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Abstract
Traditional supervised learning requires ground truth labels for training, whose collec-
tion however is difficult in many cases. Recently, crowdsourcing has established itself 
as an efficient labeling solution by resorting to non-expert crowds. To reduce the labe-
ling error effects, one common practice is to distribute each instance to multiple work-
ers, whereas each worker only annotates a subset of data, resulting in the sparse annota-
tion phenomenon. In this paper, we show that when meeting with class-imbalance, i.e., 
even when the groundtruth labels are slightly imbalanced, the sparse annotations are prone 
to be skewly distributed and would bias the learning algorithm severely. To combat this 
issue, we propose one Distribution Aware Self-training based Crowdsourcing learning 
(DASC) approach, which supplements the sparse annotations by adding confident pseudo-
annotations and at the same time re-balancing the annotation distribution. Specifically, we 
propose one distribution aware confidence measure to select the most confident pseudo-
annotations, with minority/majority classes selected more/less frequently. As a universal 
framework, DASC is applicable to various crowdsourcing methods for consistent perfor-
mance gains. We conduct extensive experiments over real-world crowdsourcing bench-
marks, from slight to heavy imbalance ratio, with various annotation sparsity levels, and 
show that DASC substantially improves previous crowdsourcing models by 2%-20% abso-
lute test accuracy, and yields much more balanced annotations.
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1  Introduction

Recently deep neural networks (DNNs) have achieved significant success in various 
domains, whose achievements rely heavily on large curated datasets with manually verified 
labels (Girshick et al., 2014; He et al., 2016; Krizhevsky et al., 2012). In many applica-
tions, instead of perfect supervision, weak supervision is often available due to the labeling 
cost or difficulty, such as incomplete supervision (Xu and Guo, 2021), inexact supervi-
sion (Li et al., 2021; Feng et al., 2021), cross-domain supervision (Pang et al., 2021), only 
positive-and-unlabeled supervision (Su et al., 2021) and inaccurate supervision (Li et al., 
2021). Fortunately, datasets with low quality annotations such as web crawling images 
with automatic label extractions (Krause et al., 2016; Xiao et al., 2015) or crowdsourcing 
annotations( Horvitz, 2007; Thierry et al., 2010) are extensive. In this paper, we concern 
ourselves with developing methodologies for crowdsourcing annotated tasks. To alleviate 
the labeling difficulty issue, crowdsourcing distributes the labeling task to multiple easy-
to-access crowd workers and aggregates over them to alleviate the labeling error. With 
the advent of crowdsourcing services such as Amazon Mechanical Turk (AMT),1 Crowd-
flower2 and reCAPTCHA,3 crowdsourcing has been used in various fields including senti-
ment classification (Snow et al. 2008), medical diagnosis (Raykar et al., 2010; Shadi et al., 
2016) and vision tagging (Filipe and Francisco, 2018; Welinder et al., 2010).

As the crowds can make mistakes, one core task is to deal with the annotation noise, for 
which purpose many approaches have been proposed (Filipe and Francisco, 2018; Dawid 
and Skene, 1979; Raykar et al., 2010; Zhou et al., 2012). However, there are two implicit 
assumptions made behind the existing methods: (1) the annotations are sufficiently col-
lected for effective learning; (2) the class distribution of the instances and annotations 
are balanced. In many real-world applications, such assumptions are not true, which have 
posed further challenges for crowdsourcing learning and caused performance degeneration.

In crowdsourcing, annotation sparsity is common. To reduce the error effects, repetitive 
labeling is often exploited which employs multiple workers for labeling. At the same time, 
due to time and cost efficiency concerns, it’s common that each worker is only assigned 
with a relatively small subset of data. This results in sparse annotations for each worker. 
The sparsity on one hand makes estimating the crowds’ expertise challenging; on the other 
hand, when encountering imbalanced data, the annotations are prone to be imbalanced over 
classes. Traditional supervised class imbalance learning has widely shown that models 
trained on imbalanced data are biased towards majority classes and away from minority 
classes (Buda et al., 2018). In this paper, we show that in crowdsourcing scenarios with 
sparse annotations, even slight class imbalance can result in severe learning bias and per-
formance degeneration. However, existing work rarely paid attention to this issue. 

Figure  1 shows one illustrative example. Here one real-world image crowdsourc-
ing dataset LabelMe (Filipe and Francisco, 2018) is used, which consists of 8 classes of 
1, 000 training data and 1, 688 testing data. 2, 547 annotations for the training data are 
collected from 59 workers through the AMT platform. Figure  1a shows the annotation 
sparsity phenomenon. On average, each worker is assigned with only 43.169 images. Fig-
ure 1b shows the class distribution of groundtruth labels and annotations. Compared with 

1  https://​www.​mturk.​com.
2  http://​crowd​flower.​com.
3  http://​recap​tcha.​net/.

https://www.mturk.com
http://crowdflower.com
http://recaptcha.net/
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the groundtruth labels, the annotations are slightly more skewed with a higher standard 
deviation ( 2.95% vs 1.85%).

Figure 1c and d show the effects of sparsity encountering class-imbalance. To allevi-
ate the annotation sparsity, we apply self-training on one sota deep crowdsourcing learn-
ing approach Crowdlayer (Filipe and Francisco, 2018), and iteratively predict the unknown 
annotations and retrain the model.4 Figure 1c shows the distribution of annotations gener-
ated by the model during one intermediate step, which becomes more skewed and more 
biased towards the majority classes. Figure 1d shows the accuracy on test data. As learning 
proceeds, the annotation imbalance is intensified and leads to severely deteriorated model 
quality. However, this issue has been rarely paid attention to and touched by previous 
crowdsourcing learning.

In this paper, to deal with the annotation sparsity and class imbalance challenges, we 
propose one approach called Distribution Aware Self-training based Crowdsourcing learn-
ing (DASC). At a high level, we iteratively predict the pseudo-annotations and select some 
of them to supplement the original annotations, which are expected to be confident and 
rebalance the annotation distribution. Within each iteration, a base model is trained using 
available annotations, and then acts as a teacher model to generate pseudo-annotations. To 
alleviate the imbalance issue, we propose to select the most confident pseudo-annotations 

Fig. 1   Inspections of one real-world crowdsourcing dataset LabelMe. a shows the labeling sparsity issue 
of crowdsourcing workers. The vertical coordinate represents the percent of assigned instances for each 
workers among the whole instances. b shows the imbalanced class distribution of ground truth labels and 
crowdsourcing annotations. For ground truth labels, the vertical coordinate represents Nc

N
 , with Nc the num-

ber of instances with latent true class label c, N the total number of instances. For crowd annotations, the 
vertical coordinate represents Nc

N
 , with Nc the number of annotations labeled as class c, N the total number 

of crowd annotations. c shows the imbalanced class distribution of original crowd annotations (Original) 
and the combination of original crowds annotations and predicted pseudo-annotations at 5-th intermedi-
ate self-training iteration (Intermediate). d shows the test accuracy on balanced data for normal confidence 
based self-training method during learning process

4  The experimental details can be found in Sect. 4.
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using resampling strategies, i.e., we undersample the majority classes and oversample 
minority classes. Then the learning model is retrained on the combination of observed and 
pseudo-annotations. DASC is a universal framework that can be applied to different crowd-
sourcing methods. We conduct extensive experiments on real-world datasets LabelMe (Fil-
ipe and Francisco, 2018), Music (Rodrigues et al., 2014) and CIFAR10-H (Peterson et al., 
2019), showing that DASC delivers 2%-20% higher accuracies for the sota methods.

2 � Related work

Crowdsourcing learning To estimate true labels from crowdsourcing annotations, one 
straightforward strategy is Majority Voting (MV), which however ignores the work-
ers’ expertises variance in reality. To counter this issue, probabilistic models which treat 
instances’ true labels as unknown latent variables have been developed. One pioneer in 
this line is the DS model (Dawid and Skene, 1979) which exploits labeling error rates to 
parameterize the workers’ expertise, and maximizes the annotation likelihood using expec-
tation-maximization (EM). DS has served as the basis for a large number of crowdsourcing 
methods, which specialize on difference aspects including advanced levels of annotation 
generation processes ( Welinder et al. 2010; Whitehill et al. 2009; Zhou et al. 2012), effi-
cient inference algorithms (Liu et al., 2012), classifier learning (Raykar et al. 2010), Bayes-
ian extensions (Kim and Ghahramani 2012; Simpson et al. 2013; Venanzi et al., 2014), and 
worker correlation modeling (Moreno et al., 2015; Li et al., 2019).

Recently, to make use of the strength of DNNs, deep crowdsourcing learning has been 
studied to build a DNN classifier from the noisy annotations and set up the new SOTAs. 
Guan et al. (2018) devoted itself to learning better voting weights for DNN workers using 
an EM-like procedure. Shadi et al. (2016) used a convolutional neural network (CNN) clas-
sifier as the latent true label prior and applied the EM optimization procedure. Filipe and 
Francisco (2018) treated the unknown true labels as one hidden layer of the DNN model 
and mapped them to the annotations through a linear mapping, then perform end-to-end 
SGD optimization. Tanno et al. (2019) and Chu et al. (2021) proposed mapping functions 
different from Filipe and Francisco (2018) for explanation and robustness. Atarashi et al. 
(2018) and Li et al. (2021) proposed fully Bayesian deep models to encode interpretable 
probabilistic structures.

However, existing works mainly assume the annotations are sufficiently collected, 
ignoring the intrinsic sparsity of crowd annotations. Moreover, when meeting class-imbal-
ance, learning becomes more challenging. There are few works separately handling sparse 
or imbalanced annotations, e.g., Li et al. (2014), Li and Jiang (2018) and Chu and Wang 
(2021) considered annotation sparsity by supplementing them to improve performance, 
Zhang et al. (2015) considered class-imbalance and proposed one PLAT algorithm to esti-
mate the threshold of the positive label frequency, but only for binary classification sce-
nario. They only focus on a single aspect of read-world crowd annotations, which are not 
suitable for the sparse and class-imbalanced problem.

Imbalanced learning Learning with imbalanced data has rich literature. Classical meth-
ods include resampling and reweighting. Resampling focuses on oversampling the data of 
minority classes (Buda et al. 2018; Shen et al. 2016; Byrd and Lipton 2019) or undersam-
pling the data of majority classes (He and Garcia 2009; Japkowicz and Stephen 2002; Shen 
et al. 2016). In contrast, reweighting adjusts weights during training for different classes 
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(Cui et al., 2019; Khan et al., 2018) or different samples (Cui et al., 2019; Lin et al., 2020). 
Other ideas including developing transfer learning (Jamal et al., 2020), meta-learning (Shu 
et  al., 2019) and decoupling representation and classification (Kang et  al., 2020; Tang 
et al., 2020; Zhou et al., 2020) have also been explored. The common evaluation protocol 
assumes that the ground truth labels are available during training, which may not reflect 
realistic settings. In our work, we consider the class imbalance for crowdsourcing tasks 
whose annotations are both noisy and sparse, which provides a new setup for imbalanced 
learning.

Self-training Self-training is one classical method for semi-supervised learning, which gen-
erates pseudo-labels for unlabeled samples with the model trained on labeled data. Lee 
(2013) proposed that utilizing the generated pseudo-labels is equivalent to entropy minimi-
zation. As the pseudo labels can be noisy, various works have devoted themselves to filter-
ing the noisy labels by using measures based on confidence (Shi et al., 2018), neighbor-
hood graphs (Iscen et al., 2019), uncertainty and calibration (Rizve et al., 2021). Recently, 
Berthelot et al. (2019, 2020) and Sohn et al. (2020) have achieved state-of-art semi-super-
vised learning performances by integrating pseudo-labeling with consistency regulariza-
tion, which outputs consistent predictions over perturbations of instances Rasmus et  al. 
(2015) and Tarvainen and Valpola (2017). Most semi-supervised learning mainly assumes 
that the labeled data is clean and rarely considers the imbalance issue. Recently, Wei et al. 
(2021) and Nassar et al. (2021) have considered the class-imbalance issue in labeled data 
and the pseudo labels explicitly. Compared with semi-supervised learning, our problem 
faces a more challenging scenario with corrupted labeled data.

3 � Sparse and imbalanced crowdsourcing learning

3.1 � Problem setup

We use X = {x1,⋯ , xN} to denote the set of N training instances, Y ∈ {0, 1,⋯ ,C}N×K 
their annotations collected from K crowd workers. xi ∈ ℝ

d means the d-dimensional fea-
ture values of the i-th instances, with a set of K annotations yi = {y

k

i
}K
k=1

 . Here yk
i
= Yik rep-

resents the label assignment of xi given by worker k. yk
i
= 0 indicates that worker k didn’t 

tag xi ; y
k

i
= c (c ≠ 0) means that xi is categorized as c-th class by the k-th worker.

Using Nc to denote the number of annotations in class c for Y  , Nc the number of 
instances with latent true class label c. The annotation sparsity and class-imbalance issues 
can be formulated as:

Here R and Rg are respectively the ratio between size of crowd annotations and groundtruth 
labels for the most frequent and least frequent class. Our goal is that, given the sparse and 
imbalanced training data X and Y  , learning a classifier f ∶ ℝ

d
→ {1,⋯ ,C} that general-

izes well for unseen test data under class-balanced performance criteria.
Existing crowdsourcing work mainly focus on workers’ expertise modeling and 

usage (Filipe and Francisco 2018; Dawid and Skene 1979; Shadi et  al. 2016; Tanno 
et al. 2019), ignoring that annotation sparsity and class-imbalance are common in many 

(1)
∑

c

Nc ≪ N ∗ K, R =
maxc Nc

minc Nc

≫ 1, Rg =
maxc Nc

minc Nc

≫ 1.
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real applications. As we have shown in the introduction, the two aspects pose new chal-
lenges and lead to poor performance for existing methods. In this paper, we propose one 
distribution aware self-training based crowdsourcing (DASC) learning framework to 
combat the two issues. We leverage the self-training strategy commonly used by modern 
state-of-the-art semi-supervised learning methods to predict the unknown annotations, 
and make use of them to retrain the model. Next, we will first introduce the proposed 
DASC framework, then introduce three state-of-the-art deep crowdsourcing learning 
base models that are implemented for DASC.

3.2 � Distribution aware self‑training based crowdsourcing learning (DASC)

Semi-supervised learning (SSL) provides one promising way to improve the perfor-
mance of learning models by using unlabeled data in case of limited labeled data. One 
common approach used by modern SSL algorithms is the self-training method, which 
predicts pseudo-labels for unlabeled data and incorporates the most helpful ones to 
retrain the model (McLachlan, 1975; Xie et al. 2020). In this paper, to combat the anno-
tation sparsity and class-imbalance, we use existing crowdsourcing methods as base 
models, and propose one distribution aware confidence measure to conduct self-training.

Figure  2 depicts the framework of the proposed approach. It consists of two main 
components: (1) the crowdsourcing learning base model, and (2) the pseudo-annotations 
selection strategy. During the training, we progressively predict pseudo-annotations for 
the unannotated instances for each worker, and add some of them into the training data, 
then update the learning model. The most confident pseudo-annotations which contrib-
ute to rebalancing the annotation distribution are selected. Next, we will explain the 
measure in detail.

3.2.1 � Distribution aware confidence measure

Confidence Confidence is a commonly used measure in self-training, which measures 
how confident the prediction of the current model is for some instances. Using p̂(yk) , 
e.g., defined in Eqs. (5, 8), to denote the pseudo-annotations probability of worker k on 
some unannotated instance x, entropy is often used to measure confidence:

Fig. 2   Overview of the proposed DASC framework
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The pseudo-annotations with lower entropy values are considered to be more confident and 
more likely to be correct.

Traditional self-training would prefer to select pseudo-annotations with the least entropy 
values as authentic ones. However, as we discussed in the introduction, without taking the 
class-imbalance issue into account, the learning algorithm would be biased towards select-
ing majority class annotations and ignore the minority annotations. More seriously, this 
bias can accumulate throughout the training process, which will inevitably damage the per-
formance. In the following, we propose our distribution aware confidence measure.

Distribution aware confidence Resampling is a common strategy for addressing the class-
imbalance problem. It intuitively oversamples the majority classes or undersamples the 
minority classes to avoid the dominant effect of majority data. In this paper, we adopt the 
resampling strategy within each class, i.e., the Mc most confident pseudo-annotations for 
each class c ∈ {1,⋯ ,C} are selected:

Here M denotes the total number of selected pseudo-annotations within each iteration, 
which is a hyperparameter set by the users. tc denotes the normalized fraction coefficient of 
class c, which is inversely proportional to the number of pseudo-annotations N′

c
 of class c 

among all the generated pseudo-annotations:

Algorithm 1 summarizes the main steps of the DASC approach. We iteratively predict the 
unobserved annotations and add some of them into the training data. Those pseudo-anno-
tations with lower entropy values and contribute to rebalancing the annotation distribution 
are selected according to Eqs. (3) and (4). Then the learning model is retrained using the 
combination of observed and pseudo-annotations. This process repeats until the expected 
performance is reached.

(2)entropy(y
k
) = −

C
∑

c=1

p̂(y
k
) ⋅ log p̂(y

k
).

(3)Mc = tc ⋅M,

C
∑

c=1

tc = 1.

(4)tc ∝
1

N�
c

.
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As one primary attempt for the important but largely ignored sparse and imbalance 
problem, DASC is simple and universal. It can be applied to any existing crowdsourc-
ing methods for potential significant performance improvement, without modifying their 
original implementations. The possible limitation is that, the performance of the self-
training process depends largely on the quality of selected pseudo-annotations, which in 
turn depends on the base model performance and pseudo-annotation selection measure/

(a)

(b)

Fig. 3   The network architecture of Weighted Doctor Net (Guan et al., 2018), Crowdlayer (Filipe and Fran-
cisco, 2018), Anno-Reg (Tanno et al., 2019), where p̂k = p̂(y

k
)
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threshold. Thus successful application of the framework requires skills and experiences on 
tuning self-training process.

3.3 � Deep crowdsourcing base models

With the ubiquitous success of deep neural networks (DNN), deep crowdsourcing learning 
has been studied by combining the strength of DNN with crowdsourcing. In this subsec-
tion, we will briefly introduce three state-of-the-art deep crowdsourcing learning models 
WDN (Weighted Doctor Net) Guan et al. (2018), Crowdlayer Filipe and Francisco (2018) 
and Anno-Reg Tanno et al. (2019), showing in experiments that DASC improves over them 
with a large margin.

Weighted doctor net Guan et al. (2018) Figure  3(a) shows the network architecture of 
Weighted Doctor Net. For each worker k, one network classifier g(⋅;�k) with parameter �k 
is constructed. All classifiers share the same feature extractor network f (⋅;�) . The annota-
tion probability given by worker k for x is derived as:

Given a specific loss function � , e.g., the cross entropy loss used by WDN, the loss over all 
training data {X, Y} is defined as:

Here I  is the indicator function. Then parameters � and {�k} are optimized by minimizing 
Eq. (6) in an end-to-end manner. After f (⋅;�) and {g(⋅;�k)} are learned, WDN learns the 
weight {wk} for workers through minimizing the loss between the weighted average of all 
workers’ predictions and the mean average of the observed annotations over instances:

Here Ni is the number of collected annotations for instance xi . After the training finish, a 
softmax operation is conducted over the weights. For testing, the true label prediction for 
some instances is taken as the weighted average of all worker classifiers’ predictions.

Crowdlayer Filipe and Francisco (2018) Fig. 3b shows the network architecture of Crowd-
layer approach. Using f (x;�) ∈ [0, 1]1×C to denote the softmax output of the true label clas-
sifier f (⋅) with parameter � for instance x, the Crowdlayer model introduced K matrices 
{Wk ∈ �

C×C}k=1,⋯,K to capture the annotating process of the crowds, i.e., the annotations 
of x given by worker k is derived as:

In Crowdlayer, although {Wk} are real valued without any structural constraints, they are 
believed to be able to reflect the workers’ annotating expertise, i.e., Wk(i, j) can denote the 
process that instances belonging to class i are annotated with class label j by worker k. 
Larger diagonal values mean better worker expertise. Given a specific loss function � , e.g., 
the cross entropy loss, the loss over the crowdsourcing training data is defined as:

(5)p̂(y
k
) = softmax(g(f (x;𝜃);𝜙k)).

(6)L1 ∶=

N
∑

i=1

K
∑

k=1

I[y
k

i
≠ 0]�(p̂(y

k

i
), y

k

i
).

(7)L2 ∶=

N
∑

i=1

𝓁(
1

K

K
∑

k=1

wk ⋅ p̂(y
k

i
),

1

Ni

K
∑

k=1

I[y
k

i
≠ 0]y

k

i
).

(8)p̂(y
k
) = softmax(f (x;𝜃) ⋅Wk).
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Then regarding {Wk} as crowdlayers after the neural network classifier f (⋅) , Filipe and 
Francisco (2018) proposed to simultaneously optimize the classifier parameter � and {Wk} 
in an end-to-end manner by minimizing Eq. (9). After the training finished, f (x;�) is used 
to predict true labels for new test instance x.

Worker regularization Tanno et al. (2019) Anno-Reg shares the same network architecture 
as Crowdlayer. Actually, the architecture in Fig.   3b and minimizing the loss in Eq.  (9) 
have been the cornerstone of various deep crowdsourcing learning approaches (Tanno 
et al. 2019; Chu et al. 2021). They mainly differ in specific structural regularization over 
the expertise parameters {Wk} with different motivations. Anno-Reg is one representative 
among them. As mentioned before, Crowdlayer uses real-valued {Wk} without any con-
straints, which makes it hard to explain. Anno-Reg Tanno et al. (2019) addressed this by 
modeling each Wk as a confusion matrix, which is implemented by imposing a softmax 
operation over each column of real valued Wk:

Besides, Anno-Reg also adds an extra trace minimization term over {Wk} to the loss func-
tion, which was theoretically shown to encourage the convergence of {Wk} to the true 
workers’ confusion matrices:

4 � Experiments

4.1 � Settings

Dataset We first perform experiments on three widely used read-world crowdsourcing 
benchmark datasets LabelMe (Filipe and Francisco, 2018), Music (Rodrigues et al. 2014) 
and CIFAR10-H (Peterson et al., 2019). LabelMe is an image classification dataset consist-
ing of 2, 688 images from 8 classes. The accuracy of each worker ranges from 0 to 100% . 

(9)L ∶=

N
∑

i=1

K
∑

k=1

I[y
k

i
≠ 0]�(p̂(y

k

i
), y

k

i
).

(10)Wkc ← softmax(Wkc).

(11)Lnorm ∶=

K
∑

k=1

tr(Wk).

Table 1   Statistic details of the three benchmark datasets

Dataset Training/Testing Size R/Rg of Annota-
tions/ Truth

Mean workers’ Accuracy Mean 
workers’ 
Labels

LabelMe 1,000/1,188 2.479/1.730 69.2% ± 18.1% 43.2
Music 700/300 1.753/1.188 73.3% ± 24.2% 66.9
CIFAR10-H 2,837/1,000 3.093/5.000 55.6% ± 19.7% 89.2
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Music is a music genre classification dataset consisting of 1, 000 samples of songs with 30 
seconds length from 10 music genres. CIFAR10-H is an image classification dataset con-
sisting of 10, 000 images from the CIFAR-10 (Krizhevsky, 2009) test set. Originally, Peter-
son et al., 2019) recruited 2, 571 workers with each annotating 200 images. For our experi-
ment, we split 1, 000 class-balanced images as the test set. To make an imbalanced training 
set, we adopt the long-tailed imbalance setting as in Zhou et al. (2020) which follows an 
exponential decay in sample sizes across different classes. The groundtruth label imbalance 
ratio Rg =

maxc Nc

minc Nc

= 5 . For each class c, N̂c =
maxc Nc

R
c
10

 crowd annotations are reserved. The 
final training set has 2, 837 images annotated by 49 workers. For LabelMe and Music, their 
original training/testing splitting are used.

Table   1 shows the statistic details for the three datasets. For LabelMe and Music, 
their imbalance ratios are relatively slight, not as heavy as that in traditional supervised 
imbalance learning. Thus previous crowdsourcing works didn’t take this as an issue and 
paid no attention. However, we will show in the following that, even the slight class dis-
tribution skewness should not be ignored for crowdsourcing learning.

Network and optimization For fair comparison, we implement the methods following the 
settings in Filipe and Francisco (2018). Specifically, for LabelMe, we use the pretrained 
CNN layers of the VGG-16 deep neural network (Simonyan and Zisserman, 2015) with 
one fully connected layer of 128 units, ReLU activation, one output layer on top as the 
classifier. Adam Kingma and Ba (2015) optimizer is adopted with a batch size of 512 and 
a learning rate of 1 × 10−3 . 50% random dropout and l2 weight decay regularization with 
� = 5 × 10−4 on all layers are used. In each self-training iteration, Anno-Reg and Crowd-
layer are trained for 25 epochs, WDN is trained for 25 and 50 epochs in the first and sec-
ond phase, 20, 000, 10, 000, 10, 000 pseudo-annotations are respectively selected without 
replacement for Anno-Reg, Crowdlayer and WDN.

For Music, a network of one single hidden layer of 128 units, a batch-norm layer, 
ReLU activation, and one output layer on top as a classifier is used. The batch size is 
128. For Crowdlayer and Anno-Reg, the model is trained using Adam optimizer for 100 
epochs with a learning rate of 1 × 10−3 during each iteration. For WDN, the model is 
trained for 100 epochs at the first training phase using Adam optimizer with a learning 
rate of 1 × 10−2 , and SGD optimizer for 50 epochs in the second phase with cyclic learn-
ing rate scheduler (Smith et  al. 2017) between [10−3, 10−2] and a momentum between 
[0.8, 0.9]. In each iteration 700, 1, 000, 1, 000 pseudo-annotations are selected without 
replacement for Anno-Reg, Crowdlayer and WDN.

For CIFAR10-H, a pretrained Resnet18 (He et al., 2016) with one output layer on the 
top as a classifier is used. The training is conducted by Adam optimizer with a batch 
size of 128 with learning rate 10−4 . l2 weight decay regularization with � = 5 × 10−5 on 
all layers are used. Crowdlayer and Anno-Reg are trained for 100 epochs in each itera-
tion, WDN is trained for 50 epochs in both training phases. In each iteration, 2,  000 
pseudo-annotations are selected without replacement for all the base models. The trace 
norm for Anno-Reg with � = 0.1 is used.

Baselines To assess the performance of the proposed DASC, we conduct compari-
son with three groups of baselines: traditional crowdsourcing methods with MV-DL, 
DS-DL, imbalance learning implementations with resampling, reweighting, Focal loss, 
and self-training based implementations confidence, random.
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–	 MV-DL which first aggregates over the crowd annotations, then trains the deep neu-
ral network classifier.

–	 DS-DL which first aggregates over the crowd annotations considering the workers’ 
expertise variation using the DS model (Dawid and Skene, 1979), then trains the 
deep neural network classifier.

–	 Resampling which oversamples crowd annotations for minority classes such that the 
annotation distribution is balanced over classes.

–	 Reweighting which reweights the loss for each class c by Rc =
maxc Nc

Nc

 such that the 
annotation losses are balanced over classes.

–	 Focal Focal loss, which trains the deep crowdsourcing base models using the imbal-
ance focal loss function (Lin et al., 2020). The hyperparameters � = 2 for all the experi-
ments.

Table 2   Test accuracy on LabelMe, Music and CIFAR10-H. The best performance are bold

Bold format means the best performance

Dataset Baselines Performance

LabelMe TraditionalCrowdsourcing Learning MV-DL
DS-DL

81.3 ± 0.4
82.2 ± 0.4
Anno-Reg Crowdlayer WDN

Imbalanced Learning CE 82.3 ± 0.3 84.0 ± 0.3 77.1 ± 2.6
Resampling 83.2 ± 0.5 85.6 ± 0.7 80.6 ± 1.0
Reweighting 83.6 ± 0.4 85.6 ± 0.3 78.8 ± 1.6
Focal 81.7 ± 0.4 84.2 ± 0.2 78.4 ± 1.5

Self-training Methods Confidence 82.4 ± 0.2 71.4 ± 7.3 77.7 ± 1.7
Random 83.3 ± 1.2 77.3 ± 0.3 74.3 ± 1.2

DASC 85.6 ±0.3 87.6 ± 0.4 82.3 ±0.9
Music Traditional Crowdsourcing Learning MV-DL 59.3 ± 1.7

DS-DL 65.2 ± 0.8
Anno-Reg Crowdlayer WDN

Imbalanced Learning CE 65.8 ± 0.7 66.3 ± 1.5 55.1 ± 4.0
Resampling 66.3 ± 2.0 68.3 ± 1.1 51.6 ± 1.3
Reweighting 67.1 ± 1.1 66.7 ± 0.6 56.2 ± 1.4
Focal 63.4 ± 1.2 65.0 ± 0.6 57.5 ± 2.4

Self-training Methods Confidence 65.8 ± 0.9 57.6 ± 0.8 61.5 ± 1.7
Random 66.7 ± 1.0 63.2 ± 1.5 60.1 ± 1.8
DASC 68.0 ± 1.1 68.5 ± 0.5 65.7 ± 1.4

CIFAR10-H Traditional Crowdsourcing Learning MV-DL 44.9 ± 0.7
DS-DL 43.4 ± 0.8

Anno-Reg Crowdlayer WDN
Imbalanced Learning CE 40.9 ± 1.0 45.6 ± 0.5 17.3 ± 1.1

Resampling 43.9 ± 1.8 48.6 ± 1.7 18.2 ± 0.5
Reweighting 41.4 ± 1.0 47.7 ± 0.8 17.6 ± 1.3
Focal 39.7 ± 0.4 47.6 ± 1.2 17.9 ± 1.3

Self-training Methods Confidence 49.4 ± 1.2 48.8 ± 1.0 31.9 ± 1.7
Random 49.0 ± 1.5 51.2 ± 3.5 14.7 ± 0.6

DASC 51.0 ± 1.3 55.3 ± 0.6 36.9 ± 1.7



1835Machine Learning (2023) 112:1823–1845	

1 3

–	 Confidence which trains the deep crowdsourcing base models using self-training and 
selects the most confident pseudo-annotations with least entropies using Eq. (2).

–	 Random which trains the deep crowdsourcing base models using self-training and ran-
domly selects pseudo-annotations.

–	 DASC the proposed approach which trains the deep crowdsourcing base models using 
self-training and selects pseudo-annotations considering both confidence and the imbal-
ance issue.

Besides, we also report the performance of the original deep crowdsourcing base models 
as CE (Cross Entropy), i.e., using the imbalance agnostic cross entropy loss without self-
training. CE acts as the base for the imbalance and self-training implementations, and their 
comparisons illustrate better the effects of annotation imbalance and sparsity on crowd-
sourcing learning.

4.2 � Results

As the test set of LabelMe and Music are slightly imbalanced (with groundtruth label 
imbalance ratio 1.536 and 1.461), we adopt that accuracy used by previous works is a 
reasonable measure. The test accuracy comparisons are shown in Table 2. The mean and 
standard deviation results over 5 random repetitions are reported.

As we can see, the classical aggregation methods MV-DL, DS-DL are always inferior to 
the deep base models with CE loss, except for WDN. For each deep base model Anno-Reg, 
Crowdlayer, and WDN, their DASC implementations always perform the best, improving 

Fig. 4   The variation of imbalance ratio R for annotations during the learning procedure
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significantly in all cases, roughly from 2 to 20% absolute test accuracy. Specially, for the 
inferior base model WDN, it is improved by 5.2%, 10.6% and 19.6% on LabelMe, Music 
and CIFAR10-H. On the most difficult benchmark CIFAR10-H, Anno-Reg, Crowdlayer, 
and WDN are improved by 10.1, 8.5 and 19.6% . These improvements are achieved without 
any sophisticated network redesign or additional information acquisition, only by a univer-
sal smarter data leverage manner.

For the imbalance learning implementations Resampling, Reweighting and Focal loss, 
they improve over the cross entropy loss for the three deep base models Anno-Reg, Crowd-
layer and WDN on all datasets except for the case of WDN on Music using Resampling. 
This shows that when concerning crowdsourcing learning, the class skewness of data 
should be taken into account. But without dealing with annotation sparsity, the improve-
ments are limited.

For the self-training based methods which combat annotation sparsity by supplement-
ing the sparse annotations, the normal Confidence and Random pseudo-annotation selec-
tion strategies which don’t deal with the class imbalance make positive effects sometimes 
but sometimes bring bad negative impacts, see Crowdlayer on LabelMe and Music, WDN 
with Random on LabelMe and CIFAR10-H, which are highlighted as italic. In the next, we 
will examine what happened during the learning procedure and explain the degeneration of 
Confidence and Random based self-training implementations.

Figure 4 shows the variation of the imbalance ratio R, i.e., R =
maxc Nc

minc Nc

 , of the combina-
tion of original and selected pseudo-annotations by Confidence, Random and DASC dur-
ing the self-training procedure. For comparison convenience, we also plot the imbalance 
ratio of original crowd annotations and groundtruth labels. It can be seen that the R value 
of Confidence increases rapidly, indicating that the confidence based measure mostly 
selects the majority class pseudo-annotations, leading to severely imbalanced annotation 
distribution, which in turn can hurt the learning performance. The random selection strat-
egy is much better than confidence based measure but still biased by the imbalance issue, 
see Anno-Reg and Crowdlayer models. The proposed DASC is more robust and yields 
much more balanced annotations, greatly alleviating the imbalance issue.

In Fig. 5, we check the pseudo-annotation quality of Confidence, Random and DASC. 
As shown in Fig. 4, the imbalance ratio for Confidence can be as high as 30, for which 
accuracy is no longer a proper quality measure. Since there tend to be lots of mislead-
ing predictions towards majority classes, the precision measure is better reflecting the non-
misleading ratio. Whereas mining the minority classes is more difficult and important, the 
recall measure is better. Thus we divide the annotation classes into 50 vs 50% majority 
vs minority classes, and report the average precision for majority classes and recall for 
minority classes. We compute the measures by comparing them with the groundtruth 
labels. Results for iteration t = 1 and t = 5 are reported. We can see that DASC consistently 
obtains pseudo-annotations with higher precision/recall on the majority/minority classes, 
which explains its superior performance under the class-imbalance scenario.

4.3 � Various sparsity level study

To examine the effectiveness of our approach with different sparsity levels, we remove 
fractions of the original training annotations for the three benchmarks LabelMe, Music 
and CIFAR10-H. Specifically, we remove p fractions of the observed annotations with p 
ranges from 20 to 80% in a uniformly random manner. Average test accuracy for 5 times 
repetitions are reported in Fig. 6, which demonstrates consistent results with that shown 
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(a)

(b)

Fig. 5   Pseudo-annotation quality of Confidence, Random and DASC. Results at two self-training iterations 
t = 1 and t = 5 are reported
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in Table  2. Compared with the CE base models which learn from the observed annota-
tions without considering imbalance and sparsity, DASC stably significantly improves over 
them. However, the Confidence and Random self-training implementations without dealing 
with the imbalance issue sometimes are much worse than the CE base models.

4.4 � More experiments with alternative imbalance self‑training solutions

In this subsection, we further compare DASC with two alternative straightforward imbal-
ance learning with self-training implementations: Focal+Self-C and CB Focal+Self-C, 
which deal with the sparse and imbalance annotations by respectively using the imbalance 
loss functions Focal and CB (class-balanced) Focal with confidence based self-training. 
CB Focal (Yin et  al., 2019) improves over Focal loss by reweighting the loss of differ-
ent classes using one measure named effective number rather than the nominal numbers 

Fig. 6   Test accuracy of CE, Confidence, Random and DASC over base models Anno-Reg, Crowdlayer and 
WDN when the annotations are sparse on LabelMe, Music and CIFAR10-H



1839Machine Learning (2023) 112:1823–1845	

1 3

of instances. Figure 7 shows their results on the three benchmark datasets when Crowd-
layer is used as base model. The two hyperparameters for Focal and CB Focal are tuned 
as � = 0.9999 and � = 2 . From Fig. 7a, it can be seen that they are inferior and less robust 
compared with DASC. We check their pseudo-annotations imbalance ratios during the 

Fig. 7   Comparison results with two alternative imbalance self-training implementations: Focal+Self-C and 
CB Focal+Self-C

Table 3   Statistic details of the six heavily imbalanced datasets

Dataset Training/Testing Size R/Rg of Annota-
tions/ Truth

Mean workers’ Accuracy Mean 
workers’ 
Labels

Data 1-label 2 1,258/200 6.530/5.989 92.7% ± 2.5% 347.8
Data 1-label 4 1,258/200 8.003/10.541 92.5% ± 2.3% 348.1
Data 1-label 9 1,258/200 7.073/7.169 91.4% ± 3.8% 347.1
Data 1-label 12 1,158/300 4.903/4.732 95.5% ± 3.0% 318.3
Data 2-label 3 500/200 3.104/3.587 89.8% ± 4.1% 188.5
Data 2-label 4 500/200 4.667/5.024 89.1% ± 4.8% 193.9
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Fig. 8   Test accuracy of Confidence, Random and DASC over base models Anno-Reg, Crowdlayer and 
WDN on the heavily imbalanced crowdsourcing tasks of Data1 and Data2
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self-training process in  7b, which are much higher than DASC. This indicates that the 
Focal and CB-Focal loss functions derive more skewed annotation class distributions, 
which explains their inferior performance.

4.5 � More experiments on heavily imbalanced data

We further test the effectiveness of DASC on six more datasets with the heavily imbal-
anced class distribution. We take the two multi-label image crowdsourcing datasets Data1 
and Data2 from Li et al. (2019), which respectively consist of 1, 458 images, 15 workers 
and 700 images, 18 workers. We use labels 3, 4, 5, 12 of Data1 and label 3, 4 of Data2 as 
6 binary classification crowdsourcing tasks, each of them is highly class-imbalanced. For 
our experiment, we split a balanced test set for each task and use the rest as the training set. 
Table  3 shows the datasets statistic details.

We use a network of a hidden layer of 1000 units, ReLU activations and one output 
layer on top as the classifier. The training is conducted by using Adam optimizer with a 
batch size of 128 and a learning rate of 1 × 10−3 . For the Crowdlayer and Anno-Reg base 
models, we respectively train them for 100 and 200 epochs. For WDN base model, we train 
it for 75 epochs at both training phases.

Figure 8 shows the test accuracy of the three self-training based implementations Con-
fidence, Random and DASC over the deep base models Anno-Reg, Crowdlayer and WDN. 
Here results for 14 iterations are recorded, in each iteration 500 pseudo-annotations are 
selected without replacement. As we can see, for the heavily imbalanced crowdsourcing 
data, the Confidence self-training method which supplements the sparse annotations with 
most confident pseudo-annotations decreases the base models rapidly, due to its selection 
bias towards the majority annotations, which is further intensified during the self-training 
process. The Random implementation ignores both the imbalance issue and pseudo-anno-
tation quality, leading to similar decreasing trends as Confidence on Data1, slightly better 
on the Data2. In contrast, DASC stably improves all base models on all the tasks for a large 
margin, mostly with 5% to 20% absolute accuracy. This shows that significant performance 
gains are obtainable when the data are properly leveraged considering their imbalance and 
sparse characteristics.

5 � Conclusion

In this paper, we propose a distribution aware self-training based method DASC to deal 
with the annotation sparsity and class-imbalance issues in crowdsourcing learning. 
Through supplementing the sparse annotations by adding confident pseudo-annotations 
and re-balancing the distribution, we show by extensive experiments that, significant per-
formance gains can be obtained over existing models by using distribution aware self-train-
ing strategy. As a primary attempt, we emphasize that, for crowdsourcing learning with 
sparse annotations, even slight annotation imbalance should not be ignored. However, such 
one aspect is rarely considered in previous work. We believe this point would be worthy of 
more attention, and can be better solved by combining with sophisticated techniques from 
imbalanced learning, deep crowdsourcing learning and semi-supervised learning sotas.
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