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Abstract
Social media data has a mix of high and low-quality content. One form of commonly stud-
ied low-quality content is spam. Most studies assume that spam is context-neutral. We 
show on different Twitter data sets that context-specific spam exists and is identifiable. We 
then compare multiple traditional machine learning models and a neural network model 
that uses a pre-trained BERT language model to capture contextual features for identifying 
spam, both traditional and context-specific, using only content-based features. The neu-
ral network model outperforms the traditional models with an F1 score of 0.91. Because 
spam training data sets are notoriously imbalanced, we also investigate the impact of this 
imbalance and show that simple Bag-of-Words models are best with extreme imbalance, 
but a neural model that fine-tunes using language models from other domains significantly 
improves the F1 score, but not to the levels of domain-specific neural models. This sug-
gests that the strategy employed may vary depending upon the level of imbalance in the 
data set, the amount of data available in a low resource setting, and the prevalence of con-
text-specific spam vs. traditional spam. Finally, we make our data sets available for use by 
the research community.
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1  Introduction

Spam and junk content have been a problem on the Internet for decades (Sahami et al., 
1998; Kaur et al., 2016; Ferrara et al., 2016; Dou et al., 2020). With the proliferation of 
direct marketing online, these forms of pollution continue to increase rapidly. By defini-
tion  (Wu et al., 2019, https://​help.​twitt​er.​com/​en/​rules-​and-​polic​ies/​twitt​er-​rules, Pedia 
2020), spam is unsolicited and unsought information, including pornography, inappro-
priate or nonsensical content, and commercial advertisements. These different types of 
spam take on new meaning in the context of social media, particularly on platforms like 
Twitter. For example, not everyone would view advertising as spam. When conducting 
a content analysis on tweets about an election, advertising about diapers is irrelevant 
to the election discussion and would be viewed as spam. If instead, we are analyzing 
content about parenting, diaper advertisements would be relevant to the content analysis 
and may not be viewed as spam. Because of mismatches like this, we introduce the con-
cept of context-specific spam and attempt to understand how to accurately identify posts 
containing this form of spam, as well as more traditional forms of spam on Twitter.

Figure  1 shows the different types of content as they relate to spam. Filtering out 
traditional spam is an insufficient way to remove all spam tweets since context-specific 
spam remains. Similarly, classical spam filtering that considers all advertisements as 
spam is inadequate because it classifies legitimate context-specific advertising as spam. 
To accurately detect spam pollution, contextual understanding is required. The goal of 
our paper is to identify spam on Twitter, both traditional and context-specific. Research-
ers have been working on spam and bot detection for decades and have proposed a num-
ber of supervised learning approaches (Sahami et  al., 1998; Kaur et  al., 2016; Chen 
et al., 2015; Cresci et al., 2018). The state-of-the-art approaches extract features from 
both content and user information. Yet, on some platforms, user information can be 
difficult to obtain, either because of privacy concerns or because of API limitations. 
Consider the case of identifying spam among a set of tweets about a particular hashtag 
stream or keyword search like #metoo or #trump. Getting the user information for every 

Fig. 1   Different types of content

https://help.twitter.com/en/rules-and-policies/twitter-rules
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post is impractical for these frequently used hashtags that have thousands of posts daily. 
As such, we focus on building models that only use post content, not user information.

In this paper, our primary goal is to identify polluted information, specifically traditional 
spam and context-specific spam using content-based features extracted from posts. Overall, 
our core contributions are as follows: (i) we formally define different forms of conversa-
tion pollution on social media, building a useful taxonomy of poor quality information on 
social media; (ii) we present a neural network model that identifies traditional and context-
specific spam in a low resource setting and show that using a language model within the 
neural network performs better than classic state-of-the-art machine learning models; (iii) 
we generate and make available three Mechanical Turk data sets in three different con-
versation domains  (https://​github.​com/​GU-​DataL​ab/​conte​xt-​spam), show the existence of 
context-specific spam on Twitter, and how the proportion of spam varies across conversa-
tion domains; (iv) we demonstrate the performance impact of imbalanced training data on 
Twitter and show that using a neural network model is promising in this setting; and (v) we 
show that classic machine learning models are more robust to cross-domain learning when 
the training data are balanced, but when the training data are heavily imbalaced, a neural 
network with a cross-domain pre-trained language odel leads to better performance than 
classic models, but still not as strong performance as domain-specific training because of 
the presence of context-specific spam.

The remainder of this paper is organized as follows. We present our proposed conversa-
tion pollution taxonomy in Sect. 2. Next, we discuss the related work in Sect. 3. Section 4 
describes our experiment design for the spam learning task. Our data sets and the labeling 
task are described in Sect. 5. Then, in Sect. 6, we present our empirical evaluation, fol-
lowed by conclusions in Sect. 7.

2 � Conversation pollution taxonomy

Researchers are investigating different types of conversation pollution. Kolari et al. cre-
ate a taxonomy of spam across the Internet  (Kolari et  al., 2007). The focus of their 
taxonomy is on different ways to distribute spam, e.g. email, IM, blogs, etc. We present 
a taxonomy that groups different types of conversation pollution, where spam is one 
form of pollution. Figure 2 shows this taxonomy. There are three high level categories 
of conversation pollution: deceptive/misleading (false information), abusive/offensive 

Fig. 2   Different forms of conversation pollution

https://github.com/GU-DataLab/context-spam
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(threat), and persuasive/enticing (spam). False information is a post containing inac-
curate content, including different forms of misinformation and disinformation. Threat 
content is designed to be offensive and/or abusive (Wu et al., 2019). Finally, spam con-
tent attempts to persuade and entice people to click, share, or buy something. We divide 
spam into two categories, traditional spam and context-specific spam.

In this paper, we focus on spam-related pollution. Specifically, we introduce a new 
form of spam that we refer to as context-specific spam. Context-specific spam is any 
post that is undesirable given the context/theme of the discussion. This includes con-
text-irrelevant posts like irrelevant advertising. For the purposes of this paper, we con-
sider advertising to be posts that are intended to promote a product or service. Irrelevant 
advertising is advertising that is not related to the discussion domain.

More formally, let T = {t1, t2, ..., tn} be a tweet database containing n tweets. Different 
subsets of tweets are related to different thematic domains, Di and T = {Di ∪ Dj ∀i, j} . 
Let S be a set of traditional spam tweets such that S ⊂ T  . While traditional spam is 
domain-independent, spam can be specific to a domain. We define context-specific spam 
Ci as spam that is specific to a thematic domain Di , ( Ci

⊂ Di ). An example of Ci is irrel-
evant advertising.

To provide more insight, suppose that we are analyzing tweets about an election, i.e. the 
domain of conversation is elections ( Di = election ). Table 1 shows hypothetical, example 
tweets. The green tweets are examples of domain-relevant tweets. Given the domain, an 
advertisement about diapers (row 2) is irrelevant and therefore context-specific spam ( Ci ). 
However, a tweet promoting a candidate’s campaign (row 3) is an advertisement relevant to 
the domain ( Ci ∪ S ) and therefore is not considered spam.

The goal of this paper is to provide researchers with automated approaches to remove 
irrelevant content from a particular domain of Twitter data. To that end, we propose and 
evaluate methods to identify S ∪ Ci (all spam) for different domains Di in a low resource 
setting, i.e. limited training data, and different levels of imbalanced training data. Both 
these constraints are important because of the cost associated with labeling training data 
and the imbalance of these training data sets with respect to spam. It is not unusual for less 
than 10% of the training data to be labeled as traditional spam or context-specific spam.

3 � Related work

The definition of conversation pollution, especially on social media, is ambiguous at best. 
We divide this section into two subsections, focusing on different types of pollution detec-
tion. While methods for identifying content-based spam on Twitter are emerging, to the 

Table 1   Examples of hypothetical tweets for the election domain

Tweet content Type

Smith is my favorite candidate #election2020 Content-rich
Want cheap diapers for your kids? Click < URL >#election2020 Context-specific spam
Order T-shirts from Alice for President Shop. Click < URL >#election2020 Context-specific ad
FREE porn pics! Click < URL > #election2020 Traditional spam
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best of our knowledge, none of the state-of-the-art works include context-specific spam 
detection (Kaur et al., 2016; Wu et al., 2018).

3.1 � Junk email detection

Early spam detection work focused on junk email detection (Sahami et al., 1998; Sasaki 
and Shinnou 2005; Wu 2009; Mantel and Jensen 2011; Cormack et al., 2007). One of 
the early and well-known approaches for filtering junk emails was a Bayesian model 
(Sahami et al., 1998) that used words, hand-crafted phrases, and the domains of senders 
as features. Unlike our study, these works use sender information, in addition to mes-
sage content, to perform classification.

3.2 � Spam detection on Twitter

Identifying poor quality content on social media is more challenging because the 
domain is broad and there are many different social media platforms with different types 
of posts. To further exacerbate the problem, the number of types of spam keeps increas-
ing. Traditionally, most spammers were direct marketers trying to sell their products. 
More recently, researchers have identified spammers with a range of objectives (Fer-
rara et al., 2016; Jiang et al., 2016), including product marketing, sharing pornography, 
and influencing political views. These objectives vary across social media platforms. 
Since our work focuses on Twitter spam, we focus on literature related to spam detec-
tion on Twitter  (Wu et  al., 2018). We pause to mention that Twitter itself detects and 
blocks spam links by using Google SafeBrowsing (Chen et al., 2015), and more recently 
using both user and available content to identify those spreading disinformation (Safety 
2020). This overall approach focuses on context-independent spam and is designed to be 
more global in nature. While an important step, for many public health and social sci-
ence studies using Twitter data, not removing context specific spam may lead to skewed 
research results.

Most research focuses on detecting content polluters (Lee et al., 2011; Wu et al., 2017; 
El-Mawass and Alaboodi 2016; Park and Han 2016; Hu et al., 2014), i.e. individuals who 
are sharing poor quality content. Lee et  al. (2011) studied content polluters using social 
honeypots and grouped content polluters into spammers and promoters. Wu et al. use dis-
criminant analysis to identify the key post in order to identify content polluters (Wu et al., 
2017). They define content polluters as fraudsters, scammers, and spammers who spread 
disinformation. (El-Mawass and Alaboodi (2016) used machine learning to predict Ara-
bic content polluters on Twitter and showed that Random Forest had the highest F1-score. 
Our work differs from these works because we focus on the identification of pollution at 
the post level as opposed to polluters at the individual level. We are also interested in low 
resource settings where the amount of training data available is limited.

Studies focusing on spammer/bot detection tend to use both content-based and user-based 
information (Wu et al., 2018; Wang 2010; Mccord and Chuah 2011; Chen et al., 2015; Lin 
et al., 2017; Wei 2020; Hu et al., 2013; Brophy and Lowd 2020; Jeong and Kim 2018) and 
the best approaches achieve a precision of around 80% for training and testing on balanced 
datasets. Those approaches can be used when both content and user information are avail-
able. As mentioned in Sect. 1, there are scenarios where this is impractical. For example, hun-
dreds of thousands or millions of users may post using a specific hashtag (#covid) or keyword 
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(coronavirus), making it impractical for a researcher using those data streams to collect user 
information from the Twitter API. To further complicate the situation, spam is not only gener-
ated by bots. It is also produced by humans. People and companies can post advertisements or 
links to low-quality content. Therefore, focusing on a strategy centered on bot detection will 
miss some types of spam.

There are also studies on spam (as opposed to spammer) detection on Twitter (see (Kaur 
et al., 2016; Wu et al., 2018) for more detailed surveys). Wang proposes using a Naive Bayes 
model that detects spam with graph-based features (Wang 2010). The study shows that most 
spam tweets contain ‘@’ or mentions and links. Since that early work, multiple studies have 
shown that Random Forest is effective for building models for detecting spam (Mccord and 
Chuah 2011; Santos et al., 2014; Chen et al., 2015; Lin et al., 2017). Chen et al., compare six 
algorithms that use both content-based and user-based features (Chen et al., 2015). They found 
that Random Forest was their best classifier, even when the training data was imbalanced. 
Detecting spam based solely on content is more challenging because of the lack of user infor-
mation (Wang 2010). Santos et al. use traditional classifiers with Bag-of-Words (BoW) feature 
to detect spam using only content-based information (Santos et al., 2014). They also found 
that the Random Forest model outperformed other classic models. Our work differs from all 
this previous work since we want to detect both traditional and context-specific spam. We are 
also comparing classic machine learning and neural network models, conducting our analy-
sis on three different domains on Twitter, and considering the impact of limited, imbalanced 
training data.

4 � Experiment design for spam learning task

Our goal is to build a generalizable model for detecting spam on Twitter. In doing so, we 
investigate the following questions: (1) What are the best classic machine learning models for 
identifying spam on Twitter? (2) Can neural networks that incorporate a language model per-
form better than classic machine learning models? (3) How much does training set imbalance 
affect performance? (4) Are models built using one domain of Twitter training data transfer-
able to another Twitter domain without customization? The last question is particularly impor-
tant in cases when there are a small number of labels pertaining to the spam category.

Toward that end, this section describes the experimental design for understanding how dif-
ferent classic machine learning (Sect. 4.1) and neural network (Sect. 4.2) models perform and 
how transferable the models are (Sect. 4.3).

4.1 � Classic machine learning models

We first evaluate classic machine learning models for this task given past good performance 
on variants of this task (Kaur et al., 2016; Wu et al., 2018; Santos et al., 2014; Hu et al., 2013, 
2014). We build traditional models for each domain of interest. Figure 3 shows the details 
of our experimental design for generating ground truth labeled data (discussed in detail in 
Sect. 5), preprocessing, feature extraction, modeling and evaluation. The labeled ground truth 
data are inputs into the process. The data are preprocessed using simple, well-established 
cleaning methods.
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4.1.1 � Feature extraction

We consider four different types of features that are widely used in spam detection 
research (Wu et al., 2018) including entity counts, bag-of-words (BoW), word embeddings, 
and TF-IDF score. Features are mixed and matched for different models (Fig. 3).

4.1.2 � Entity count statistics

Previous spammer detection research has incorporated different entity counts statistics 
(Chen et al., 2015; Brophy and Lowd 2020) such as the number of retweets, the number 
of friends, etc. However, since our focus is content-based analysis, we build features 
using only the tweet content. Entity count statistics features we consider include text 
length, URL count, mention count, digit count, hashtag count, whether it is a retweet, 
and word count after URLs are removed.

4.1.3 � Bag‑of‑Words (BoW)

Santos et al. (2014) show that Random Forest with BoW performed the best in content-
based spam detection so we also use word frequency counts as features.

Fig. 3   Classic machine learning models methodology overview
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4.1.4 � Word embeddings

There are several embedding techniques for word representation. We use GloVe (Pen-
nington and Socher 2014)—the most widely-used pre-trained word2vec for Twitter—to 
represent each word and then concatenate them as a feature vector for each sentence in 
a tweet.

4.1.5 � TF‑IDF

A classic information retrieval technique for identifying important words is computing 
the term frequency-inverse document frequency (TF-IDF) scores. We consider a variant 
of the BoW model where we use the TF-IDF weight instead of the word frequency to 
represent the words in each tweet.

4.1.6 � Machine learning algorithms

We build various classic machine learning models, including Naive Bayes (NB), k-Near-
est Neighbors (kNN), Logistic Regression (LR), Support Vector Machine (SVM), Deci-
sion Tree (DT) and Random Forest (RF). Given the high dimensionality and sparse feature 
space, we also evaluate using Elastic Net (EN) since it has been shown to work well for 
spammer detection by making the sparse learning more stable (Hu et al., 2013, 2014). All 
the models are trained using different combinations of features described above. We build 
and test each model for each domain.

4.2 � Exploiting neural language models

Given the success of many neural models for text classification tasks using Twitter, we 
propose using a classic neural model that incorporates domain specific knowledge through 
the use of a language model. We hypothesize that using a language model specific to a 
particular domain will improve the accuracy of our spam detection models in that domain, 
providing necessary context. Toward that end, we incorporate a well-known neural lan-
guage model, BERT (Devlin et al., 2018) and fine-tune it for this task. BERT has been used 
successfully for other learning tasks, including sentiment analysis (Munikar et al., 2019), 
natural language inference  (Hossain et al., 2020) and document summarization  (Cachola 
et al., 2020).

Our neural model begins by fine-tuning BERT to build a domain specific language 
model (LM) using unlabeled tweets from the domain. For example, if we are interested in 
gun violence, we would use a large number of tweets that discuss gun violence to fine-tune 
BERT. BERT uses a bidirectional transformer  (Vaswani et  al., 2017) and its representa-
tions are jointly conditioned on both the left and right context in all layers. The output from 
the language model is input into a single layer neural network for the classification task. 
The architecture of our neural model is shown in Fig. 4. We used the BERT tokenizer to 
tokenize a sentence into a list of tokens as input for BERT. After the multi-layer of trans-
formers, we used a dropout rate of 0.1 in order to avoid over-fitting. We then fed the output 
vectors into a single-layer of neural network with softmax.

The classifier is a single layer neural network as shown in Eq. 1, where y represents the 
output vector from the classifier, W is a weight vector randomly initialized, x represents a 
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contextual representation vector from BERT after the dropout layer (see Fig. 4), and b is a 
bias vector.

The weights of the classifier are updated using the cross-entropy loss function shown in 
Eq. 2. The class label C is obtained using the softmax function (see Eq. 3) to normalize 
the values of the output vector y from the classifier in order to obtain a probability score 
for each class. All BERT-based models are trained using the Adam optimizer (Kingma and 
Ba 2014) with learning rates of 1e − 6 , 5e − 6 , 1e − 5 , and a fixed batch size of 32. The 
models are fine-tuned with a maximum epoch of 20 with early stopping. We constructed a 
language model for each domain and test the model in the same domain.

(1)y = WxT + b

(2)Loss(y, class) = −y[class] + log

(

∑

j

exp (y[j])

)

(3)C = argmax
j

(softmax(y))

Fig. 4   The structure of our neural 
network model
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4.3 � Model transferability

One of our goals is to understand the strengths and limitations of our models for different 
domains on Twitter. For example, soccer is a different domain from politics. Toward that 
end, we design an experiment to measure how transferable each model built in one domain 
is to other domains. Figure 5 shows our experimental framework. First, we train and test 
models within the same domain independently. We also train models in one domain and 
then test them across other domains to determine cross-domain generalizability and trans-
ferability of spam detection models on Twitter. In the case of the neural network model, we 
use a language model built across all the domains to determine its effectiveness in settings 
where limited ground truth data exists and the labeled ground truth data are imbalanced. 
We surmise that cross-domain learning will be beneficial for identifying traditional spam, 
but not be as accurate for context-specific spam.

5 � Labeling spam in multiple twitter domains

The need for ground truth data is two-fold. First, we need to determine whether or not 
context-specific spam is present and identifiable in tweets. Second, if it is present and iden-
tifiable, we need ground truth data to help build a reliable, predictive model. Since we are 
interested in comparing models on different domains of Twitter data, we also collected 
ground truth data on more than one domain. This section begins by describing the different 
data sets we use for our empirical evaluation (Sect. 5.1). We then explain how we gener-
ated the ground truth data (Sect. 5.2) and the characteristics of the spam in the ground truth 
data for each domain (Sect. 5.3).

Fig. 5   The high-level process to test model transferability
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5.1 � Data description

We use three different domains of Twitter data for our empirical evaluation: meToo (a 
social movement focused on tackling issues related to sexual harassment and sexual assault 
of women), gun-violence, and parenting. The meToo data set was constructed by collecting 
tweets that include #meToo through the Twitter API. This data set contains over 12 million 
tweets from October 2018 to October 2019, the first year of the larger online movement. 
The gun-violence data set was collected using keywords and hashtags related to gun-vio-
lence through the Twitter API. Keywords used include guns, suicide, gun deaths, etc. We 
used data from 2017, approximately 22 million tweets. The parenting data set was con-
structed by collecting the tweets of 75 authorities who primarily post and discuss parent-
ing topics and collecting tweets using parenting-related keywords and hashtags. Example 
authorities include parenting magazines and medical sites. For this data set, we collected 
over 200 million tweets in 2019. As is evident from the descriptions, these data sets cover a 
wide range of topics.

5.2 � Ground truth data collection

We collected ground truth data by setting up multiple Amazon Mechanical Turk (MTurk) 
tasks, one for each domain of interest. MTurk is an established approach for labeling tasks 
(Buhrmester et al., 2011). We ask three raters to answer three questions per tweet:

–	 Question 1: Is the tweet about domain Di?
–	 Question 2: Is the statement an advertisement?
–	 Question 3: Is the statement spam?

For each question, we have definitions and examples to help raters answer the questions 
accurately. To make sure we separate advertising from traditional spam, in the definition 
of spam included for the workers, we explicitly state that advertising is not spam. We say 
that spam asks people for their personal information, contains harmful or inappropriate 
content/links including malware, phishing, or pornography, or is not understandable, e.g. 
not a complete sentence, not human language, etc. For this study, context-specific spam is 
limited to irrelevant advertising. Therefore, if Question 1 is false and Question 2 is true, 
we consider that context-specific spam. If Question 3 is true, we consider that traditional 
spam. Setting up the questions in this way allows us to see the prevalence of traditional and 
context-specific spam in the ground truth data sets.

From each of the data sets, we randomly sample 5000 English tweets, ensuring that 
there are no duplicates and that each tweet contains textual content after removing URLs. 
We also ensure that each tweet belongs to only one domain (either parenting, metoo or 
gun-violence). We recognize that tweets may belong to multiple domains. Here, we focus 
on single domain tweets and leave multi-domain posts for future work. Each tweet is 
labeled by three workers. We compute Krippendorff’s alpha scores  (Krippendorff 2011) 
and conduct agreement analysis [1] to determine the quality of the labeling for the three 
different-domain tasks. We compute both task-based and worker-based agreement scores 
and average them among tasks and workers. The task-based score looks at every tweet and 
every rater who labeled it. The majority vote is determined and divided by the number of 
answers (this is the same as the number of raters in our study). The worker-based score is 
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the total number of tasks a worker has a majority vote divided by the total number of tasks 
the worker completed. We exclude workers who complete only one task.

5.3 � Data labeling results

Table 2 shows the scores for Krippendorff alpha, task agreement and worker agreement 
for each data set. By traditional standards, the alpha agreement is low (below 0.67) for 
five of the label categories. This results because Krippendorff’s alpha relies on vote pro-
portions and some of the label categories are heavily imbalanced. For example, in the 
parenting data set, there are only 12 tweets that are labeled as traditional spam and 4988 
are labeled as not traditional spam. In this domain, advertising is much more prevalent, 
i.e. context-specific spam. These types of large imbalances reduce the overall average. 
Analyzing the task-based scores, we find that they are higher than 0.85 for all the ques-
tions across all three data sets. The worker-based scores vary more from 0.79 to 0.99, 
but in general, have a high agreement. In the few places where there is higher disagree-
ment, the text content is more ambiguous, and workers chose the “uncertain” option 
sometimes. Overall, the strong agreement across both the tasks and workers give us 
confidence using these data to build our models.

Table 2   The agreement scores 
fot the MTurk labeling

Dataset Question Alpha Task-based Worker-based

Parenting is_parenting 0.6809 0.9072 0.8701
is_ad 0.6720 0.8582 0.8191
is_spam 0.3451 0.9717 0.8571

MeToo is_metoo 0.5324 0.8841 0.8830
is_ad 0.4607 0.9545 0.9384
is_spam 0.4155 0.9649 0.9498

Gun-violence is_gun_violence 0.7124 0.9848 0.9903
is_ad 0.5400 0.9457 0.9290
is_spam 0.7024 0.8702 0.7884

Fig. 6   The distribution of conversation pollution in our manually annotated data
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One interesting, but unexpected finding, is the difference in the fraction of spam 
across domains (see Fig. 6). The parenting-domain data set is the most balanced distri-
bution between content-rich domain tweets and spam-related pollution tweets consisting 
of 2,485 spam tweets (12 traditional and 2,473 context-specific spam) and 2,515 domain 
tweets. While at first, this may seem surprising, because some of the authorities are also 
traditional magazines, e.g. Parents or Baby.com, they post about products – some of 
which are relevant to the parenting domain, e.g. diapers, and some of which are not, e.g. 
iPhones. For the meToo data set, the distribution is highly imbalanced between content-
rich domain tweets and spam tweets, with only 281 spam tweets (118 traditional and 
163 context-specific spam) and 4,719 domain tweets. The gun-violence data set is rea-
sonably balanced between spam and non-spam content, consisting of 2,704 spam tweets 
(2,559 traditional and 145 context-specific spam) and 2,296 domain tweets. The high 
level of traditional spam results from the high level of abusive, vulgar/inappropriate lan-
guage in this data stream.

Across these data sets, we have varying distributions of spam and a varying propor-
tion of traditional spam and context-specific spam. The parenting domain has substan-
tially more context-specific spam when compared to the other two domains. In contrast, 
gun-violence has significantly more traditional spam than context-specific spam. Finally, 
the meToo data set has a more even distribution of context-specific and traditional spam 
but has a much smaller percentage of spam overall. These stark differences highlight the 
importance of capturing these different forms of spam. Ignoring one of them may lead to a 
substantial loss of information about low-quality content.

6 � Empirical evaluation

Our empirical evaluation is organized as follows. We begin by explaining the implementa-
tion details of experiments (Sect. 6.1). Next, we present an in-domain analysis (Sect. 6.2) 
where models trained on data from a given domain are used to predict spam in the same 
domain. We also consider different levels of imbalance in the training data to determine the 
smallest portion of the context-specific needed in order to train a reliable classifier. Next, 
we perform a cross-domain analysis (Sect. 6.3), where models trained on one domain are 
used to predict spam in other domains. These experiments are predicting spam (traditional 
and context-specific) vs. no spam. We then detect traditional and context-specific spam 
separately using the neural network model and show that we can effectively detect both 
types of spam (Sect. 6.4).

6.1 � Implementation details

We now present our implementation details. All experiments were conducted using Python 
3. To accelerate the preprocessing and feature extraction process, we used Apache Spark 
v2.4.0  (Spark 2018), taking advantage of multiple-core processing instead of using one 
single-core machine. The dimensions of features vary depending upon which features were 
extracted (Sect. 4.1) and the training data set (Sect.  5). The sample dimension numbers1 

1  The number of feature dimension is higher without preprocessing.
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include 7 for Entity Count Statistics, 7724 for Bag-of-Words, 1075 to 86002 for Word 
Embeddings and 5221 for TF-IDF. Processed features are then merged onto one single 
machine generating the final models. We use a single machine for the final model genera-
tion because some of the machine learning algorithms are not designed for a distributed 
environment and it is also easier for reproducibility to use a well-known package. Specifi-
cally, we use scikit-learn v0.22.1 (Pedregosa et al., 2011) for the modeling. For the neural 
language models (Sect. 4.2), we implemented both the language models and neural clas-
sifiers using PyTorch v1.4.0 (Paszke et al., 2019). All the language models and classifiers 
were trained using a Tesla T4 GPU.

For our different learning models, we conducted a sensitivity analysis using a 
grid-search on influential parameters. The best parameters varied by classifier, data 
set, and feature sets. They include k = {5, 7} for kNN, C = {1, 10} for LR and SVM, 
criterion = {entropy, gini} for DT, n_estimators = {50, 100, 200} for RF, alpha = 0.2 and 
l1_ratio = 0.5 for EN and hidden_layer_sizes = {100, 200} for NN. The results presented 
in this paper use the optimized parameters for each model.

Table 3   Experimental results of spam pollution detection on each data set

The highest scores for each training data set are bolded

Training set Feature Best classifier F1 (10-fold) Accuracy Precision Recall F1 (test)

Parenting Counting RF 0.6634 0.6740 0.6582 0.7240 0.6895
Counting + GloVe RF 0.7090 0.7140 0.7004 0.7480 0.7234
Counting + BoW RF 0.7942 0.8040 0.7857 0.8360 0.8101
Counting + TF-IDF RF 0.8040 0.8020 0.7849 0.8320 0.8078
Counting + TF-IDF NN 0.7530 0.7420 0.7318 0.7640 0.7476
BERT-parenting NN 0.8237 0.8320 0.8120 0.8640 0.8372

MeToo Counting RF 0.6273 0.7679 0.9412 0.5714 0.7111
Counting + GloVe LR 0.6861 0.8393 1.0000 0.6786 0.8085
Counting + BoW LR 0.6945 0.8393 0.9524 0.7143 0.8163
Counting + TF-IDF RF 0.7603 0.8571 1.0000 0.7143 0.8333
Counting + TF-IDF NN 0.6274 0.8036 1.0000 0.6071 0.7556
BERT-metoo NN 0.7766 0.8929 1.0000 0.7857 0.8800

Gun-violence Counting SVM 0.7058 0.5020 0.5010 0.9960 0.6667
Counting + GloVe SVM 0.7058 0.5020 0.5010 0.9960 0.6667
Counting + BoW RF 0.8166 0.8060 0.7703 0.8720 0.8180
Counting + TF-IDF RF 0.8500 0.8620 0.8364 0.9000 0.8671
Counting + TF-IDF NN 0.8211 0.7780 0.7747 0.7840 0.7793
BERT-gun-violence NN 0.8669 0.8800 0.9025 0.8520 0.8765

2  GloVe embeddings include different dimension numbers from 25 dimensions to 200 dimensions. We con-
ducted a sensitivity analysis and present the results using the best parameters.
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6.2 � Within domain analysis

In this experiment, we compare classic machine learning models and a neural network 
model for predicting spam within a single domain, i.e. the training set and the test set are 
sampled from the same conversation domain. The gun-violence and parenting data sets 
are split into a 90/10 train/test split. Because the meToo data set only contains 281 spam 
tweets, we use 90% of the spam tweets in the training set (253 tweets) and have a small, 
balanced test set containing 28 spam and 28 domain tweets. Experiments were conducted 
and validated using 10-fold cross-validation on training sets and then evaluated on hold-out 
test sets. All baseline classifiers were constructed using different combinations of features 
as described in Sect. 4. The language model is pre-trained on 500,000 unlabeled domain-
specific tweets.

Table 3 shows experimental results for both the training and testing data sets for detec-
tion of all spam - traditional and context-specific. Only the best classifier in each feature 
group is presented for ease of exposition. We also show the results of the vanilla neural 
network, i.e. a neural network without the pre-trained language model, to demonstrate the 
influence of the language model. We use the Counting+TF-IDF feature combination for 
the vanilla neural network since it tends to perform the best among four feature sets based 
on F1 (10-fold). The F1 scores are presented for both the training and test experiments. 
Accuracy, precision and recall are only shown for the test experiments. The best scores for 
each domain are highlighted in the table.

Focusing on the F1 scores from the 10-fold cross-validated training sets, the table shows 
that the neural network models with the pre-trained language models outperform all the 
baselines by a small amount, 1 to 2% for every domain. Similarly, focusing on the test F1 
score, they outperform all the baselines by 2%, 5%, and 1% for the parenting, meToo, and 
gun-violence data sets, respectively. Random forest is the best classic machine learning 
model across domains. In general, for classic models, using the entity counting and TF-IDF 

Table 4   Different distributions of spam pollution in the meToo domain

The highest scores for each split ratio are bolded

% of spam Feature Best classifier Accuracy Precision Recall F1

5vs95 Counting RF 0.9676 0.7526 0.5445 0.6273
Counting + GloVe LR 0.9703 0.7461 0.6363 0.6861
Counting + BoW LR 0.9711 0.7618 0.6402 0.6945
Counting + TF-IDF RF 0.9780 0.8598 0.6874 0.7603
BERT-metoo NN 0.9788 0.8369 0.7309 0.7766

10vs90 Counting RF 0.9495 0.8237 0.6442 0.7166
Counting + GloVe LR 0.9569 0.8260 0.7292 0.7701
Counting + BoW LR 0.9587 0.8094 0.7754 0.7887
Counting + TF-IDF RF 0.9658 0.9216 0.7223 0.8061
BERT-metoo NN 0.9680 0.9058 0.7651 0.8240

20vs80 Counting RF 0.9196 0.8532 0.7294 0.7805
Counting + GloVe LR 0.9331 0.8642 0.7937 0.8248
Counting + BoW LR 0.9487 0.8821 0.8615 0.8696
Counting + TF-IDF LR 0.9437 0.8922 0.8185 0.8510
BERT-metoo NN 0.9502 0.8975 0.8507 0.8713
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weighted word features performs better than other feature combinations. In all cases, entity 
counting statistics plus word features perform better than entity counting features alone. 
These findings are consistent with previous research (Santos et al., 2014; Wu et al., 2018). 
We see that the vanilla neural model without pre-training using a language model performs 
9% to 12% worse on the test data sets, indicating the importance of pre-training.

Exploring this imbalance more, we consider the trade-off between a larger imbalance 
and a larger training set versus a smaller imbalance and a smaller training set. Beginning 
with the meToo data set, we adjust the distribution of the meToo training data to analyze 
different levels of imbalance. We consider three split distributions: using all the data (95/5 
split), using 2529 domain tweets and 281 spam tweets (90/10 split), and using 1124 domain 
tweets and 281 spam tweets (80/20 split). We show the 10-fold cross-validation results for 
these three split distributions in Table 4. In this resource-constrained, highly imbalanced 
training data scenario, logistic regression and random forest still perform better than other 
classic machine learning models on all the different splits, while neural network models 
still have the highest F1 scores. Even though this is not surprising, it is still important to 
note that as the imbalance decreases by 5%, the F1 score increases 3 to 5%.

To see how generalizable this finding is, or if it is unique to the meToo domain, we cre-
ate two data sets with an 80/20 split for the parenting and gun-violence domains. We sam-
ple 281 spam tweets and 1124 domain tweets in order to directly compare to the meToo 
results in Table 4. Table 5 shows the comparison of results from the 10-fold cross-valida-
tion on the imbalanced data. The first observation is that the parenting and gun-violence 
F1 scores are significantly lower - the lack of examples reduces the scores by 19% and 
17% respectively for the top models, and has an even greater impact on many of the classic 
models (see 10-fold on Table 3). Similar to the previous results, we see that the neural net-
work model still outperforms other models by 2 to 23%. These results indicate that spam 
within each domain has sufficient variability and that having only 20% spam in the training 
data may not lead to acceptable results for certain domains.

Table 5   Comparison of 10-fold results on 80/20 imbalanced training data

The highest scores for each training data set are bolded

Dataset Feature Best classifier Accuracy Precision Recall F1

Parenting Counting DT 0.7502 0.3936 0.4239 0.4022
Counting + GloVe DT 0.7659 0.4263 0.4558 0.4369
Counting + BoW LR 0.8477 0.7337 0.3882 0.5038
Counting + TF-IDF LR 0.8271 0.5843 0.4700 0.5177
BERT-parenting NN 0.8683 0.7271 0.5691 0.6310

MeToo Counting RF 0.9196 0.8532 0.7294 0.7805
Counting + GloVe LR 0.9331 0.8642 0.7937 0.8248
Counting + BoW LR 0.9487 0.8821 0.8615 0.8696
Counting + TF-IDF LR 0.9437 0.8922 0.8185 0.8510
BERT-metoo NN 0.9502 0.8975 0.8507 0.8713

Gun-violence Counting DT 0.6932 0.2426 0.2457 0.2426
Counting + GloVe DT 0.7024 0.2992 0.3597 0.3242
Counting + BoW LR 0.8199 0.5966 0.3240 0.4184
Counting + TF-IDF LR 0.8142 0.5496 0.4096 0.4681
BERT-gun-violence NN 0.8890 0.7663 0.6688 0.7010
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Fig. 7   F1 scores from different feature sets and the best classifiers trained and tested across different data-
sets
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6.3 � Cross‑domain analysis

We next determine how well models trained in one domain work in another domain for 
the spam detection task. Figure 7 shows the F1 score of the best classifiers trained on one 
domain and tested on other domains. The x-axis shows each model and the y-axis shows 
the F1 score. It is no surprise that training and testing using the same domain always per-
forms better than building the model in one domain and testing it on different domains. But 
there are a few other interesting takeaways. First, the classic models show more robustness 
compared to the neural network models. While the neural network always has the high-
est F1 score when the test data set is within the same domain, its drop in performance on 
other test data sets is worse than some of the classic models. The most stable model across 
test sets is random forest while using Counting+GloVe, followed by Counting+TF-IDF. 
We hypothesize that because the neural network model is designed to incorporate context 
representations more deeply, that changing contexts impacts its performance more signifi-
cantly. The other interesting finding is that the most robust training set is the gun violence 
one. This makes sense because it is the one with the highest fraction of traditional spam. 
In other words, cross-domain analysis is most beneficial when there is a large amount of 
traditional spam to learn from. Based on these two findings, we wanted to determine if we 
could improve the cross-domain performance of the neural model by pre-training the lan-
guage model with data from all three domains.

To answer this question, we sampled 500,000 unlabeled tweets from each domain and 
combined them to fine-tune the language model (1.5M unlabeled tweets in total). We 
trained and tested the models for each domain. The results are shown in Table 6. The first 
two columns show the training and test data sets. The next column shows the F1 score of 
the best classic classifier, and the last two columns show the F1 score when the neural 
network model is pre-training on a language model from the same domain (LM-same) and 
when it is training on a combined domain language model (LM-combined). The underlined 
numbers are the best F1 scores using different models on the test sets. We see that the clas-
sic models are generally better when there is a difference in the domain. This is consist-
ent with our results in the previous analysis. In all cases, a language model built using all 
of the domains performs worse or marginally better than pre-training a domain-specific 
language model. In other words, it is better to optimize for a specific domain by using 

Table 6   Comparison of F1 
scores from classical models and 
language models trained from 
same-domain or combined tweets

The best performing classifier is underlined

Train Test Best 
classic 
classifier

LM-same LM-combined

Parenting Parenting 0.8101 0.8372 0.8370
MeToo 0.7018 0.5909 0.5500
Gun-violence 0.6398 0.2492 0.1958

MeToo Parenting 0.6712 0.6791 0.7158
MeToo 0.8571 0.8800 0.8333
Gun-violence 0.6753 0.4237 0.4153

Gun-violence Parenting 0.6721 0.6684 0.6702
MeToo 0.6842 0.6747 0.6753
Gun-violence 0.8493 0.8941 0.8833
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domain-specific language model pre-training than it is to pre-train across all the domains, 
assuming the size of data for pre-training is fixed. This is an unexpected finding. One 
would expect that pre-training across all the domains would improve the F1 scores when 
the training examples come from one domain and the testing examples from another. This 
was not the case - the variability of type of spam, i.e. the different proportions of traditional 
and context-specific spam (see Fig. 6) and their variation in language, impacted the overall 
performance. Therefore, building a general model for spam is complex. We will explore 
this more in the next set of experiments.

6.4 � Traditional vs. context‑specific spam

While it is important to be able to identify all spam, the last analysis highlighted the 
need to identify a specific type of spam. In this experiment, we analyze the ability of the 
neural network models to detect each type of spam separately. We only include metoo 
and gun-violence data in the traditional spam experiment since the parenting data con-
tains too few traditional spam tweets. Due to the imbalanced data and to avoid overfit-
ting on deep neural networks caused by oversampling, for data sets with less than 20% 
spam, we reduced the training sample size to maintain a 20–80 spam, not-spam ratio. 
These experiments were done using 10-fold cross-validation. Table 7 shows the perfor-
mance of the neural network models on each task. Pollution spam is the combination of 
traditional and context-specific spam. While we also tested the classic models, we focus 
on the neural network models since they performed better than the classic models across 
all the data sets on this task. Tasks having a star next to their name indicate that we have 
reduced the sample size to maintain the 80-20 ratio. The results show that the neural 
network is able to perform well labeling context-specific and traditional spam on all of 
the domains with an F1 score of over 80%.

Table 7   Comparison of the neural network models performance on different types of spam

Data Set Task Accuracy Precision Recall F1

Parenting Traditional Spam – – – –
Context-specific Spam 0.8249 0.8306 0.8133 0.8210
Pollution Spam 0.8236 0.8172 0.8309 0.8237

MeToo Traditional Spam* 0.9305 0.8927 0.7621 0.8129
Context-specific Spam* 0.9656 0.9293 0.9015 0.9122
Pollution Spam* 0.9502 0.8975 0.8507 0.8713

Gun-violence Traditional Spam 0.8856 0.8911 0.8851 0.8879
Context-specific Spam* 0.9475 0.8784 0.8767 0.8707
Pollution Spam 0.8576 0.8834 0.8521 0.8669

Table 8   10-fold performances 
of our LM-combined models on 
spam from all domains

Task Accuracy Precision Recall F1

Traditional Spam 0.9085 0.9144 0.9026 0.9079
Pollution Spam 0.8566 0.8647 0.8479 0.8553
Context-Specific Spam 0.8623 0.8556 0.8533 0.8408
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A question that arises as we look at the results is whether or not a single spam 
detector can be designed to identify both traditional and context-specific spam across 
all domains. To test this, we also compare detectors built using traditional spam from 
all the domains to all the spam pollution, including context-specific spam, across all 
domains. We combined traditional spam from all three domains then undersampled 
non-spam tweets from all three domains equally. As a result, the models were evalu-
ated on training data sets containing 2689 traditional spam tweets and 2688 non-spam 
tweets (896 from each domain). For the pollution spam, regardless of type, we sam-
pled 5470 spam tweets and 5469 non-spam tweets (1823 from each domain). We also 
sampled 2252 context-specific spam tweets combined from three different domains and 
2253 non-spam tweets (751 from each domain) in order to evaluate how much the per-
formance drops if we use one classifier for detecting context-specific spam from three 
different domains. We evaluated our results using 10-fold cross-validation. The perfor-
mance results are shown in Table  8. We see that generalizing across traditional spam 
performs better (F1=0.91) than generalizing across both context-specific and traditional 
spam (F1=0.86). Generalizing across context-specific spam negatively impacts the 
overall performance (F1=0.84). There are 5 and 7% differences, which are significant 
for this task. Given this result and previous results, if there is sufficient spam of each 
type, then building models for each type individually can lead to higher F1 scores than 
building a model for both spam types together. However, in cases where the training 
data imbalances are large for the different types of spam combining them leads to rea-
sonable results.

7 � Conclusion

The goal of this paper is to demonstrate the existence of context-specific spam and build 
models to automatically identify both context-specific and traditional spam using only post 
data on Twitter. This is a challenging problem because: (1) what qualifies as spam varies 
across domains and as such, this task likely necessitates different models and new training 
data sets for each new domain; (2) labeling data is costly; and (3) different domains/themes 
of conversation on Twitter have different levels of spam, leading to different class balances 
in training data sets.

In this study, we define and show that context-specific spam exists on Twitter. We 
develop a broad conversation pollution taxonomy and place context-specific spam within 
that taxonomy. We experiment with different classic machine learning models and con-
struct different types of text features introduced in previous literature to determine the best 
content-based algorithms for identifying spam within a single domain of posts and across 
multiple domains. We find that the best classic models are logistic regression and random 
forest, a finding that is consistent with previous literature. We analyze using a neural net-
work model that incorporates a layer for a pre-trained language model and show that this 
model performs better than the best classic machine learning models and a basic neural 
network model when the training and testing data sets are within a single domain. How-
ever, when the training and test data sets are from different domains, the classic models are 
more robust than the neural models. Still, neither are as good as the domain-specific mod-
els because of the presence of context-specific spam. We also consider large imbalanced 
data sets and show that using a cross-domain pre-trained language model when the training 
data are small and imbalanced reduces the negative impact of the large imbalance.



2535Machine Learning (2022) 111:2515–2536	

1 3

Future work will look at other forms of conversation pollution to see if incorporat-
ing language models into neural networks can improve the state of the art. Other possi-
ble directions include considering related domains (e.g. the child behavior  domain as it 
is closely related to the parenting domain), quantifying the levels of spam present on dif-
ferent platforms, and developing strategies to intervene and remove or mark those that are 
detracting from the conversation.
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