Cost‑sensitive classification

For arbitrary false-positive cost parameter c ∈ (0, 1) , cost-sensitive classification is defined as 
a problem of minimize the following risk (Elkan, 2001; Scott, 2012) :

(5)R
�
(g) = �X,Y

[
�(g(X), Y)

]
.

(6)R
�
(g) = ��P

[
�(g(X),+1)

]
+ (1 − �)�N

[
�(g(X),−1)

]
.

(7)(1 − �)�N

[
�(g(X),−1)

]
= �U

[
�(g(X),−1)

]
− ��P

[
�(g(X),−1)

]
,

(8)R̂
�
(g) = ��̂P

[
�(g(X),+1)

]
− ��̂P

[
�(g(X),−1)

]
+ �̂U

[
�(g(X),−1)

]
.

(9)�U

[
�(g(X),−1)

]
− ��P

[
�(g(X),−1)

]
= (1 − �)�N

[
�(g(X),−1)

] ≥ 0

(10)R̃
�
(g) = ��̂P

[
�(g(X),+1)

]
+
(
�̂U

[
�(g(X),−1)

]
− ��̂P

[
�(g(X),−1)

])

+
,

(11)R�,c(g) = (1 − c)��P

[
1{sign(g(X)) ≠ +1}

]
+ c(1 − �)�N

[
1{sign(g(X)) ≠ −1}

]
.
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When c = 1∕2 , cost-sensitive classification reduces to ordinary binary classification, up to 
unessential scaling factor 1/2. (Charoenphakdee & Sugiyama, 2019) showed that classifica-
tion under class-prior shift can be formulated as cost-sensitive classification. For example, 
let �� ∈ (0, 1) be the class-prior of the test distribution, then R�� ,1∕2 ∝ R�,c with 
c =

�(1−��)

�(1−��)+(1−�)��
.

2.4  Class‑prior estimation

In unbiased/non-negative PU classification, the class-prior is assumed to be given, 
which does not hold in many practical cases. Unfortunately, we cannot treat � as a 
hyperparameter to be tuned, because there exists a trivial solution such as � = 0 and 
g(x) ≡ argminv�(−1, v) . One of the solutions to this problem is to estimate both the train-
ing and test class-priors by existing methods respectively with positive, training-unlabeled, 
and test-unlabeled datasets. In fact, it is known that class-prior estimation is an ill-posed 
problem, without any additional assumptions (Blanchard et al., 2010; Scott et al., 2013). 
For example, if

holds, then there exists a density p�
−
(x) such that

for 0 ≤ � ≤ � . In practice, an alternative goal of estimating the maximum mixture 
proportion

 is pursued (Blanchard et al., 2010; Scott et al., 2013). The irreducibility assumption (Blan-
chard et  al., 2010; Scott et  al., 2013) gives a constraint on the true underlying densities 
which ensures that �∗ is the unique solution of prior estimation.

Definition 1 (Irreducibility (Blanchard et  al., 2010; Scott et  al., 2013)) Let G and H be 
probability distributions on (ℝd,�) where � is a Borel algebra on ℝd . We say that G is 
irreducible with respect to H, if there is no decomposition of the form G = �H + (1 − �)H� 
where H′ is some probability distribution and 0 < 𝜅 ≤ 1.

Let P, P+ , and P− be the cumulative distribution functions of p, p+ , and p− respectively. 
Under the irreducibility assumption, the class-prior is identical to the maximum mixture 
proportion.

Proposition 1 [(Blanchard et al., 2010; Scott et al., 2013)] Let P, P+ , and P− be probability 
distributions on (ℝd,�) . If P = �P+ + (1 − �)P− and P− is irreducible with respect to P+ , 
then

(12)p(x) = �p+(x) + (1 − �)p−(x)

(13)p(x) = (� − �)p+(x) + (1 − � + �)p�
−
(x)

(14)�∗ = max{� ∈ [0, 1] ∶ ∃p− s.t. p(x) = �p+(x) + (1 − �)p−(x)}

(15)
𝜋 = max{𝜅 ∈ [0, 1] ∶ ∃Q s.t. P = 𝜅P+ + (1 − 𝜅)Q}

= inf
S∈�,P+(S)>0

P(S)

P+(S)
.
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Note that the set S ∈ � corresponds to a measurable hypothesis h ∶ ℝ
d
→ {−1,+1} 

bijectively. Based on these facts, several works for class-prior estimation have been proposed 
(Blanchard et al., 2010; Scott et al., 2013; Scott, 2015; Ramaswamy et al., 2016; Plessis et al., 
2016). However, they usually work with kernel methods which are computationally hard to 
apply to large-scale and high-dimensional data. Furthermore, since the unbiased/non-negative 
risk estimators depend on the class-prior, an estimation error of the class-prior directly affects 
the optimization. In addition, we usually do not have a sample set from the test distribution at 
the training time, and thus cannot even estimate the class-prior of the test data by such existing 
methods.

2.5  Density ratio estimation

The ratio of two probability densities has attracted attention in various problems (Sugiyama 
et al., 2009, 2012). Density ratio estimation (DRE) (Sugiyama et al., 2012) aims to directly 
estimate the ratio of two probabilities, instead of estimating the two densities separately. 
Sugiyama et al. (2011) showed that various existing DRE methods (Sugiyama et al., 2008; 
Kanamori et al., 2009; Kato et al., 2019) can be unified from the viewpoint of Bregman diver-
gence minimization, so we consider the DRE problem as a Bregman divergence minimization 
problem.

Here we consider estimating the ratio of the positive class-conditional density to the input 
marginal density. Let r∗(x) = p+(x)∕p(x) be the true density ratio and r ∶ ℝ

d
→ [0,∞) be a 

density ratio model. For a convex and differentiable function f ∶ [0,∞) → ℝ , the expected 
Bregman divergence, which measures the discrepancy from r∗ to r, is defined as

where the constant term does not include r. The function f is called the generator func-
tion of the Bregman divergence (Menon & Ong, 2016). We can see that the Bregman 
divergence of DRE does not contain the class-prior � , and can be approximated by taking 
empirical averages over the positive and unlabeled datasets, except the constant term.

Similarly to the case of unbiased PU classification, it was revealed that empirical Bregman 
divergence minimization often suffers from severe overfitting when we use a highly flexible 
model (Kato & Teshima, 2021). To mitigate this problem, non-negative risk correction for the 
Bregman divergence minimization was proposed, based on the idea of non-negative PU clas-
sification (Kiryo et al., 2017).

The objective function for Bregman divergence minimization is defined by Eq. (16) with-
out the constant term

We also consider its empirical counterpart L̂f (r) . Let us denote

then � is non-negative on [0,∞) because (f ∗)�(t) = tf ��(t) ≥ 0 (i.e., f is convex.). We pick a 
lower bound of � as � and then we have

(16)
BRf (r

∗ ∥ r) = ∫
(
f (r∗(x)) − f (r(x)) − f �(r(x))(r∗(x) − r(x))

)
p(x)dx

= �P

[
−f �(r(X))

]
+ �U

[
f �(r(X))r(X) − f (r(X))

]
+ const.,

(17)Lf (r) = �P

[
−f �(r(X))

]
+ �U

[
f �(r(X))r(X) − f (r(X))

]
.

(18)
f ∗(t) = tf �(t) − f (t)

�(t) = f ∗(t) − f ∗(0),
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Thus, we define the corrected empirical estimator of L as

where (⋅)+ = max(0, ⋅) . L̃f  is consistent as long as 0 ≤ � ≤ � , and its bias decreases expo-
nentially with respect to nP + nU . Even though we do not have any knowledge of � , we 
can tune � as a hyperparameter to minimize the empirical estimator without non-negative 
correction L̂f (r) , which contains neither � nor � , with the positive and unlabeled validation 
datasets.

3  Density ratio estimation for PU learning

In this section, we formulate a cost-sensitive binary classification problem as a density 
ratio estimation problem, and propose a method of Density Ratio estimation for PU learn-
ing (DRPU). All proofs are given in Appendix A.

3.1  Excess risk bounds

From Bayes’ rule, we have p(Y = +1 ∣ X) = �p+(x)∕p(x) = �r∗(x) . Therefore, the optimal 
solution of the Bregman divergence minimization, r = r∗ gives a Bayes optimal classifier 
by thresholding p(Y = +1 ∣ X) = 1∕2 , and it motivates us to use r for binary classification. 
However, this statement only covers the optimal solution, and it is unclear how the classifi-
cation risk grows along with the Bregman divergence. To cope with this problem, we inter-
pret the DRE as minimization of an upper bound of the excess classification risk. Although 
the relationship between DRE and class probability estimation has been studied by Menon 
and Ong (2016), differently from that, our work focuses on the ratio of the densities of 
positive and unlabeled data, and the value of the Bregman divergence does not depend on 
the class-prior �.

We denote the Bayes optimal risk as R∗
�,c

= infg∈F R�,c(g) , where F  is the set of all 
measurable functions from ℝd to ℝ , and the difference R�,c(g) − R∗

�,c
 is called the excess risk 

for R�,c . The following theorem associates DRE with cost-sensitive classification under a 
strong convexity assumption on f, justifying solving binary classification by DRE.

Theorem 1 Let f be a �-strongly convex function, i.e., 𝜇 = inft∈[0,∞) f
��(t) > 0 . Then, for any 

� ∈ (0, 1) , c ∈ (0, 1) , r ∶ ℝ
d
→ [0,∞) , and h� = sign(r − �) , we have

where � = c∕�.

As we have already seen in Sect. 2.3, the class-prior shift problem can be transformed 
into a cost-sensitive classification problem. Next, we extend the excess risk bound in Theo-
rem 1 to the case of prior shift. Let �′ be the test-time class-prior and c′ be the test-time 

(19)�U

[
�(r(X))

]
− ��P

[
�(r(X))

] ≥ (1 − �)�N

[
�(r(X))

] ≥ 0.

(20)
L̃f (r) = �̂P

[
−f �(r(X)) + ��(r(X))

]

+
(
�̂U

[
�(r(X))

]
− ��̂P

[
�(r(X))

])

+
+ f ∗(0),

(21)R�,c(h�) − R∗
�,c

≤ �

√
2

�
BRf (r

∗ ∥ r),



896 Machine Learning (2023) 112:889–919

1 3

false positive cost. Note that c� = 1∕2 corresponds to standard binary classification. The 
classification risk with respect to the test distribution is defined as

The following theorem gives an excess risk bound for R�′ ,c′.

Theorem 2 Let f be a �-strongly convex function. Then, for any �,�� ∈ (0, 1) , c� ∈ (0, 1) , 
r ∶ ℝ

d
→ [0,∞) , and h� = sign(r − �) , we have

where c0 =
c��(1−��)

(1−c�)(1−�)��+c��(1−��)
 , � = c0∕� , and C = � c�+��−2c���

c0+�−2c0�
.

Note that this is a generalized version of Theorem 1, which is the case of �� = � and 
c� = c . This result shows that even when the class-prior and cost are shifted, by changing 
the classification threshold to c0 , the classification risk can still be bounded by the Breg-
man divergence of DRE.

3.2  Estimating the class‑priors

Although we can train a model r and deal with a prior shift problem without the knowledge 
of the class-priors, we still need to estimate them to determine the classification threshold 
c0∕� . Based on Proposition 1, we propose the following estimator of �:

where

and

Here,

and,

(22)
R�� ,c� (g) = (1 − c�)��

�P

[
1{sign(g(X)) ≠ +1}

]

+ c�(1 − ��)�N

[
1{sign(g(X)) ≠ −1}

]
.

(23)R�� ,c� (h�) − R∗
�� ,c�

≤ C

√
2

�
BRf (r

∗ ∥ r),

(24)�̂�(r) = inf
h∈Hr

�P(h)

�P+(h)
,

(25)
P̂(h) = �̂U[1{h(X) = +1}]

P̂+(h) = �̂P[1{h(X) = +1}]

(26)H
r
=
{
h ∶ ℝ

d
→ {± 1} ∣ ∃𝜃 ∈ ℝ, h(x) = sign(r(x) − 𝜃) ∧ �P+(h) > �̄�

}
.

(27)�̄� =
1

𝛾
max(𝜀(nP, 1∕nP), 𝜀(nU, 1∕nU))

(28)�(n, �) =

√
4 log(en∕2)

n
+

√
log(2∕�)

2n
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for some n > 0 and 0 < 𝛿 < 1 , and 0 < 𝛾 < 1 is an arbitrarily fixed constant. The main dif-
ference from the estimator proposed by Blanchard et al. (2010) and Scott et al. (2013) is 
that the hypothesis h is determined by thresholding the trained density ratio model r, thus 
we need no additional training of the model.

To consider convergence of the proposed estimator, we introduce the concept of the 
Area Under the receiver operating characteristic Curve (AUC), which is a criterion to 
measure the performance of a score function for bipartite ranking (Menon & William-
son, 2016). For any real-valued score function s ∶ ℝ

d
→ ℝ , AUC is defined as

where the expectation is taken over X, X′ , Y, and Y ′ . In addition, we define the AUC risk 
and the optimal AUC risk as RAUC(r) = 1 − AUC(r) and R∗

AUC
= infs∈F RAUC(s) , where F  

is a set of all measurable functions from ℝd to ℝ . Then, the following theorem gives a con-
vergence guarantee of the estimator.

Theorem 3 For �̂�(r) defined by Eq. (24), with probability at least (1 − 1∕nP)(1 − 1∕nU) , we 
have

Here, � is an increasing function such that

and �(0) → 0 as �̄� → 0.

This result shows that a better score function in the sense of AUC tends to result in 
a better estimation of � . Furthermore, we can see that the scale of r is not important for 
the estimator �̂�(r) ; it just needs to be a good score function, therefore r can be used not 
only to estimate � but also to estimate �′ . Given a sample set X�

U
 from the test density 

p�(x) = ��p+(x) + (1 − ��)p−(x) , we propose the following estimator of the test prior �′:

where P̂�(h) = �̂U� [1{h(X) = +1}] . Replacing � by �′ , �̂� by �̂�′ , and nU by n�
U
= ||X

�
U
|| in 

Theorem 3 , we can obtain an error bound of �̂�′.
In Eq. (32), we require the dataset from the positive class-conditional distribution 

and the test-time input marginal distribution. As described in Sects. 1 and 2, we some-
times do not have access to the training data at the test-time. Fortunately in Eq. (32), 
we need only the value of P̂+(h) for each h, and we do not care about the samples them-
selves. Also, P̂+(h) takes ascending piece-wise constant values from 0 to 1 with interval 
1∕nP . Hence, preserving the list of intervals {Θi}

nP
i=0

 such that P̂+(sign(r(X) − �)) = i∕nP 
for all � ∈ Θi at the training time, we can use it to estimate the test-time class-prior, 
without preserving the training data themselves.

(29)AUC(s) = �
[
1{(Y − Y �)(s(X) − s(X�)) > 0} ∣ Y ≠ Y �

]
,

(30)|�̂�(r) − 𝜋| ≤ 𝜉
(
RAUC(r) − R∗

AUC

)
+O

(√
log nP

nP
+

√
log nU

nU

)
.

(31)𝜉
(
RAUC(r) − R∗

AUC

) ≤ 2(1 − 𝜋)

1 − �̄�2
RAUC(r),

(32)�̂��(r) = inf
h∈Hr

�P�(h)

�P+(h)
,
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3.3  Practical implementation

The entire flow of our proposed method is described in Algorithm 1. Since the strong con-
vexity of the generator f of the Bregman divergence is desired, we may employ the quadratic 
function f (t) = t2∕2 . In this case, the DRE method is called Least-Square Importance Fitting 
(LSIF) (Kanamori et al., 2009). As a parametric model r, a deep neural network may be used 
and optimized by stochastic gradient descent. Details of the stochastic optimization method 
for L̃f  are described in Algorithm 2. In the prior estimation step, it is recommended to use data 
that is not used in the training step to avoid overfitting, especially when we are using flexible 
models. So we split the given data into the training and validation sets, then use the validation 
set to tune hyperparameters and estimate the class-priors.
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4  Discussions

In this section, we provide further theoretical analysis and compare the convergence rate 
of the proposed method to that of unbiased/non-negative PU classification.

4.1  Selection of the Bregman generator function

Theorem 2 needs the assumption of strong convexity on the Bregman generator func-
tion f. We used a quadratic function in the proposed method; nevertheless there could be 
other choices of f. The following proposition shows that the tightest excess risk bound is 
achieved by a quadratic function.

Proposition 2 Let f be a strongly convex function and � = inft∈[0,∞) f
��(t) . Then the quad-

ratic function fS(t) = �t2∕2 satisfies

Furthermore, Bregman divergence with respect to the quadratic function can be 
related to the excess classification risk with respect to the squared loss function. Let us 
denote the classification risk w.r.t. the squared loss as

where g ∶ ℝ
d
→ [−1, 1] , and the optimal risk as

where �(x) = P(Y = +1 ∣ X = x) . Then, the Bregman divergence is decomposed into the 
excess risk w.r.t. the squared loss and a superfluous term.

Proposition 3 Let gr = 2min(�r, 1) − 1 for any r ∶ ℝ
d
→ [0,∞) . Then,

where 𝜒r = (1∕𝜋2)�X∣𝜋r(X)>1[(𝜋r(X) − 1)(𝜋r(X) − 2𝜂(X) + 2)] and �r = P(𝜋r(X) > 1).

If r is bounded above by 1∕� , the superfluous term is canceled and the Bregman 
divergence corresponds to the excess risk w.r.t. the squared loss, up to the scaling factor.

4.2  Excess risk bound for AUC 

Here we consider the relationship between AUC optimization and DRE. It is clear that 
the optimal density ratio r∗ is the optimal score function (Menon & Williamson, 2016), 
and as Theorem 1, we can obtain an excess AUC risk bound by the Bregman divergence 
of DRE as follows:

(33)BRfS
(r∗ ∥ r) ≤ BRf (r

∗ ∥ r).

(34)Rsq(g) = �X,Y

[
1

4
(Yg(X) − 1)2

]
,

(35)R∗
sq
= inf

g
Rsq(g) = Rsq(2� − 1),

(36)
2�2

�
BRfS

(r∗ ∥ r) = Rsq(gr) − R∗
sq
+ �r�r,



900 Machine Learning (2023) 112:889–919

1 3

Theorem 4 Let f be a �-strongly convex function. Then, for any r ∶ ℝ → [0,∞) , we have

Theorem 4 implies that a better estimation of the density ratio in the sense of the Breg-
man divergence tends to result in a better score function in the sense of AUC.

4.3  Excess risk bound with the estimated threshold

Theorem 2 gives an excess risk bound with the optimal threshold. However, in practice, 
we need to use an estimated threshold. Here we also consider an excess risk bound for that 
case. Let � be the true classification threshold for h = sign(r − �) , defined as � = c0∕� , and 
�̂� be the empirical version of � , obtained from �̂�(r) and �̂��(r) . Then, we have the following 
excess risk bound.

Theorem 5 Let f be a �-strongly convex function and � = c0∕� where c0 is defined in Theo-
rem 2. Then for �̂� ∈ (0, 1) and h�̂� = sign(r − �̂�) , we have

where C is defined in Theorem 2 and 𝜔�̂� is a constant such that 0 ≤ 𝜔�̂� ≤ 1 and �� = 0.

Theorem 5 reduces to Theorem 2 when �̂� = 𝜃 . We can also prove that the estimation 
error of the threshold decays at the linear order of the estimation error of the class-priors as 
follows:

Proposition 4 Let �̂� , �̂�′ be estimated class-priors and �̂� be an estimated threshold by �̂� , �̂�′ . 
Then,

Combining Corollary 5 and Proposition 4, we can see that the excess risk decays at the 
linear order of the estimation error of the class-priors.

4.4  Convergence rate comparison to unbiased/non‑negative PU classification

From the above results and theoretical analysis for non-negative Bregman divergence mini-
mization provided by Kato and Teshima (2021), we can derive the convergence rate for 
our proposed method. Let H be a hypothesis space of density ratio model r ∶ ℝ

d
→ [0,∞) 

and let us denote the minimizer of the empirical risk as r̂ = argminr∈H
�Lf (r) where Lf  and 

L̃f  are defined in Sect. 3.3. Theorem 1 in Kato and Teshima (2021) states that if f satis-
fies some appropriate conditions and the Rademacher complexity of H decays at O(1∕

√
n) 

w.r.t. sample size n, for example, linear-in-parameter models with a bounded norm or neu-
ral networks with a bounded Frobenius norm (Golowich et al., 2018; Lu et al., 2020), the 
estimation error L(r̂) − infr∈H L(r) decays at O(1∕

√
nP + 1∕

√
nU) with high probability. 

Applying this to Corollary 5 and Proposition 4, the following theorem is induced.

(37)RAUC(r) − R∗
AUC

≤ 1

1 − �

√
2

�
BRf (r

∗ ∥ r).

(38)R𝜋� ,c� (h�̂�) − R∗
𝜋� ,c�

≤ (
C + 𝜋�𝜔�̂�

)√ 2

𝜇
BRf (r

∗ ∥ r) + 𝜋�|||�̂� − 𝜃
|||,

(39)
|||�̂� − 𝜃

||| ≤ O
(
|�̂� − 𝜋| + ||�̂�

� − 𝜋�||
)

as |�̂� − 𝜋|, ||�̂�
� − 𝜋�|| → 0.
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Corollary 1 Let f be a �-strongly convex function and satisfy Assumption 3 in Kato and 
Teshima (2021). Then, for ĥ�̂� = sign(r̂ − �̂�) , with probability at least 1 − � , we have

where AH = (C + ��)
√

2

�

(
infr∈H Lf (r) − Lf (r

∗)
)
 with the constant C defined in Theorem 2 

and D� =
√
log(1∕�).

For comparison, we consider the convergence of the excess risk based on the theoreti-
cal analysis of unbiased/non-negative PU classification provided by Kiryo et al. (2017) and 
the properties of classification calibrated loss functions provided by Bartlett et  al. (2006) 
and Scott (2012). Let G be a hypothesis space of decision function g ∶ ℝ

d
→ ℝ and let us 

denote the minimizer of the empirical risk as ĝ = infg∈G
�R
�
(g) where R

�
 and R̃

�
 are defined 

in Sect. 2. Assume that the loss function � satisfies some appropriate conditions and if the 
Rademacher complexity of G decays at O(1∕

√
n) , the estimation error R

�
(ĝ) − infg∈G R�

(g) 
decays at O(1∕

√
nP + 1∕

√
nU) with high probability. In addition, if � is classification cali-

brated (Bartlett et al., 2006; Scott, 2012), there exists a strictly increasing function � and the 
excess risk w.r.t. the zero-one loss is bounded above by the surrogate excess risk. That is, with 
probability at least 1 − � , we have

where AG = infg∈G R�
(g) − R∗

�
 and D� =

√
log(1∕�).

For specific loss functions such as the hinge loss or the sigmoid loss, � is the identity func-
tion (Bartlett et al., 2006; Steinwart, 2007), hence the convergence rate of unbiased/non-nega-
tive PU classification would be faster than that of the density ratio estimation approach for PU 
classification (DRPU). This result is intuitively reasonable, because a method solving a spe-
cific problem tends to have better performance than a method solving more general problems 
(Vapnik, 1995). That is, the hinge loss and sigmoid loss are not proper losses in the context of 
class-posterior probability estimation (Buja et al., 2005; Reid & Williamson, 2009), and risk 
minimization with respect to these losses allows one to bypass the estimation of the posterior 
probability and obtain a classifier directly, while DRE does not.

Based on the above discussions, we should choose nnPU when we know the class-prior 
of the training data and it is assured that there is no class-prior shift in the test phase. In 
other cases, DRPU could be a better choice to solve PU classification more stably. Also, we 
should notice that nnPU with the sigmoid loss or the hinge loss does not provide the class-
posterior probability.

(40)R𝜋� ,c� (ĥ�̂�) − R∗
𝜋� ,c�

≤ AH + D𝛿 ⋅O

(
1

n
1∕4

P

+
1

n
1∕4

U

)
+O

(
|�̂� − 𝜋| + ||�̂�

� − 𝜋�||
)
,

(41)R𝜋,c(ĝ) − R∗
𝜋,c

≤ 𝜓−1

�
AG + D𝛿 ⋅O

�
1

√
nP

+
1

√
nU

��
,
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5  Experiments

In this section, we report our experimental results. All the experiments were done with 
PyTorch (Paszke et al., 2019).1

5.1  Test with synthetic data

We conducted experiments with synthetic data to confirm the effectiveness of the pro-
posed method via numerical visualization. Firstly, we define p+(x) = N(+1, 1) and 
p−(x) = N(−1, 1) where N(�, �2) denotes the univariate Gaussian distribution with mean � 
and variance �2 , and p(x) = �p+(x) + (1 − �)p−(x) . We generated samples from p+(x) and 
p(x) with � = 0.4 for training data, and from p(x) with �� = 0.6 for test data.

The training dataset contained 200 positively labeled samples and 1000 unlabeled 
samples, and the validation dataset contained 100 positively labeled samples and 500 
unlabeled samples. The test dataset consisted of 1000 samples. As a parametric model, 
linear-in-parameter model with Gaussian basis functions �(x) = exp(−(x − xi)

2∕2) , 
where {x1,… , xnU} = XU , was used. Adam with default momentum parameters �1 = 0.5 , 
�2 = 0.999 and �2 regularization parameter 0.1 was used as an optimizer. Training was per-
formed for 200 epochs with the batch size 200 and the learning rate 2 × 10−5.

We did experiments with unbiased PU learning (uPU) (Plessis et al., 2014, 2015) with 
the logistic loss and our proposed method (DRPU) with LSIF. In uPU, the class-prior of 
the training data was estimated by KM2 (Ramaswamy et  al., 2016), and for DRPU, the 
test unlabeled dataset was used as an unlabeled dataset to estimate the test prior �′ . The 
left-hand side of Fig. 1 shows the obtained classification boundaries, and the boundary of 
DRPU was closer to the optimal one than that of uPU.

Fig. 1  Visualized classification boundaries of uPU and DRPU, averaged over 10 trials. Each of the vertical 
lines are the boundaries and the colored areas are the standard deviations. “Oracle” is the optimal classifica-
tion boundary. The red curve means the probability density p+ scaled by �′ , and the blue curve means p− 
scaled by 1 − �� . The upper graph corresponds to the case where irreduciblity assumption holds, while the 
lower one does not (Color figure online)

1 We downloaded the source-codes of nnPU from https:// github. com/ kiryor/ nnPUl earni ng, VPU from 
https:// github. com/ HC- Feynm an/ vpu, and KM2 from http:// web. eecs. umich. edu/ ~cscott/ code. html. Our 
implementation is available at https:// github. com/ csnak ajima/ pu- learn ing.

https://github.com/kiryor/nnPUlearning
https://github.com/HC-Feynman/vpu
http://web.eecs.umich.edu/%7ecscott/code.html
https://github.com/csnakajima/pu-learning
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Secondly, we tested the case where the irreducibility assumption does not hold. Let 
p+(x) = 0.8N(+1, 1) + 0.2N(−1, 1) , p−(x) = 0.2N(+1, 1) + 0.8N(−1, 1) , and set the train-
ing prior � = 0.6 , the test prior �� = 0.4 . The result is illustrated in the right-hand side of 
Fig. 1. Class-prior estimation by KM2 was inaccurate since the irreducibility assumption 
did not hold, and then uPU led to a large error. DRPU also gave inaccurate estimations of 
the class-priors, but they did not affect the training step, so the influence of the estimation 
error was relatively mitigated.

5.2  Test with benchmark data

We also measured the performances of nnPU (Kiryo et al., 2017), PUa (Charoenphakdee & 
Sugiyama, 2019), VPU (Chen et al., 2020), and DRPU (the proposed method) on MNIST 
(Lecun et al., 1998), Fashion-MNIST (Xiao et al., 2017), Kuzushiji-MNIST (Lamb et al., 
2018), and CIFAR-10 (Krizhevsky, 2012). Here we summarize the descriptions of the 
datasets and the training settings.

• MNIST (Lecun et al., 1998) is a gray-scale 28 × 28 image dataset of handwritten digits 
from 0 to 9, which contains 60000 training samples and 10000 test samples. Since it 
has 10 classes, we treated the even digits as the positive class and the odd digits as the 
negative class respectively. We prepared 2500 positively labeled (P) samples and 50000 
unlabeled (U) samples as the training data, and 500 P samples and 10000 U samples 
as the validation data. The test dataset was made up of 5000 samples for each of the 
test distributions with different class-priors respectively. As a parametric model, 5-layer 
MLP : 784-300-300-300-1 with ReLU activation was used, and trained by Adam with 
default momentum parameters �1 = 0.9 , �2 = 0.999 and �2 regularization parameter 
5 × 10−3 . Training was performed for 50 epochs with the batch size 500. The learning 
rate was set to 10−4 for nnPU/PUa and 2 × 10−5 for VPU/DRPU, which is halved for 
every 20 epochs. In VPU, we set hyperparameters for Mixup as � = 0.3 and � = 2.0 . In 
DRPU, we set a hyperparameter for non-negative correction as � = 0.475.

• Fashion-MNIST (Xiao et al., 2017) is a gray-scale 28 × 28 image dataset of 10 kinds 
of fashion items, which contains 60000 training samples and 10000 test samples. We 
treated ‘Pullover’, ‘Dress’, ‘Coat’, ‘Sandal’, ‘Bag’, and ‘Ankle boot’ as the positive 
class, and ‘T-shirt’, ‘Trouser’, ‘Shirt’, and ‘Sneaker’ as the negative class respectively. 
We prepared 2500 P samples and 50000 U samples as training data, and 500 P sam-
ples and 10000 U samples for validation data. The test dataset was made up of 5000 
samples for each of the test distributions with different class-priors respectively. As a 
parametric model, we used LeNet (Lecun et al., 1998) -based CNN : (1 × 32 × 32) - 
C(6, 5 × 5, pad=2) - MP(2) - C(16, 5 × 5, pad=2) - MP(2) - C(120, 5 × 5) - 120 - 84 - 1, 
where C(c, h × w , pad=p) means c channels of h × w convolutions with zero-padding p 
(abbreviated if p = 0 ) followed by activation function (ReLU), and MP(k) means k × k 
max pooling. Batch normalization was applied after the first fully-connected layer. The 
model was trained by Adam, with the same settings as the case of MNIST. Training 
was performed for 100 epochs with the batch size 500 and the learning rate 2 × 10−5 , 
which is halved for every 20 epochs. In VPU, we set hyperparameters for Mixup as 
� = 0.3 and � = 0.5 . In DRPU, we set a hyperparameter for non-negative correction as 
� = 0.6.

• Kuzushiji-MNIST (Lamb et al., 2018) is a gray-scale 28 × 28 image dataset of 10 
kinds of cursive Japanese characters, which contains 60000 training samples and 
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10000 test samples. We treated ‘o’, ‘ki’, ‘re’, ‘wo’ as the positive class, and ‘su’, 
‘tsu’, ‘na’, ‘ha’, ‘ma’, ‘ya’ as the negative class respectively. We prepared 2500 P 
samples and 50000 U samples as the training data, and 500 P samples and 10000 
U samples as the validation data. The test dataset was made up of 5000 samples for 
each of the test distributions with different class-priors respectively. The model and 
optimization settings were the same as the cases of Fashion-MNIST. In VPU, we set 
hyperparameters for Mixup as � = 0.3 and � = 0.5 . In DRPU, we set a hyperparam-
eter for non-negative correction as � = 0.375.

• CIFAR-10 (Krizhevsky, 2012) is a colored 32 × 32 image dataset, which contains 
50000 training samples and 10000 test samples. We treated ‘airplane’, ‘automobile’, 
‘ship’, and ‘truck’ as the positive class, and ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, and 
‘horse’ as the negative class respectively. We prepared 2500 P samples and 45000 U 
samples as the training data, and 500 P samples and 5000 U samples as the valida-
tion data. The test dataset was made up of 5000 samples for each the test distribu-
tions with different class-priors respectively. As a parametric model, we used the 
CNN introduced in Springenberg et al. (2015) : (3 × 32 × 32) - C(96, 5 × 5, pad=2) 
- MP(2 × 2) - C(96, 5 × 5, pad=2) - MP(2 × 2) - C(192, 5 × 5, pad=2) - C(192, 5 × 
3, pad=1) - C(192, 1 × 1) - C(10, 1 × 1) with ReLU activation. Batch normalization 
was applied after the max pooling layers and the third, fourth, fifth convolution lay-
ers. The model was trained by Adam, with the same settings as the case of MNIST. 
Training was performed for 100 epochs with the batch size 500 and the learning 
rate 10−5 , which is halved for every 20 epochs. In VPU, we set hyperparameters for 
Mixup as � = 0.3 and � = 4.0 . In DRPU, we set a hyperparameter for non-negative 
correction as � = 0.425.

In nnPU, the class-prior of the training data was estimated by KM2 (Ramaswamy et al., 
2016). In PUa, we estimated both the training and test priors by KM2, then performed cost-
sensitive non-negative PU classification (Charoenphakdee & Sugiyama, 2019). Note that 
in this setting, PUa needs the unlabeled test dataset at the training-time to estimate the test 
prior by KM2, while DRPU needs it at only the test-time. Moreover, PUa needs to train a 
model for each time the test prior changes. In nnPU and PUa, the sigmoid loss was used as 
a loss function.

Table 2 shows the results of the experiments. nnPU and PUa unintentionally achieved 
high accuracy in some cases because of estimation errors of the class-priors, while they 
had poor results in the other cases. VPU achieved good results in several cases where the 
scale of class-prior shift was small since it does not need the class-prior in the training 
phase, but it was not adapted to large class-prior shift. DRPU outperformed the other meth-
ods in almost all cases, and was the most robust to the test-time class-prior shift. Figure 2 
gives the classification errors in the experiments. For example, in the case of Fashion-
MNIST with �� = 0.8 , nnPU and PUa suffered from overfitting due to the estimation error 
of the training class-prior. Also, as seen in the case of Kuzushiji-MNIST with �� = 0.2 , 
DRPU gave a better result than the other methods, and was the most stable, i.e., it had the 
smallest variance.

In addition, Table 3 reports the computed AUC values on the experiments for each of 
the methods. The results were picked from �� = 0.6 case. DRPU had a bit worse results 
than VPU on MNIST and Fashion-MNIST, while it performed well on Kuzushiji-MNIST 
and CIFAR-10. Table  4 summarizes the absolute error of the class-prior estimation by 
KM2 and our method described in Sect.  3.2. For KM2, we used 2000 positive samples 
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from the training dataset and 2000 unlabeled samples from the test dataset. The inputs 
were transformed into 50 dimensions by PCA (Jolliffe & Cadima, 2016). For our method, 
we used 500 positive samples from the validation dataset and 5000 unlabeled samples from 
the test dataset. It is observed that our class-prior estimation method outperformed KM2 in 
almost all cases.

5.3  Comparisons under different numbers of labeled samples

To numerically verify the theoretical insight provided in Sect.  4.4, we compared 
nnPU and DRPU with different sizes of the positively labeled dataset. In this experi-
ment, we assumed that the true class-prior � was known and no class-prior shift 
would occur. We performed nnPU and DRPU on MNIST and CIFAR-10, with 
nP ∈ {500, 1000, 2000, 4000} . Note that we skipped the class-prior estimation step of 
DRPU because the class-priors were given. Figure  3 shows the results of the experi-
ments. On MNIST, the performance of DRPU was comparable to that of nnPU when 
nP was small, yet it got outperformed under larger nP . On CIFAR-10, unlike the MNIST 

Table 2  The means and standard deviations of the classification accuracy in percent on benchmark datasets 
over 10 trials. “Train” and “Test” denote the class-priors of the training and test data respectively. “Avg” is 
the averaged accuracy of the four results with different priors. The best results with respect to the one-sided 
t-test at the significance level 0.05 are highlighted in boldface (for the “Avg” case, just picking the highest 
one)

Dataset Train Test nnPU PUa VPU DRPU

MNIST 0.5 0.2 92.98 ± 1.72 93.11 ± 1.51 ��.�� ± �.�� 95.78 ± 0.54

0.4 93.76 ± 1.02 93.70 ± 0.94 ��.�� ± �.�� ��.�� ± �.��

0.6 ��.�� ± �.�� ��.�� ± �.�� 93.71 ± 0.89 ��.�� ± �.��

0.8 95.23 ± 0.76 95.28 ± 0.90 92.43 ± 1.39 ��.�� ± �.��

Avg. 94.12 94.22 94.32 ��.��

Fashion-
MNIST

0.6 0.2 ��.�� ± �.�� ��.�� ± �.�� 89.22 ± 1.13 ��.�� ± �.��

0.4 88.95 ± 1.22 87.89 ± 1.10 ��.�� ± �.�� ��.�� ± �.��

0.6 86.26 ± 1.50 86.07 ± 1.35 ��.�� ± �.�� ��.�� ± �.��

0.8 83.26 ± 2.29 84.39 ± 2.27 91.70 ± 0.98 ��.�� ± �.��

Avg. 87.54 87.35 90.46 ��.��

Kuzushiji-
MNIST

0.4 0.2 81.88 ± 2.52 82.81 ± 2.99 85.78 ± 2.81 ��.�� ± �.��

0.4 85.18 ± 1.64 85.11 ± 2.12 85.93 ± 1.77 ��.�� ± �.��

0.6 ��.�� ± �.�� ��.�� ± �.�� 86.11 ± 1.36 ��.�� ± �.��

0.8 ��.�� ± �.�� ��.�� ± �.�� 86.10 ± 2.09 ��.�� ± �.��

Avg. 86.67 86.62 85.98 ��.��

CIFAR-10 0.4 0.2 80.32 ± 1.55 80.33 ± 2.34 ��.�� ± �.�� ��.�� ± �.��

0.4 84.38 ± 1.15 84.03 ± 1.59 ��.�� ± �.�� ��.�� ± �.��

0.6 88.16 ± 0.54 88.05 ± 0.95 85.99 ± 2.45 ��.�� ± �.��

0.8 ��.�� ± �.�� ��.�� ± �.�� 82.92 ± 3.92 ��.�� ± �.��

Avg. 86.28 86.16 87.46 ��.��
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case, the difference in the classification error was larger when nP was smaller. As a 
whole, nnPU stably outperformed DRPU, and this experimental result supports the the-
oretical discussion in Sect. 4.4.

Fig. 2  The means and standard deviations of the classification error as functions of the training epoch

Table 3  The means and standard 
deviations of the AUC on 
benchmark datasets over 10 
trials. The best results with 
respect to the one-sided t-test at 
the significance level 0.05 are 
highlighted in boldface

Dataset nnPU PUa VPU DRPU

MNIST 0.9855

± 0.0022

0.9861

± 0.0024

�.����

±�.����
0.9815

±0.0023

F-MNIST 0.9371

±0.0129
0.9359

±0.0065
�.����

±�.����
0.9607

±0.0055

K-MNIST �.����

±�.����
�.����

±�.����
0.9347

±0.0129
�.����

±�.����

CIFAR-10 0.9509

±0.0062
0.9512

±0.0071
�.����

±�.����
�.����

±�.����
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Table 4  The means and standard 
deviations of the absolute error 
of the class-prior estimation 
on benchmark datasets over 
10 trials. The best results with 
respect to one-sided t-test at 
the significance level 0.05 are 
highlighted in boldface

Dataset Prior KM2 Ours

MNIST 0.2 0.0679 ± 0.0147 �.���� ± �.����

0.4 0.0410 ± 0.0169 �.���� ± �.����

0.6 �.���� ± �.���� �.���� ± �.����

0.8 0.2885 ± 0.0560 �.���� ± �.����

F-MNIST 0.2 �.���� ± �.���� 0.0230 ± 0.0120

0.4 �.���� ± �.���� �.���� ± �.����

0.6 0.0843 ± 0.0297 �.���� ± �.����

0.8 0.2534 ± 0.0340 �.���� ± �.����

K-MNIST 0.2 0.0326 ± 0.0155 �.���� ± �.����

0.4 0.1029 ± 0.0201 �.���� ± �.����

0.6 0.2685 ± 0.0246 �.���� ± �.����

0.8 0.4869 ± 0.0361 �.���� ± �.����

CIFAR-10 0.2 0.1880 ± 0.0097 �.���� ± �.����

0.4 0.1399 ± 0.0163 �.���� ± �.����

0.6 0.0738 ± 0.0167 �.���� ± �.����

0.8 0.1242 ± 0.0784 �.���� ± �.����

Fig. 3  Classification errors of nnPU and DRPU on MNIST and CIFAR-10, averaged over 10 trials for each 
settings of the number of labeled samples. The vertical bars at each of the points refer the standard devia-
tions
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6  Conclusions

In this paper, we investigated positive-unlabeled (PU) classification from a perspec-
tive of density ratio estimation, and proposed a novel PU classification method based 
on density ratio estimation. The proposed method does not require the class-priors in 
the training phase, and it can cope with class-prior shift in the test phase. We provided 
theoretical analysis for the proposed method, and demonstrated its effectiveness in the 
experiments. Extending our work to other weakly-supervised learning problems (Lu 
et al., 2019; Bao et al., 2018) or multi-class classification settings (Xu et al., 2017) is a 
promising future work.

Appendix A proofs

A.1 Proof of Theorem 1

From Lemma 1 of Scott (2012), we have

where �(x) = p(Y = +1 ∣ X = x) . Then, for h� = sign(r − �) = sign(�r − c),

where the second inequality is Jensen’s, and the third inequality comes from the definition 
of strong convexity.   ◻

A.2 Proof of Theorem 2

Same as Theorem 1 of Charoenphakdee and Sugiyama (2019), we normalize coefficients 
of R�,c and R�′ ,c′ and determine c to satisfy

R�,c(g) − R∗
�,c

= �X

[
1{sign(g(X)) ≠ sign(�(X) − c)}|�(X) − c|

]
,

R𝜋,c(h𝜃) − R∗
𝜋,c

= �X[1{(𝜋r(X) − c)(𝜂(X) − c) < 0}|𝜂(X) − c|]
= �X[1{𝜋r(X) < c < 𝜂(X)}|𝜂(X) − c|]
+ �X[1{𝜂(X) < c < 𝜋r(X)}|𝜂(X) − c|]

≤ �X[1{𝜋r(X) < 𝜂(X)}|𝜂(X) − 𝜋r(X)|]
+ �X[1{𝜂(X) < 𝜋r(X)}|𝜂(X) − 𝜋r(X)|]

= �X[|𝜂(X) − 𝜋r(X)|]
= 𝜋�X

[
|r∗(X) − r(X)|

]

≤ 𝜋

√
�X

[
(r∗(X) − r(X))2

]

= 𝜋

√
2

𝜇
�X

[𝜇
2
(r∗(X) − r(X))2

]

≤ 𝜋

√
2

𝜇
�X

[
f (r∗(X)) − f (r(X)) − f �(r(X))(r∗(X) − r(X))

]

= 𝜋

√
2

𝜇
BRf (r

∗ ∥ r),
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Compare the coefficient of the �P[⋅],

Solve this equation with respect to c and denote it as c0,

Therefore, we obtain

where hc0∕� = sign(r − c0∕�) and the inequality is from Theorem 1.   ◻

A.3 Proof of Theorem 3

We separate |�̂� − 𝜋| as follows

The first term of Eq. (42) is upper bounded by the uniform bound

where h1 = argminh∈Hr

P(h)

P+(h)
 , h2 = argminh∈Hr

P̂(h)

P̂+(h)
.

From McDiarmid’s inequality, with probability at least 1 − � , we have

R�,c(g)

(1 − c)� + c(1 − �)
=

R�� ,c� (g)

(1 − c�)�� + c�(1 − ��)
.

(1 − c)�

(1 − c)� + c(1 − �)
=

(1 − c�)��

(1 − c�)�� + c�(1 − ��)
.

c0 =
c��(1 − ��)

(1 − c�)(1 − �)�� + c��(1 − ��)
.

R�� ,c� (hc0∕�) − R∗
�� ,c�

=
(1 − c�)�� + c�(1 − ��)

(1 − c0)� + c0(1 − �)

(
R�,c0

(hc0∕�) − R∗
�,c0

)

≤ �
c� + �� − 2c���

c0 + � − 2c0�

√
2

�
BRf (r

∗ ∥ r),

(42)|�̂� − 𝜋| ≤ |||||
�̂� − inf

h∈Hr

P(h)

P+(h)

|||||
+
|||||
inf
h∈Hr

P(h)

P+(h)
− 𝜋

|||||

|||||
�̂� − inf

h∈Hr

P(h)

P+(h)

|||||
=
|||||
inf
h∈Hr

�P(h)

�P+(h)
− inf

h∈Hr

P(h)

P+(h)

|||||

≤ max

(
�P(h1)

�P+(h1)
−

P(h1)

P+(h1)
,
P(h2)

P+(h2)
−

�P(h2)

�P+(h2)

)

≤ sup
h∈Hr

|||||

�P(h)

�P+(h)
−

P(h)

P+(h)

|||||
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for any 0 < 𝛿 < 1 . We used ℜp
n(H) ≤

√
2d log(en∕d)

n
 where d is VC-dimension of H , and 

VCdim(Hr) ≤ 2 for a fixed r. The same discussion holds for P̂+(h) , with probability at least 
1 − �,

Thus, with probability at least (1 − �P)(1 − �U) , we have

For the left hand side,

Note that �(nP,𝛿P)
�P+(h)

< 𝛾 < 1 by the assumption on Hr . And for the right hand side,

Therefore, assign �P = 1∕nP , �U = 1∕nU to obtain

sup
h∈Hr

|||P̂(h) − P(h)
||| ≤ ℜp

nU
(Hr) +

√√√√ log
2

�

2nU

≤
√

4 log(enU∕2)

nU
+

√√√√ log
2

�

2nU

= �(nU, �)

sup
h∈Hr

|||P̂+(h) − P+(h)
||| ≤ �(nP, �)

P̂(h) − �(nU, �U)

P̂+(h) + �(nP, �P)
≤ P(h)

P+(h)
≤ P̂(h) + �(nU, �U)

P̂+(h) − �(nP, �P)

P̂(h) − �(nU, �U)

P̂+(h) + �(nP, �P)
=

(
P̂(h)

P̂+(h)
−

�(nU, �U)

P̂+(h)

)
∞∑

i=0

(
−
�(nP, �P)

P̂+(h)

)i

=
P̂(h)

P̂+(h)
−

�(nU, �U)

P̂+(h)

−

(
P̂(h)

P̂+(h)
−

�(nU, �U)

P̂+(h)

)
�(nP, �P)

P̂+(h)

∞∑

i=1

(
−
�(nP, �P)

P̂+(h)

)i−1

≥ P̂(h)

P̂+(h)
−O(�(nU, �U)) −O

(
�(nP, �P)

)
.

P̂(h) + �(nU, �U)

P̂+(h) − �(nP, �P)
=

(
P̂(h)

P̂+(h)
+

�(nU, �U)

P̂+(h)

)
∞∑

i=0

(
�(nP, �P)

P̂+(h)

)i

=
P̂(h)

P̂+(h)
+

�(nU, �U)

P̂+(h)

+

(
P̂(h)

P̂+(h)
+

�(nU, �U)

P̂+(h)

)
�(nP, �P)

P̂+(h)

∞∑

i=1

(
�(nP, �P)

P̂+(h)

)i−1

≤ P̂(h)

P̂+(h)
+O(�(nU, �U)) +O

(
�(nP, �P)

)
.
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Next, we consider the second term of Eq. (42). At first we show that the term is bounded 
above by 2(1 − 𝜋)

1 − �̄�2
RAUC(r) . Utilize P(h) = �P+(h) + (1 − �)P−(h) to obtain

Let m = inf
h∈Hr

P−(h)

P+(h)
 , and consider a ROC curve where P− (False Positive Rate) plotted as 

x-axis and P+ (True Positive Rate) plotted as y-axis. As seen in Fig. 4, the trapezoid sur-
rounded by x = 0 , y = 1 , y = �̄� , and y = x∕m is in the area over the ROC curve of r, since 
sup
h∈Hr

P+(h)

P−(h)
=

1

m
 . Thus

Then,

sup
h∈Hr

|||||

P̂(h)

P̂+(h)
−

P(h)

P+(h)

|||||
≤ O

(√
log nP

nP
+

√
log nU

nU

)
.

|||||
inf
h∈Hr

P(h)

P+(h)
− �

|||||
= (1 − �)

|||||
inf
h∈Hr

P−(h)

P+(h)

|||||
.

(m�̄� + m)(1 − �̄�)

2
≤ 1 − AUC(r) = RAUC(r)

m(1 − �̄�2)

2
≤ RAUC(r).

inf
h∈Hr

P−(h)

P+(h)
= (1 − 𝜋)m ≤ 2(1 − 𝜋)

1 − �̄�2
RAUC(r).

Fig. 4  Green: y = 1

m
x / Red: 

ROC curve of r / Blue: ROC 
curve of r∗
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Secondly, we prove that there exists an increasing function � such that 
m ≤ �

(
RAUC(r) − R∗

AUC

)
 . For a fixed m, the ROC curve of r is always under y = x∕m in 

m�̄� ≤ x ≤ 1 , and the optimal ROC curve always dominates all other ROC curves (Menon 
& Williamson, 2016). Therefore, at least, the area surrounded by y = �̄� , y = x∕m , and the 
optimal ROC curve is assured. That is,

where �(x) means the optimal ROC curve and 𝜌(x1) = �̄� , �(x2) = x2∕m . Denote the right-
hand side of the above inequality as U(m), then

Note that x1 is independent of m. This shows that U(m) is a strictly increasing function of 
m ∈ [x1∕�̄� , 1] , therefore, there exists an increasing function U−1 ∶ [0, 1] → [x1∕�̄� , 1] and

then we can define an increasing function

Thirdly, we check that �(0) → 0 when �̄� → 0 . Since the optimal ROC curve is concave 
(Menon & Williamson, 2016), we have U(x1∕�̄�) = 0 . And from the irreducibility assump-
tion, we have 

x1

�̄�
→ 0 when �̄� → 0 . Therefore, U−1(0) =

x1

�̄�
→ 0 . and we concludes the 

proof.   ◻

A.4 Proof of Proposition 2

From Reid and Williamson (2009), we have the integral representation of the Bregman 
divergence:

Then,

RAUC(r) − R∗
AUC

= AUC(r∗) − AUC(r)

≥ �
m�̄�

x1

(𝜌(x) − �̄�)dx + �
x2

m�̄�

(
𝜌(x) −

1

m
x
)
dx,

𝜕U

𝜕m
(m) = 𝜌(m�̄�)�̄� − �̄�2 + 𝜌(x2)x

�
2
− 𝜌(m�̄�)�̄� −

1

m
x2x

�
2
+

x2
2

2m2
+

�̄�2

2

=
x2
2

2m2
+

�̄�2

2
> 0.

U(m) ≤ RAUC(r) − R∗
AUC

m ≤ U−1
(
RAUC(r) − R∗

AUC

)
,

(1 − 𝜋)m ≤ 𝜉(RAUC(r) − R∗
AUC

)

= min

(
2(1 − 𝜋)

1 − �̄�2
RAUC(r), (1 − 𝜋)U−1

(
RAUC(r) − R∗

AUC

))
.

BRf (r
∗ ∥ r) = �X

[

∫
r∗(X)

r(X)

(r∗(X) − t)f ��(t)dt

]
.



913Machine Learning (2023) 112:889–919 

1 3

We used f ��(t) ≥ inft∈[0,∞) f
��(t) = � at the second line and f ��

S
(t) = � at the third line.  

 ◻

A.5 Proof of Proposition 3

As mentioned in the Proof of Proposition 2, we have the integral representation of the 
Bregman divergence. Then,

The first term in the expectation can be written as:

where �(x) = �r∗(x) = P(Y = +1 ∣ X = x) . On the other hand, the classification risk w.r.t 
the squared loss can be written as

where g ∈ [−1, 1] and C�(g) is the conditional risk

and the optimal classification risk w.r.t the squared loss as

Then, we have

BRf (r
∗ ∥ r) = �X

[

�
r∗

r

(r∗ − t)f ��(t)dt

]

≥ �X

[

�
r∗

r

(r∗ − t)�dt

]

= BRfS
(r∗ ∥ r).

BRfS
(r∗ ∥ r) = �X

[

∫
r∗(X)

r(X)

(r∗(X) − t)f ��
S
(t)dt

]

= 𝜇�X

[

∫
r

r∗
(t − r∗)dt

]

= 𝜇�X

[

∫
min(r,1∕𝜋)

r∗
(t − r∗)dt + 1{𝜋r > 1}∫

r

1∕𝜋

(t − r∗)dt

]
.

∫
min(r,1∕�)

r∗
(t − r∗)dt =

1

�2 ∫
min(�r,1)

�

(t − �)dt,

Rsq(g) = �X,Y

[
1

4
(Yg(X) − 1)2

]

= �X

[
C�(g)

]

C�(g) = �
(g − 1)2

4
+ (1 − �)

(g + 1)2

4
,

C∗
�
= inf

g
C�(g) = C�(2� − 1).
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Thus,

Next, the second term in the expectation is

then,

Finally, we have

  ◻

A.6 Proof of Theorem 4

From the result of Clémençon et al. (2006), we have

where �(x) = p(Y = +1 ∣ X = x) . Then for any r,

C�(g) − C∗
�
= �(min(�r, 1) − 1)2 + (1 − �)(min(�r, 1))2 − �(1 − �)

= (min(�r, 1) − �)2

= 2∫
min(�r,1)

�

(t − �)dt.

Rsq(g) − R∗
sq
= �X

[
C�(g) − C∗

�

]

= 2�X

[

∫
min(�r,1)

�

(t − �)dt.

]

1{𝜋r > 1}∫
r

1∕𝜋

(t − r∗)dt = 1{𝜋r > 1} ⋅
1

2
(𝜋r − 1)(𝜋r − 2𝜂 + 2),

�X

[
1{𝜋r > 1}∫

r

1∕𝜋

(t − r∗)dt

]

=
1

2
�X∣𝜋r(X)>1[(𝜋r − 1)(𝜋r − 2𝜂 + 2)]P(𝜋r(X) > 1).

2�2

�
BRfS

(r∗ ∥ r) = Rsq(g) − R∗
sq
+ �r�r.

RAUC(s) − R∗
AUC

=
1

2�(1 − �)
�X,X�

[||�(X) − �(X�)||1{(s(X) − s(X�)(�(X) − �(X�)) ≤ 0}
]
,
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Used the same technique as the proof of Theorem 1 for the last inequality, and this con-
cludes the proof.   ◻

A.7 Proof of Theorem 5

We utilize the following equality (see the proof of Theorem 2.)

where h� = sign(r − �) . The second term R�� ,c� (h�) − R∗
�� ,c�

 is processed by Theorem 2, so 
we consider the first term. By the definition of cost-sensitive classification risk,

RAUC(r) − R∗
AUC

=
1

2𝜋(1 − 𝜋)
�X,X�

[||𝜂(X) − 𝜂(X�)||1{(r(X) − r(X�))(𝜂(X) − 𝜂(X�)) ≤ 0}
]

=
1

2𝜋(1 − 𝜋)
�X,X�

[||𝜂(X) − 𝜂(X�)||1{(r(X) − r(X�))(𝜂(X) − 𝜂(X�)) ≤ 0}
]

=
1

2(1 − 𝜋)
�X,X�

[
||r

∗(X) − r∗(X�)||
(
1{r(X) < r(X�)}1{r∗(X) ≥ r∗(X�)}

+ 1{r(X) ≥ r(X�)}1{r∗(X) < r∗(X�)}
)]

=
1

2(1 − 𝜋)
�X,X�

[
(r∗(X) − r∗(X�))1{r(X) < r(X�)}

+ (r∗(X�) − r∗(X))1{r(X) ≥ r(X�)}
]

≤ 1

2(1 − 𝜋)
�X,X�

[(
r∗(X) − r(X) + r(X�) − r∗(X�)

)
1{r(X) < r(X�)}

+
(
r∗(X�) − r(X�) + r(X) − r∗(X)

)
1{r(X) ≥ r(X�)}

]

≤ 1

2(1 − 𝜋)
�X,X�

[
|r∗(X) − r(X)| + ||r

∗(X�) − r(X�)||
]

=
1

1 − 𝜋
�X

[
|r∗(X) − r(X)|

]

≤ 1

1 − 𝜋

√
2

𝜇
BRf (r

∗ ∥ r).

R𝜋� ,c� (h�̂�) − R∗
𝜋� ,c�

=
(
R𝜋� ,c� (h�̂�) − R𝜋� ,c� (h𝜃)

)
+
(
R𝜋� ,c� (h𝜃) − R∗

𝜋� ,c�

)
.
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The first inequality holds because �
[|||1{𝜃 < r(X) < �̂�} − 1{�̂� < r(X) < 𝜃}

|||
] ≤ 1 and 

�[1{𝜃 < r(X) < 𝜃}] = 0 . We used the same technique as the proof of Theorem 1 for the 
second inequality, and this concludes the proof.   ◻

A.8 Proof of Proposition 4

We first consider the bound for |||�̂� − 𝜃
||| . Let �̂� = 𝜋 + d , �̂�� = 𝜋� + d� where −𝜋 < d < 1 − 𝜋 

and −𝜋� < d� < 1 − 𝜋� . Then,

We denote A = c�(1 − ��) , B(d�) = −c�d� , C = (1 − c�)(1 − �)�� + c��(1 − ��) , 
D(d, d�) = (c� − ��)d + (1 − c� − �)d� − dd� . Using these notations, we have

Thus, if D ≥ 0,

R𝜋� ,c� (h�̂�) − R𝜋� ,c� (h𝜃)

= �

[
(1 − c�)1{Y = +1}

(
1{sign(r(X) − �̂�) = −1} − 1{sign(r(X) − 𝜃) = −1}

)

+ c�1{Y = −1}
(
1{sign(r(X) − �̂�) = +1} − 1{sign(r(X) − 𝜃) = +1}

)]

= �X

[
(1 − c�)𝜂(X)

(
1{𝜃 < r(X) < �̂�} − 1{�̂� < r(X) < 𝜃}

)

+ c�(1 − 𝜂(X))
(
1{�̂� < r(X) < 𝜃} − 1{𝜃 < r(X) < �̂�}

)]

= �X

[
(𝜂(X) − c�)

(
1{𝜃 < r(X) < �̂�} − 1{�̂� < r(X) < 𝜃}

)]

= 𝜋�
�X

[
(r∗(X) − 𝜃)

(
1{𝜃 < r(X) < �̂�} − 1{�̂� < r(X) < 𝜃}

)]

= 𝜋�
�X

[
(r∗(X) − r(X) + r(X) − 𝜃)

(
1{𝜃 < r(X) < �̂�} − 1{�̂� < r(X) < 𝜃}

)]

≤ 𝜋�𝜔�̂��X

[
|r∗(X) − r(X)|

]
+ 𝜋�|||�̂� − 𝜃

|||

≤ 𝜋�𝜔�̂�

√
2

𝜇
BRf (r

∗ ∥ r) + 𝜋�|||�̂� − 𝜃
|||.

�̂� =
c�(1 − �̂��)

(1 − c�)(1 − �̂�)�̂�� + c��̂�(1 − �̂��)

=
c�(1 − 𝜋�) − c�d�

(1 − c�)(1 − 𝜋)𝜋� + c�𝜋(1 − 𝜋�) + (c� − 𝜋�)d + (1 − c� − 𝜋)d� − dd�
.

|||�̂� − 𝜃
||| =

||||
A + B

C + D
−

A

C

||||
.
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where the first inequality holds because C > 0 and D > 0 . And if D < 0 , we have C > D 
from �̂� ≥ 0 . Then,

and we complete the proof.

A.9 Proof of Corollary 1

It immediately holds from Theorem 1 of Kato and Teshima (2021) and Theorem 5.   ◻
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