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Abstract
While fine-tuning pre-trained networks has become a popular way to train image seg-
mentation models, such backbone networks for image segmentation are frequently pre-
trained using image classification source datasets, e.g., ImageNet. Though image clas-
sification datasets could provide the backbone networks with rich visual features and 
discriminative ability, they are incapable of fully pre-training the target model (i.e., 
backbone+segmentation modules) in an end-to-end manner. The segmentation modules 
are left to random initialization in the fine-tuning process due to the lack of segmentation 
labels in classification datasets. In our work, we propose a method that leverages Pseudo 
Semantic Segmentation Labels (PSSL), to enable the end-to-end pre-training for image 
segmentation models based on classification datasets. PSSL was inspired by the obser-
vation that the explanation results of classification models, obtained through explanation 
algorithms such as CAM, SmoothGrad and LIME, would be close to the pixel clusters of 
visual objects. Specifically, PSSL is obtained for each image by interpreting the classifica-
tion results and aggregating an ensemble of explanations queried from multiple classifiers 
to lower the bias caused by single models. With PSSL for every image of ImageNet, the 
proposed method leverages a weighted segmentation learning procedure to pre-train the 
segmentation network en masse. Experiment results show that, with ImageNet accompa-
nied by PSSL as the source dataset, the proposed end-to-end pre-training strategy success-
fully boosts the performance of various segmentation models, i.e., PSPNet-ResNet50, Dee-
pLabV3-ResNet50, and OCRNet-HRNetW18, on a number of segmentation tasks, such as 
CamVid, VOC-A, VOC-C, ADE20K, and CityScapes, with significant improvements.
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1  Introduction

Image semantic segmentation is a fundamental topic in computer vision, with broad appli-
cations in many domains, such as scene understanding, medical image analysis, robotic 
perception, etc. In recent years, many approaches based on deep neural networks  (Zhao 
et  al. 2017; Chen et  al. 2017; Yuan et  al. 2020) have been developed and achieved 
remarkable performance on public datasets for image segmentation tasks, such as Pascal 
VOC  (Everingham et  al. 2010; Hariharan et  al. 2011), ADE20K  (Zhou et  al. 2017) and 
Cityscapes (Cordts et al. 2016).

A conventional and practical training strategy for image segmentation, shown in Fig. 1a, 
is to first adopt an image classification model as the backbone and subsequently incorpo-
rate with a segmentation module to make pixel-wise predictions.1 It then initializes the 
classification backbone with pre-trained weights from ImageNet (Deng et al. 2009) or other 
large classification datasets but assigns random weights to the segmentation module as no 
prior given. Further, this strategy fine-tunes the whole model using datasets with segmen-
tation labels to output pixel-wise predictions.

To close the gap between image classification and segmentation, some works  (Chen 
et al. 2017; Zhao et al. 2017; Zhang et al. 2020) propose to fine-tune the whole segmen-
tation model using the Microsoft COCO dataset with pixel-wise annotations  (Lin et  al. 
2014). This second round of pre-training is a practical approach to improving the perfor-
mance on Pascal VOC because the COCO dataset covers all 20 categories of visual objects 
labeled in the Pascal VOC dataset. These attempts show potential to further improve the 
image segmentation models with pre-training approaches, but it still needs a generalizable 
solution, especially when the source dataset does not cover the target domain.

Overview of Our Approach Our work is motivated to improve the imperfect status quo 
of the fine-tuning process for image segmentation models, i.e., initializing the backbone 
using pre-trained weights of an image classification model, while leaving a large segmenta-
tion module with random initialization. To this end, we follow the same settings of previ-
ous works  (Chen et  al., 2017; Zhao et  al., 2017; Zhang et  al., 2020; Yuan et  al., 2020) 
that pre-train the image segmentation model using a classification dataset, e.g., ImageNet, 
where we propose to extract the pseudo semantic segmentation labels (PSSLs) from this 
classification dataset, and then use PSSLs to enable an end-to-end pre-training for image 
segmentation models.

Specifically, for every image in ImageNet, we (i) consider the explanation results of a 
deep model with respect to input features (Ribeiro et al., 2016; Smilkov et al., 2017) as the 
highly important (super-)pixels potentially covering the visual objects, and (ii) aggregate 
the explanation results from multiple well-trained models and obtain PSSLs via the cross-
model ensemble of explanations (Li et al., 2021), to reduce the bias induced by individual 
models. With PSSLs, we propose to (iii) pre-train the backbone and the segmentation mod-
ule en masse, in an end-to-end manner, to enhance the image segmentation deep models, as 
illustrated in Fig. 1b.

1  With more rigorous descriptions, the classification backbone is also modified to adapt to the segmenta-
tion task, such as the use of dilated convolutions  (Yu and Koltun 2016) and the decrease of convolution 
kernels’ strides for reserving more spatial information.
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The contributions of our work are summarized as follows:

•	 We propose an end-to-end pre-training approach based on PSSLs, which is obtained 
through the ensemble of explanations, to pre-train a segmentation model using image 
classification datasets with image labels only. To the best of our knowledge, this pre-
training strategy is the first end-to-end approach to pre-train segmentation models with 
classification datasets.

•	 We build the PSSL dataset, corresponding to over 1.2 million images in ImageNet 
using cross-model consensus without human involves. Both the PSSL dataset and the 
pre-trained segmentation models will be released for future researches and practical 
usages.

•	 Extensive experiments and thorough analyses have been conducted on five popu-
lar image segmentation tasks with three state-of-the-art models. Positive results with 
significant and consistent improvements confirm the effectiveness of the proposed 
approach.

2 � Related work

We review the related works from several directions and discuss our contributions com-
pared to existing works.

Explanation Algorithms An important family of post-hoc explanation algo-
rithms (Smilkov et al., 2017; Ribeiro et al., 2016; Sundararajan et al., 2017; Bau et al., 
2017; Selvaraju et  al., 2017; Ribeiro et  al., 2018) is to highlight the important input 

(a)

(b)

Training

Fig. 1   Illustration of the conventional (a) and our proposed (b) pre-training approaches
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features that contribute the most to models’ predictions. In some specific scenarios, e.g., 
the classification in ImageNet (Deng et al., 2009), the important features are, in fact, the 
pixels of the visual objects, which align with image segmentation. We do not focus on 
the explanation algorithms, but our proposed approach to generating the pseudo seg-
mentation labels is based on the cross-model ensemble of post-hoc explanations  (Li 
et al., 2021).

Learning from Explanations Exploiting explanations for better training the deep model 
has been developed, mainly for two objectives, improving the model performance or pro-
viding better explanations. To cite a few, Zagoruyko and Komodakis (2016) imposed a 
regularizer to encourage a student network to learn the saliency maps from a teacher net-
work for better knowledge distillation. Ross and Doshi-Velez (2018) proposed to train the 
model with regularizing the input gradients to be more interpretable explanations, for the 
objectives of improving the adversarial robustness and model interpretability. Chen et al. 
(2019) proposed to find prototypical patches for the final prediction and then train a model 
to align with these prototypes/explanations. The learned model could achieve comparable 
accuracy and provide better explanations. Kim et al. (2020) proposed to improve Mixup 
Zhang et al. (2018) by leveraging the explanation results. Our approach is different from 
existing methods in two aspects: (1) We propose to use the cross-model ensemble of expla-
nations Li et al. (2021), which lowers the biases caused by individual models; (2) Rather 
than improving the original task, we transfer the explanations of classification models to 
pre-train models for segmentation.

Deep Networks for ImageNet Semantic Segmentation As designing novel deep neural 
architectures has become a promising direction for specific learning tasks, most of the pre-
vious improvements on image semantic segmentation come from the network architecture 
expert designs (DeepLab Chen et  al. (2017), PSPNet Zhao et  al. (2017), OCRNet Yuan 
et al. (2020) with different backbone networks). Rather than designing new architectures, 
our approach proposes to leverage the hidden information from source data (mined by 
explanation algorithms), which is an orthogonal direction to architectural designs. Any 
advances in network architecture could be complementary to the improvement made by our 
approach. To confirm the advantage of our methods on top of various architectural designs, 
we conduct experiments on three different segmentation models and all of them obtain 
positive results, shown in Sect. 5.

Weakly Supervised Semantic Segmentation (WSSS) WSSS aims at computing pixel-wise 
predictions with image-level annotations. One relevant line of WSSS approaches (Papan-
dreou et al., 2015; Wei et al., 2018; Lee et al., 2019; Zhang et al., 2020) is to exploit expla-
nation algorithms [e.g. CAM  (Bau et  al., 2017), Grad-CAM  (Selvaraju et  al., 2017)] to 
localize the objects in the image and to compute segmentation labels. Our work does not 
predict pixel labels from coarse image annotations, but the approach to exploiting the 
explanation results is similar. Another difference is that previous approaches generate the 
pixel-wise labels based on explanations of one single model, while we adopt the cross-
model consensus of explanations across a number of deep models. Advanced techniques 
from WSSS may be helpful to improve the accuracy of pixel-wise pseudo labels while we 
leave it as future work.

Self-Training vs Pre-Training Self-training with unlabeled data  (Zoph et  al., 2020) 
largely boosts the performance with enormous computation efforts. It first trains a teacher 
model on human-labeled data, then generates soft labels on unlabeled data, and finally 
trains a student model jointly on human labels and soft labels. However, this prohibitive 
self-training strategy solves specific tasks in an ad hoc manner, meaning that the models 
are not shareable across different tasks. Instead, our proposed approach is efficient and 
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generalizable, which benefits from the pseudo pixel-wise labels from cross-model consen-
sus of explanations and produces general segmentation models that enable performance 
boosts on various downstream tasks.

COCO Pre-Trained Models Microsoft COCO Lin et  al. (2014) is a large dataset for 
image classification, object detection and image segmentation. It contains 200K fine anno-
tations across 80 categories, including the 20 objects in Pascal VOC. To benefit from this 
large dataset, many image segmentation algorithms Dai et al. (2015); Zheng et al. (2015); 
Zhao et al. (2017); Chen et al. (2017) improved the performance on Pascal VOC through 
selecting images from COCO that contain the 20 objects of Pascal VOC as extra training 
data. This is a practical approach to boosting the performance on Pascal VOC, but it is less 
promising to apply on datasets that are not covered by the COCO dataset. Our approach, 
however, proposes to pre-train the segmentation model on ImageNet with pseudo semantic 
segmentation labels, across 1000 different classes. This enables a generalizable pre-train-
ing approach for various image segmentation tasks.

ImageNet Segmentation Guillaumin et  al. (2015) proposed to iteratively segment 
images, with bounding-box annotations and classification labels at the initial step. Each 
step leverages the information from the previous step and refines the segmentation using 
GrabCut  (Rother et  al. 2004), a segmentation approach based on energy minimization. 
They also conducted experiments to validate their method on ImageNet and released 
binary pixel-wise segmentation results of 4276 images across 445 classes. Unlike using 
GrabCut, our approach, through cross-model ensemble of explanations, generates seman-
tic segmentation labels for the entire training set of ImageNet. The dataset will soon be 
released, containing over one million images covering all the 1000 classes in ImageNet, as 
detailed in the following section.

3 � Pseudo semantic segmentation labels (PSSL) of ImageNet

In this section, we introduce the procedure of generating PSSL through the ensemble of 
explanations.

3.1 � Cross‑model ensemble of explanations

We recall the approach of Consensus (Li et al. 2021), i.e., cross-model ensemble of expla-
nations. As illustrated in Fig. 2a, Consensus first collects a number of trained deep mod-
els, then adopts an explanation algorithm to interpret these deep models individually for 
each given image, and finally averages the explanation results across models. As shown by 
Li et al. (2021), the ensemble of explanations is well aligned to pixel-wise segmentation 
labels, and much better than single models. In intuition, the averaged ensemble marginal-
izes out the variable of models, reducing biases from individual models. Here, we gener-
alize the idea of learning from explanations, and exploit the ensemble of explanations to 
enhance image segmentation pre-training.

3.2 � Construction of PSSL

As introduced previously, the ensemble of explanations is much better aligned with image 
segmentation labels than individual ones. Here, to produce pixel-level explanations for 
high resolution, we adopt the post-hoc explanation algorithm SmoothGrad (Smilkov et al., 
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2017), while other appropriate algorithms may also be applicable here, such as Integrated 
Gradient (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., 2017) etc. The number 
of models for the ensemble is suggested to be larger than 15 to get a good alignment with 
segmentation (Li et al., 2021). So the first step to constructing PSSL is based on the ensem-
ble of SmoothGrad explanations across 15 deep models, to obtain the contribution scores 
of pixels for every image in the training set of ImageNet,

(1)S(x) = 1∕M

M∑

i=1

Si(x),

(a)

(b)

Fig. 2   Illustration of a computing cross-model ensemble of explanations, b converting ensemble of expla-
nations to images of deciles, and binarizing the highest decile
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where Si(x) is the score of pixel x given by the explanation algorithm w.r.t. the i-th model, 
rescaled by a min-max normalization, and M is the total number of models.

PSSLs with floating point take much space in disk. So the second step of the construc-
tion, with the objective of reducing the file size without losing much information, is to 
perform a quantization process to convert quasi-continuous scores (floating point 32 bits) 
to deciles (0–9). Specifically the decile rank D of pixel x is computed by

where Z(x) = |{y | S(y) < S(x)}| , is the number of pixels that have lower scores than x, N is 
the total number of pixels and ⌊F⌋ is the largest integer that is less than F. We denote the set 
of {x|D(x) = i} as Di , where i = 0, 1, 2, ..., 9 . In fact, practically we take the highest decile 
D9 as the segmentation labels for pre-training.

The last step is to connect the deciles to category labels. Image-wise category labels can 
be directly loaded from ImageNet, and by the reason that almost every image in ImageNet 
contains only one main object, pseudo pixel-wise labels can be reasonably assigned by the 
image-wise label. In our setting, the labels T(D9) = T(I) , where T(I) is the image-wise 
category from ImageNet of the image I .

The three steps are illustrated in Figure 2(b). In summary, PSSL is created by repeating 
these steps to obtain over one million images of deciles corresponding to images in the 
training set of ImageNet. Currently PSSL does not contain a validation/test set, because 
the pseudo labels have not been manually verified or corrected. The evaluations on them 
do not make much sense. We thus suggest using the dataset of PSSL for designing the pre-
training strategies only, since the effectiveness of PSSL-pre-trained models is validated on 
downstream tasks, with experiments presented in Sect. 5. Further usages of the pre-trained 
model are planned as future work.

4 � Proposed approach: end‑to‑end pre‑training on PSSL

In this section, we introduce the proposed end-to-end pre-training approach for segmenta-
tion models based on the dataset of PSSL.

4.1 � Take the cream and dross

Pseudo labels from PSSL are not guaranteed to be accurate. Precisely filtering out the 
noises is essential to generally improve the dataset’s quality and effectively enhance the 
segmentation models with PSSL. Here we consider two directions to cope with the noises.

For practical efficiency, we choose to take a constant decile for all pseudo labels, i.e., 
the highest one of pixels D9 , as segmentation (pseudo) ground truth for pre-training. This 
threshold works well in practice, compared to using more deciles. This may be explained 
by that using more deciles would introduce more noises to the supervision for the images 
in which the sizes of objects are small. More advanced techniques will surely improve the 
effectiveness. This is also the reason that we release the PSSL as images of deciles instead 
of binarized images, for future researches on adaptive approaches to choosing the threshold 
for individual images, or on algorithms of refining the segmentation labels based on other 
prior information.

The cream is taken; the dross, however, cannot be directly discarded. Simply dropping 
the pixels of Di<9 during training would boil down the trained segmentation model to a 

(2)D(x) = ⌊Z(x)∕N ∗ 10⌋,
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trivial classification model, predicting all pixels in one image to the same category. Train-
ing with the background class essentially helps to segment images semantically. Mean-
while, we also tried to ignore D8 , leaving T(D9) = T(I) and the rest as background, which 
decreased the performance on downstream tasks.

4.2 � Imbalanced learning problem

As previously introduced, to reduce noises, for each image I  , we set T(D9) = T(I) and 
T(Di<9) = B , where B is the index of the background class. Considering the large ratio 
of background pixels, this training problem is essentially an imbalanced learning prob-
lem of classifying pixels. Pixels of background are around 9 000 times as many as pixels 
of any other category, in the case of 1 000 balanced categories. Several advanced loss 
designs for the imbalanced classification are considered here, such as Focal Loss  (Lin 
et  al., 2017) and Loss Max-Pooling  (Bulo et  al., 2017). However, the imbalance in 
PSSLs also involves the noises. Direct applications of Focal Loss or others may give 
high weights to noisy pixels, leading to undesired effects. So, instead of adopting such 
advanced technologies, we consider the weighted cross entropy objective function:

where K is the number of classes, wc is the weight for class c, tc,x is the one-hot label at c 
converted from T(x), pc,x is the predicted probability of class c for pixel x.

Through preliminary experiments, we have found that set wB to 0.1 and others wi≠B 
to 1 works well in practice. We take parts of PSSL (50K and 500K pseudo-labeled sam-
ples respectively), train a DeepLabV3-ResNet50 segmentation model and fine-tune the 
trained segmentation model on the PASCAL VOC segmentation dataset Everingham 
et al. (2010); Hariharan et al. (2011). The experiment setups here are the same as those 
in Sect.  5, except that the training epoch is less here, leading to slightly lower mIoU 
scores compared to the main results. We vary the background weight wB without chang-
ing others to show the effects of different background weights on Pascal VOC. The 
results in Table 1 indicate that 0.1 is the best among the grids.

4.3 � Data matter

Training with more correctly labeled samples is more probable to produce a good 
model. With pseudo-labeled image segmentation samples, this still holds. We use sepa-
rately 50K, 200K, 500K, and 1M pseudo segmentation labels from PSSL to pre-train 
the segmentation models and obtain four pre-trained models. Then we fine-tune them on 

(3)l(x) =

K∑

c=1

− wc tc,x log(pc,x),

Table 1   Performance with respect to the background weight in the objective function during pre-training 
with PSSL-50K and PSSL-500K, evaluated on the PASCAL VOC 2012 validation set using DeepLabV3-
ResNet50

BG weight 0.001 0.01 0.1 1.0

PSSL-50K 72.7 73.9 74.1 73.7
PSSL-500K 75.4 76.1 76.7 74.3



2201Machine Learning (2023) 112:2193–2209	

1 3

Pascal VOC and compare them with the conventional fine-tuning approach. The results 
in Table 2 clearly show the trend of increase with more samples used during pre-train-
ing. These results also indicate that with 500K pseudo labels, the performance on the 
downstream task is slightly better than the conventional fine-tuning approach, which 
only initializes the backbone part of the segmentation model.

5 � Experiments

To address the imperfect parameter initialization for image segmentation, we propose to 
pre-train the segmentation models en masse on PSSL. These pre-trained models are then 
used as initial weights for the evaluations on five downstream segmentation tasks through 
fine-tuning. We compare with the conventional approach of initializing the classification 
backbone only, so as to validate the effectiveness of our proposed end-to-end pre-training 
strategy. This section, therefore, presents the experiments of pre-training on PSSL and fine-
tuning on downstream tasks.

5.1 � Models

Our proposed pre-training strategy is independent of network structures. To experimentally 
demonstrate this independence, we conduct experiments on three models that are differ-
ent in both backbone models and segmentation modules. Specifically, we consider three 
popular segmentation models: PSPNet Zhao et al. (2017), DeepLabV3 Chen et al. (2017) 
and OCRNet Yuan et al. (2020), with ResNet50 He et al. (2016), ResNeSt50 Zhang et al. 
(2020) and HRNetW18 Wang et al. (2020) as backbones respectively. These three models 
improve the image segmentation based on different expert designs on network structure, 
while our approach further boosts the performance by addressing the initialization issue of 
segmentation models in an orthogonal way.

5.2 � Pre‑training experiments

Following the approach introduced in Sect.  4, we conduct the pre-training experiments 
with the three models.

Some experiment details are added here. The input image size to the network is 256, a 
similar value as used in image classification, for getting a large batch size 64.2 The training 

Table 2   Performance with respect to the sample number of PSSL, evaluated on the PASCAL VOC 2012 
val set using DeepLabV3-ResNet50

ImageNet: The backbone is pre-trained with the ImageNet classification labels. PSSL: The backbone is pre-
trained on different numbers of PSSL samples generated by the cross-model ensemble of explanations

Pre-Training Dataset Image- Net PSSL

Nb. Samples 1.2M 50K 200K 500K 1M
mIoU 76.2 74.1 (− 2.1) 75.4 (− 0.8) 76.7 (+0.5) 77.8 (+1.6)

2  Due to the limited GPU memory, a larger input size for training like 420 would reduce the batch size to 
16. While our used setting produces similar results to (marginally better than) this setting, our setting needs 
less wall time for the same number of epochs.
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epoch is 30. The learning rate is 0.01 and decreased to 0.001 at 20th epoch. The data aug-
mentation methods for general image segmentation are also used here, such as random 
scales, crops, flipping, blurs, rotations etc. Contrary to standard training processes, the 
model is not desired to be well converged, avoiding overfitting to the noises in PSSL. So 
an early stop at 30th epoch is performed. The source code is also available for unmentioned 
details and reproduction purposes.

This setting costs 3 to 4 days on an 8-V100 server for each of the three models. Com-
pared to the conventional fine-tuning (with using public available pre-trained classification 
models as initialization), this is the only additional computation required for adopting our 
proposed method. We also remark that with the released pre-trained segmentation models, 
even such additional computations are not required for future research and practical usages.

5.3 � Downstream segmentation datasets

We evaluate the pre-trained segmentation models on five datasets, i.e., CamVid  (Bro-
stow et  al., 2009), Pascal VOC Augmented (shortly VOC-A)  (Everingham et  al., 2010; 
Hariharan et  al., 2011), Pascal VOC Context (VOC-C)  (Everingham et  al. 2010), 
ADE20K (Zhou et al., 2017) and Cityscapes Cordts et al. (2016). Each of them is attached 
with an image segmentation task, in different scenarios. In general, CamVid is a small 
dataset with 367 images for training, while others have more than thousands of training 
images. Two of them are based on driving scenes, i.e., CamVid and Cityscapes; Two of 
them focus on general object segmentation, i.e. two VOC datasets; ADE20K involves vari-
ous scenes and contains 150 objects, many more than the number of classes in other data-
sets; Cityscapes provides high-resolution images of 2048 × 1024 , while other datasets con-
tain images with the larger edge being around 500. Detailed dataset information, including 
sizes of the training/validation/test sets, resolution, number of classes to classify, can be 
found in the appendix.

The idea is to evaluate the PSSL-pretrained models on datasets of different scales, 
scenes and objects. Consistent improvements are observed across datasets.

5.4 � Implementation details

We have three models on five datasets to evaluate. Generally, the best hyper-parameters 
are not the same across the 15 dataset-model combinations. The general rule to choosing 
the hyper-parameters for fair comparisons is that in each combination, the hyper-param-
eters are the same, or the way to tuning them is the same. The only hyper-parameter to 
tune in our experiments is the initial learning rate. The strategy for the best initial learning 
rate is to search the peak value as the best one from { 5, 2, 1 × 10−n, where n = 1, 2, 3, ... }3 
have been searched. We show the tuning process on VOC-A in the appendix. Other hyper-
parameters are fixed within each combination, such as batch size (16), weight decay (1e-3 
for CamVid, 1e-4 for others), polynomial-decay learning rate policy, base size (1024 for 
Cityscapes, 520 for others), crop size (864 for Cityscapes, 480 for others), epochs (30 for 
CamVid, 50 for both VOC datasets, 180 for ADE20K-DeepLabV3, 100 for the rest), with 
all commonly-used data augmentation methods, and so on. Multi-scale evaluations are per-
formed. More details can be found in the source code.

3  Specifically, the values of {1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2}.
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5.5 � Main results

The main results of three models on five datasets are shown in Table 3, where the pro-
posed PSSL-pretraining strategy outperforms the conventional fine-tuning method with 
ImageNet-classification models on all dataset-model combinations. The mIoU scores 
are increased by at least 0.9 points for 9 out of 15 combinations, knowing that we did 
not use additional data in both source and target domains.

We observe huge gains on CamVid across the three models. This is because prior 
information is very beneficial for tasks with few training data points (there are only 367 
training images on CamVid), and this also reveals that our proposed pre-training strat-
egy effectively initializes the segmentation models.

Moreover, our method shows significant improvements for relatively large datasets. 
The two VOC datasets and ADE20K generally contain similar images to ImageNet, in 
sens of both image resolution and the targeted visual objects. An increase of around one 
point is observed for most of them across different models on these three datasets.

Our method also provides positive yet variant results on Cityscapes. Note that the 
PSSL-pretrained models take images of 256 as input, while the input image size is 864 
for training on Cityscapes. Image resolutions are also quite different in ImageNet and 
Cityscapes. Nevertheless, the PSSL pre-training strategy is still effective in such sce-
narios, while yielding marginal improvements for PSPNet and OCRNet. This may indi-
cate that the image resolution is an essential factor that affects the transfer from source 
to target domains. This is also an issue in the conventional fine-tuning approach, and we 
leave this as future work.

6 � Analysis on PSSL: pretrained segmentation models

The segmentation models pre-trained on PSSL have been proved to be good initial 
points for fine-tuning on various downstream datasets. In this section, we provide analy-
ses of these pre-trained models and show their potentials.

Table 3   Comparison on five segmentation datasets with three popular segmentation models measured in 
mIoU, where ImageNet indicates the conventional initialization of using ImageNet-pretrained classification 
model for segmentation, and PSSL indicates that the weights are initialized from the pre-trained model on 
the dataset of PSSL. In green are the gaps of at least +0.6 points

PSPNet-ResNet50 DeepLabV3-ResNeSt50 OCRNet-HRNetW18

ImageNet PSSL ImageNet PSSL ImageNet PSSL

CamVid 65.9 68.1 (+2.2) 66.6 69.1 (+2.5) 59.2 62.8 (+3.6)
VOC-A 79.4 80.3 (+0.9) 79.1 80.1 (+1.0) 76.4 77.1 (+0.7)
VOC-C 47.0 48.5 (+1.5) 48.8 49.4 (+0.6) 44.5 45.7 (+1.2)
ADE20K 42.9 43.8 (+0.9) 45.2 45.8 (+0.6) 40.0 40.9 (+0.9)
Cityscapes 78.7 78.9 (+0.2) 79.0 79.7 (+0.7) 79.6 79.8 (+0.2)
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6.1 � Classifying images

We first evaluate the pre-trained segmentation models on image classification tasks, by 
simply taking the prediction probability averaged from all pixels as the final predic-
tion for image classifications. Single-scale evaluation experiments are performed on the 
ImageNet validation set, which was not used for training. The results of top-1 accuracy 
are reported in the second row of Table 4, compared to the ImageNet-classification pre-
trained model that gets 78.7%.

In the main experiments, an early stopping at 30th epoch was adopted for pre-training on 
PSSL, to avoid converging to the noises of pseudo pixel-wise labels. As a result, the con-
vergence to the image labels is not reached. That may be the reason for the decrease in clas-
sification accuracy. As a remedy, we continue to train the segmentation model for another 
30 epochs on PSSL. That gives a comparable classification accuracy on ImageNet, but this 
well converged segmentation model produces slightly lower mIoU scores on VOC-A than 
the early-stopped one, as reported in the last row of Table 4. Segmentation experiments fol-
low the same configuration as in the previous section.

Generally, better (ImageNet-)pretrained models transfer better (Kornblith et al., 2019). 
However, in our case, the source dataset of PSSL contains some amount of noise. Better 
PSSL-pretrained models do not necessarily learn richer representations; instead, they may 
have larger potentials of remembering these noises, which is not profitable for fine-tuning. 
For instance, a decrease of 0.3 points in mIoU scores is observed in Table 4. To preclude 
this and be more efficient, we used the early-stopped models in the main experiments.

6.2 � Segmenting images to 1000 categories

The pre-trained segmentation models are capable of classifying pixels into 1000 categories 
plus an additional background class. We visually show the potentials of directly using these 
models to perform the segmentation task on VOC-A. Figure 3 shows the prediction results 
of PSPNet-ResNeSt50, for the first (three) images from the VOC-A validation set, plus the 
first image that contains “person”. Due to the absence of “person” in ImageNet, the pre-
trained model is not able to correctly segment the pixels. Instead, the model recognizes the 
clothes and the telephone. Short-version category names are loaded.4 More examples can 
be found in the supplementary materials.

Table 4   Comparison of PSSL-pretrained PSPNet-ResNet50 with 30 and 60 epochs and ImageNet-pre-
trained ResNet50, evaluated using the pre-trained models on ImageNet classification and the fine-tuned 
models on VOC-A segmentation

Epochs of PSSL- Pretraining 30 60 ImageNet- 
Pretrained

ImageNet (Top-1 Acc) 77.6 78.6 78.7
VOC-A (mIoU) 80.3 80.0 79.4

4  For complete label names, refer to the list on GitHub: https://​gist.​github.​com/​yrevar/​942d3​a0ac0​9ec9e​
5eb3a.

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
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7 � Conclusion and future work

We proposed an end-to-end pre-training strategy for complex scene understanding and 
parsing problems. Conventional fine-tuning for the segmentation model takes a pre-
trained classification model as the backbone but leaves the segmentation module to ran-
dom initializations. To address this issue, we created a new dataset of pseudo semantic 
segmentation labels, named PSSL, containing over one million pseudo labels, through 
the cross-model ensemble of explanations. We pre-trained three popular segmentation 
models on PSSL with ImageNet, and used them as initial weights for fine-tuning on five 
downstream segmentation tasks. Experiments showed positive results with significant 
improvements, demonstrating the effectiveness of the proposed end-to-end pre-training 
strategy. We furthermore provided analyses on the pre-trained models, indicating the 
potentials and other possible usages of PSSL-pretrained models.

Fig. 3   Predictions from PSSL-pretrained segmentation models. The four columns are respectively original 
images, pixel-wise ground truth from VOC-A, prediction results from PSSL-pretrained models, and legends 
for the top categories. Best viewed in color and with zoom in
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Future work includes but is not limited to WSSS, better segmentation with more robust 
priors, self-training with unlabeled data using an ensemble of explanations, etc. We hope 
the dataset and the pre-trained models (publicly available soon) can be helpful for the 
related domains.

Appendix

See Table 5.

Table 5   Dataset information

Tr. Set Val Set Resolution Nb. Clas. Info.

CamVid 367 233 480 × 360 11 (w/o bg) Driving Scenes
VOC-A 10582 1449 ≤ 500 21 (w/ bg) Common Objects
VOC-C 4998 5105 ≤ 500 60 (w/o bg) Common Objects
ADE20K 20210 2000 ≈ 500 150 (w/o bg) Various Scenes
Cityscapes 5000 500 2048 × 1024 19 (w/o bg) Driving Scenes

Fig. 4   Learning rate tuning results on VOC-A. Similar results can be found on other dataset-model combi-
nations
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Appendix A dataset information

We evaluate three popular segmentation models on five datasets, i.e., CamVid  (Brostow 
et al. 2009), Pascal VOC Augmented (shortly VOC-A) (Everingham et al. 2010; Hariharan 
et  al. 2011), Pascal VOC Context (VOC-C)  (Everingham et  al. 2010), ADE20K  (Zhou 
et al. 2017) and Cityscapes Cordts et al. (2016). These datasets are of various scales, sce-
narios, and numbers of labeled objects. Table 5 shows the details of these five datasets. 
The idea is to evaluate the PSSL-pretrained models on various datasets. Experiments show 
consistent improvements across these datasets.

Appendix B learning rate tuning

We recall the hyper-parameter tuning rule in our experiments. The only hyper-parameter to 
tune in our experiments is the initial learning rate, and the strategy for the best initial learn-
ing rate is to search the peak value as the best one from { 5, 2, 1 × 10−n, where n = 1, 2, 3, ... 
}. To visualize the tuning steps of our experiments, we present the results on VOC-A (Ever-
ingham et al. 2010; Hariharan et al. 2011). As shown in Fig. 4, we stopped tuning when 
we found a clear peak for each setting, for both ImageNet-pretrained models and PSSL-
pretrained models.
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