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Abstract

There has been an increasing interest in developing embedding methods for heterogene-
ous graph-structured data. The state-of-the-art approaches often adopt a bi-level aggrega-
tion scheme, where the first level aggregates information of neighbors belonging to the
same type or group, and the second level employs the averaging or attention mechanism to
aggregate the outputs of the first level. We find that bi-level aggregation may suffer from
a down-weighting issue and overlook individual node information, especially when there
is an imbalance in the number of different typed relations. We develop a new simple yet
effective single-level aggregation scheme with infomax encoding, named HIME, for unsu-
pervised heterogeneous graph embedding. Our single-level aggregation scheme performs
relation-specific transformation to obtain homogeneous embeddings before aggregating
information from multiple typed neighbors. Thus, it emphasizes each neighbor’s equal
contribution and does not suffer from the down-weighting issue. Extensive experiments
demonstrate that HIME consistently outperforms the state-of-the-art approaches in link
prediction, node classification, and node clustering tasks.

Keywords Heterogeneous information network - Graph neural network - Graph
embedding - Infomax

1 Introduction

Graph structured data appear in many applications, including scientific discovery, social
network analysis, web searching (Inokuchi et al., 2003), recommender systems, and geo-
graphical data (Miller & Han, 2001). Many techniques have been successfully developed to
exploit both the information captured by the graph structure and the features of nodes and
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edges. Most notably, neural network approaches (Kipf & Welling, 2016; Hamilton et al.,
2017; Velickovi€ et al., 2017) and network embedding approaches (Perozzi et al., 2014;
Tang et al., 2015b; Grover & Leskovec, 2016; Wang et al., 2016; Cao et al., 2015; Goyal &
Ferrara, 2018) have continuously set the state of the art in a wide range of problems such as
node classification, graph classification, and link prediction. However, these methods men-
tioned above often share a common homogeneity assumption. Thus, they are not suitable
for graph data with various node types and edge types.

In real-world applications such as recommender systems or search engines, the graph
data usually contain multiple types of objects (nodes) and relations (edges). Although
it is reasonable to use a homogeneous graph learning model with node types and edge
types (relations) encoded into node attributes, doing so would compromise the smoothness
assumption inherent in many graph neural networks (NT & Maehara, 2019). In fact, node
types (and also edge types) are discrete values and often do not share the same structure as
node features. Therefore, heterogeneous graphs or in another name heterogeneous informa-
tion networks (HINs) (Sun & Han, 2013), can capture data in real-world applications more
truthfully than homogeneous graphs.

HINs are designed to capture rich semantics and comprehensive information. It is useful
for various data mining tasks, such as similarity search (Sun et al., 2011), recommenda-
tion (Liu et al., 2014), clustering (Sun et al., 2012), and classification (Kong et al., 2012).
The heterogeneity of HINs has posed a challenge in graph mining, that is how to learn
information from multiple types of nodes and edges. Since the state of the art for homo-
geneous graph representation learning is neural-based graph embedding methods (Perozzi
et al., 2014; Tang et al., 2015b; Grover & Leskovec, 2016; Wang et al., 2016; Cao et al.,
2015; Kipf & Welling, 2016; Velickovi¢ et al., 2017), it is natural to extend these methods
to HINs. Early works (Tang et al., 2015a; Dong et al., 2017) support multiple node types
and relations, but their node embeddings do not consider target relations. To address this
problem, some subsequent works (Ty et al., 2017; Shi et al., 2018b) implicitly consider the
target relation as edges or metapath vectors. However, they do not consider neighbor infor-
mation, which is crucial to the high performance as that in homogeneous graphs (Kipf &
Welling, 2016; Hamilton et al., 2017).

Most recently, graph neural networks designed for HINs extend ideas from the homo-
geneous data literature to efficiently solve problems of heterogeneous data — setting
state-of-the-art results . In general, these neural networks use an approach called bi-level
aggregation (Fig. 1c) in order to learn the heterogeneous node embeddings. The first level
aggregates information of neighbors with the same node types, relations, or meta-paths.
Then, the second level employs the averaging or attention mechanism to aggregate the out-
puts of the first level. Notable bi-level aggregations include RGCN (Schlichtkrull et al.,
2018), HAN (Wang et al., 2019), GATNE (Cen et al., 2019), and HGT (Hu et al., 2020b).

In this paper, we find that the bi-level approach may overlook individual node informa-
tion, especially when there is an imbalance in the number of different typed relations. Take
Fig. 1c as an example. Suppose there are many more user interactions than also-buy or
also-view relations, then the bi-level aggregation scheme tends to down-weight the infor-
mation from an individual user. This harms its performance for HIN embedding.

To further investigate this problem, we create a toy HIN, which consists of three types
of nodes, namely “user”, “item”, and “tag” and two relations, namely “user-item” (U-I) and
“item-tag” (I-T). To simulate preference of a user and features of an item, we randomly
assign four and three tags to each user and item, respectively. Then, we connect an item
and a tag if the item is associated with the tag; we add a link between a user and an item if
they have two associated tags in common with more than 25% probability. As a result, the
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(a) Amazon data example (b) Single-Level Aggregation (c) Bi-Level Aggregation

Fig.1 a A snapshot of the Amazon data where the node of interest is in a circle (the laptop); b Example
for our proposed the single-level aggregation scheme; ¢ Example for the bi-level aggregation scheme where
attention is required. Our model introduces relation projections and infomax learning, which replace the
attention mechanism in state-of-the-art approaches

(T;i’}'&‘) Link E’;ﬁd}‘f&’“ results U-1 (96.4%) LT (3.6%)
GraphSAGE 54.4 78.9
GAT 544 80.8
RGCN 54.7 62.6
HAN 52.1 58.6
HGT 52.0 79.8
HIME 55.6 89.4

graph contains 1,000 users, 100 items and 10 tags and 8,025 U-I edges and 300 I-T edges,
representing majority and minority relations, respectively. We generate 10 attributes of
nodes according to their associated tags and another 20 non-related noisy attributes accord-
ing to binary distribution. Table 1 shows the link prediction results of various methods
(the experimental settings are described in the experiment section). Surprisingly, we find
that bi-level aggregations (RGCN, HAN) are even inferior to traditional aggregations that
do not consider heterogeneity (GraphSAGE (Hamilton et al., 2017) and GAT (Velickovié
et al., 2017)), especially for I-T relation. The reason is that bi-level aggregations down-
weight U-I relation and get overfitted to the noisy features. More evidence, explanations,
and results on the down-weighting issue will be provided in the experiment section and
Sect. 4.3 Bi-level vs Single-level Aggregation.

In this paper, we propose a simple yet effective single-level aggregation scheme with
infomax encoding, named HIME, for unsupervised HIN embedding (Fig. 1b). The key
point is that we perform relation-specific transformation to obtain homogeneous embed-
dings before aggregating information from multiple typed neighbors. Thus, we emphasize
the “equal” contribution of each neighbor and thus will not suffer from the down-weighting
issue when there are imbalanced numbers of multiple typed relations. Our final embed-
dings are learned by a loss that encourages closeness between neighbors and an infomax
encoder (Fig. 2) to augment graph smoothing in the homogeneous embeddings. As shown
in Table 1, HIME outperforms the bi-level aggregation approaches, especially by a large
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Fig.2 Architecture of Heterogeneous Graph Infomax Encoding. Following Figure 1, nodes and relations on
the left are neighbors with correct relations (positive) to the center node, while nodes and relations on the
right are randomly sampled (negative)

margin for I-T relation, in the toy HIN. We do extensive experiments using ten bench-
mark datasets and demonstrate that HIME consistently outperforms the state-of-the-art
approaches in link prediction, node classification, and node clustering tasks. We show that
HIME is scalable and is able to deal with a large HIN containing 12.8 million edges.

Contribution—We make the following contributions: (1) To the best of our knowledge,
we are the first to raise the down-weighting issue of bi-level aggregations hindering their
effectiveness for HIN embedding and provide concretely empirical evidence. (2) We intro-
duce the heterogeneous single-level aggregation scheme with infomax embedding, a simple
yet effective HIN embedding method. (3) We show that our implementation outperforms
the latest HIN embedding models in many practical tasks.

2 Preliminaries

Definition 1 (Heterogeneous Information Network) A Heterogeneous Information Net-
work (HIN) is a tuple (G, 7, ¢, R), where G = (V, £) is an undirected graph with node set
V and edge set EC VX R XV, and R is a set of relations. 7 is the set of node types and
function ¢ : V' 7 maps a node to a single type. Optionally, some dataset include node
attributes X’ : V — RP, where p is the number of dimensions of the attributes. Note that
HINSs require |[7] > lor|R| > L
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Problem 1 (Relation-aware embedding for HIN) Given a HIN and a target relation t € R,
the problem is to generate low-dimensional representation vectors x; € R¢ for each node
v; € V according to the relation f and d < |V such that the representations preserve the
structure of the given HIN.

Our defined problem is common for unsupervised HIN embedding. To comprehensively
embed HIN, we do not look at a specific relation to generate the embedding, but to solve
the relation-aware embedding problem across all relations in a given HIN. The main chal-
lenge is maintaining a high-quality representation across relations while dealing with the
scalability issue. In the following, we first discuss related works on graph embedding and
HIN embedding.

2.1 Graph embedding

Recently, homogeneous graph embedding methods (Perozzi et al., 2014; Tang et al.,
2015b; Grover & Leskovec, 2016; Wang et al., 2016; Cao et al., 2015) have emerged as
scalable ways to learn low-dimensional vector representations for graph nodes. These
node representations encode semantic information transcribed from the graph and can be
used directly as the node features for downstream machine learning tasks. Traditionally,
node representation can be obtained by performing the eigendecomposition of Laplacian
matrix (Ng et al., 2002). However, due to the complexity of such operation, other heuris-
tics were proposed. The most notable is DeepWalk (Perozzi et al., 2014), where we gener-
ate a series of random walks to capture the graph semantic and learn node representations
using a skip-gram model (Mikolov et al., 2013). The applications of the skip-gram model
can also be seen in recommender systems (Grbovic et al., 2015; Bianchi et al., 2020),
context prediction (Lazaridou et al., 2015), etc. Subsequent models to DeepWalk include
LINE (Tang et al., 2015b) and node2vec (Grover & Leskovec, 2016). Certain works (Wu
et al., 2018; Yang et al., 2019) introduce hashing techniques to reduce the training time
and improve the scalability. For a more comprehensive view, we refer to the survey arti-
cle (Goyal & Ferrara, 2018) on graph embedding.

More recently, researchers proposed Graph Neural Networks (GNNs) as a new class of
graph embedding models (Hamilton et al., 2017; Kipf & Welling, 2016; Velickovi¢ et al.,
2017). While not learning the node embedding explicitly, these models implicitly learn the
node embeddings by combining node attributes and graph structures in neural-based mod-
els. We refer to the graph neural network survey article (Wu et al., 2019) for more details
in this literature.

Since real-world data such as the Amazon data (Fig. 1a) are intrinsically heterogeneous,
it is not trivial to extend graph embedding methods to work with heterogeneous data. Many
HIN embedding models have been successful in bridging this gap.

2.2 HIN embedding

In early works of mining HINs, many methods (Sun et al., 2011; Liu et al., 2014) use meta-
paths as semantic information to underline the difference between HIN and homogeneous
network. As random-walk based models become popular, there are many attempts to com-
bine the concept of meta-paths and skip-gram models. The notable works are metapath2vec
and HIN2vec. metapath2vec (Dong et al., 2017) formalizes meta-path-based random walk
and then utilizes heterogeneous skip-gram models. HIN2vec considers a neural network
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model for capturing and differentiating the information of meta-paths. In the meantime,
another line of work (Xu et al., 2017; Tang et al., 2015a; Shi et al., 2018a) treat the graph
under each relation as a subgraph, then they jointly learn from those subgraphs.

Researchers have recognized the problem of incompatibility of heterogeneity in rela-
tions (Shi et al., 2018b; Chen et al., 2018). To alleviate this problem, they propose rela-
tion-specific projection or implicitly consider it as relation embedding. With the success of
GNNs, many works follow these architectures and adapt them to HINs. HAN (Wang et al.,
2019), GATNE (Cen et al., 2019) and GTN (Yun et al., 2019) utilize attention mechanism
after aggregating on subgraph-level separated by node types, relations, or meta-paths. We
refer to these methods as bi-level aggregations. However, none of these concerns about the
contribution of each individual neighbor to the final node representations.

3 Proposed method

We present a simple yet effective relation-aware heterogeneous graph embedding algo-
rithm called Heteregeneous graph InfoMax Encoder (HIME) to keep the awareness of
relations in heterogeneous graphs without suffering from the down-weighting issue. We
first describe our encoder to learn node representations, then we introduce a mechanism to
maximize the mutual information inside the encoder.

3.1 Relation-aware node embedding

Initially, each node v; is associated with a feature vector XEO) € R? which is shared across
relations. In case node attributes are available, we project them to a d-dimensional space by
x©0 = Waxlf where W, € R is a learnable weight matrix for the projection and xl’ eRrr
denotes attribute of v;. To get the final representation of node v; for relation ¢, we combine
the information of node v;, its neighbors N;, and relation 7 together. The process is fulfilled
by a single or a stack of our proposed heterogeneous single-level aggregator(s).

3.1.1 Heterogeneous single-level aggregator

As shown in Fig. 1b, given an object of interest, we transform its neighbor features accord-
ing to their relations to v;, €, = h(xj, r) where v is a node connected to v; by relation r;
h:RYx R — R?is a differentiable function. & allows a node to pass distinct feature for
different relations. The transformation can be a hyperplane translation (Wang et al., 2014)
or linear transformation. We call e, . as an edge vector. Then we aggregate edge vectors

using the mean function: n; = ﬁ 2nen €, Notice that we perform the neighbor rela-

tion-specific transformation before the aggregation to emphasize each neighbor’s contribu-
tion rather than diluting the node’s information by fusing it with neighbors of the same
relation. Furthermore, we found that the transformation should be carefully selected. For
example, the hyperplane translation assumes that all edge vectors after the transformation
still belong to the same feature space but in different hyperplanes. This can be beneficial
for certain heterogeneous graphs, where the information between relations is highly inclu-
sive so that knowing other relations can help to inform the structure of a target relation.
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Next, we combine the information of node v; (x;) and its neighbors (n;) by using gated
recurrent units (GRU) (Cho et al., 2014): x; <« GRU (x;,n;). We treat x; as the hidden
state of a recurrent model. Alternatively, simplified versions (Chairatanakul et al., 2019)
of GRU can be used to reduce the model complexity and possibly improve the perfor-
mance in sparse datasets. The motivation behind using GRUs is based on the oversmooth-
ing issue of GNNs; That is the degradation of performance of GNNs when increasing the
number of layers because of the similarity in node representations (Li et al., 2018; Oono
& Suzuki, 2019). Note that GRU is commonly used in learning from sequential data that
retaining past information is crucial, although it requires heavy computational resources.
We hypothesize that GRU can extract new information of the current layer while retain-
ing useful information from the previous layer. Any homogeneous GNN can also be used
after obtaining edge vectors by treating them as neighbors in a homogeneous graph. Note
that a slight modification of bi-level aggregation can turn it into single-level aggregation.
However, doing that will contradict the purpose of the second-level that aims to reassign
the weight based on relations.

In the last layer, we employ a distinct GRU for each target relation 7. The formula
can be written as follows: x; = GRU ,(x;,n,). The motivation is to allow the node rep-
resentation to have both shared information across all relations and unique node’s rela-
tional information. This can be realized by looking at updating node vector of GRU,:
x; = (1 —z)-x; + (z) - X}, where ] is the update gate vector and X; is the relation-specific
candidate vector.

3.1.2 Objective function

To preserve the structure of HIN, we encourage the closeness of embeddings for nodes
connected by an edge, while enforcing the separation of embeddings for nodes uncon-
nected. Therefore, we minimize the following loss:

1
‘CG = E Z Z Z —log O'((Xlt,th> - <X§,X,’()), (1)
v;EV (LHEN; (k,NEN;

where (-,-) denotes the inner product. The loss is derived from Bayesian Personalized
Ranking (Rendle et al., 2009). It is commonly used in recommender systems (Ricci et al.,
2010) and is similar to margin-based ranking loss (Bordes et al., 2013). For scalability, we
use negative sampling, which will be informed later in Sect. 3.5.

3.2 Heterogeneous graph infomax encoding

While the proposed aggregator in the previous section is flexible and powerful in learning
local structures, using multiple transformations can result in high heterogeneity. That is,
the edge vectors conflict with each other. This impairs the graph smoothing which is an
essential characteristic of GNNs (Chen et al., 2020; Xie et al., 2020). We want to avoid
this scenario and, at the same time, encourage the model to capture unique local features.
Therefore, we aim to maximize the mutual information between edge vectors and the out-
put of the layer. Similar to DGI (Velickovi€ et al., 2018) and DIM (Hjelm et al., 2018), we
use the binary cross-entropy between samples from the joint (positive) and the product of
marginals (negative):
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Fig.3 Average of the cosine similarity of edge vectors between neighbors of the same node (green line) and
between any random edges (grey line). The green area shows the gap between them. The larger the gap, the
better homogeneity and lesser prone to oversmoothing

1
£y = Y —log DOE X"+ Y —log (1= DO xM). ()

EZ v;iEV  (L.EN; (kq)EN;

where E; = Zv ev(lN | + I./\f |), superscript (/) denotes I-th layer of the aggregator,
DY : R x RY - R is a discriminator for I-th layer and N is a corrupted neighbors of
node v;. As analogous to DIM, the vicinity centering around v; in the graph is treated as
a single image. To increase the mutual information, the encoder needs to consider every
neighbors and aggregates the information in which most neighbors agree. Notice that for
each layer, we apply the loss separately since it is easier to apply mini-batch training.

Following DGI, we adopt its discriminator: D(x,y) = xTUy, where U is a weight matrix
of the discriminator. We call the process of optimizing Eq. (2) via a discriminator inside
each layer of the single-level aggregator as infomax encoding. Note that our motivation
for the infomax encoding is different from the graph infomax in DGI, DMGI (Park et al.,
2020), and HDGT (Ren et al., 2019). In their works, the main objective is to preserve the
mutual information between local patches and global graph summary. We will call them as
global infomax.

The advantages of the proposed infomax encoding over global infomax are two-fold.
First, infomax encoding is compatible with mini-batch sampling, whereas global infomax
needs to compute the embeddings for the whole graph to obtain the global summary. This
makes infomax encoding scalable to a large graph without any further modification. The
second is for promoting homogeneity between neighbors or edge vectors in the graph.
To make a comparison, we optimize the model in the previous section via either info-
max encoding or global infomax' while measuring the homogeneity between neighbors.
To measure the homogeneity, we use the cosine similarity between neighbors of the same
node and between any random edges following Chen et al., (2020). Intuitively, we want
the high value from the neighbors telling that the neighbors contain similar information,
while we want the low value from the random indicating oversmoothing. The results are
plotted in Fig. 3. we can clearly see the large gap between the value from the neighbors and
the value from the random in Fig. 3b. This indicates that infomax encoding can encourage
the homogeneity while keeping the oversmoothing in control. On the other hand, Fig. 3a

! We choose DGI to represent global infomax because it is the most well-known and easy to implement.
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informs that global infomax does not deliver the same desirable. More benefits of infomax
encoding will be presented in Sect. 4.4 Study of Infomax Encoding.

3.3 Model Optimization

For the final objective, we jointly optimize the loss from the graph context in Eq. (3) and
the infomax loss in Eq. (2):

L
L=Lo+a) LY, 3)

=1

where a is a hyper-parameter controlling the importance of the infomax loss. Since it is
computationally expensive to minimize the above loss directly, we adopt the negative sam-
pling technique. Specifically, we uniformly sample an edge (v;,7,v;) from the graph as a
positive sample, then we uniformly sample K negative nodes that have the same types as v;
and do not have relation ¢ to v;. For further improvement on the negative sampling, “hard—
samples” negative sampling (Zhu et al., 2021) or adversarial negative sampling (Hu et al.,
2019; Sun et al., 2019) can be considered. The effect of negative sampling in homogeneous
graphs have also been investigated by Qiu et al., (2018); Yang et al., (2020).

Note that the model can perform in semi-supervised manner by changing the loss func-
tion L, to a loss function for multiclass classification such as cross-entropy loss. However,
we found that the semi-supervised loss usually converges significantly faster than the info-
max loss. The slower convergence of the infomax loss suggests that the model may underu-
tilize the infomax encoder in such a condition.

To make the model applicable to large graphs, we follow the architecture of Graph-
SAGE (Hamilton et al., 2017) to be able to generate node representation individually
and utilize mini-batch training. In particular, for generating the representation of a node,
namely v;, we uniformly sample up to n neighbors of v;, where n is a hyper-parameter. Sub-
sequently, for each sampled neighbor, we perform the sampling process of that neighbor.
We repeat the process for L times. The aggregation considers only these samples and v;
for generating the representation of v;. In this way, we can limit the memory usage in the
aggregation process to O(n“T), where T is the space complexity of the transformation h,
compared with O(|€|T) using the whole graph. In practice, L is usually set to a small num-
ber due to the oversmoothing effect. We obtain nodes’ corrupted neighbors by shuffling
the nodes’ neighbors of the same mini-batch. Specifically, A/ B = N, B, such that T; = T,
where 7 is a permutation function, B and T denote the arrays of target relations and node
indexes of a mini-batch, respectively. The reason is to reduce computation cost. Since we
need to perform [ — 1 encodmg layers to has e( Yin Eq. (2), by shuffling the neighbors
inside a mini-batch, e )has been calculated already in the positive side and can be reused
in the negative.

4 Experiments
We conduct extensive experiments to compare HIME with the state-of-the-art models on
link prediction, node clustering, and node classification tasks. We also analyze the ben-

efits of the proposed single-level aggregation over bi-level aggregation. Moreover, we pro-
vide a thorough investigation into the different aspects of HIME, including the effect of
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Table 2 Statistics of datasets

Dataset VI |E] |71 IR|
DBLP 35,796 168,703 4 3
Yelp 30,651 331,490 4 4
Douban Movie (DM) 37,441 1,686,025 5 5
Douban Book (DB) 41,959 2,130,693 7 7
Amazon-Large 1,025,457 12,769,007 2 3
Amazon 10,166 148,865 1 2
YouTube 2,000 1,310,617 1 5
Twitter 10,000 331,899 1 4
ACM 3,025 2,240,042 1 2
IMDB 3,550 80,216 1 2

infomax encoding, the scalability, hyper-parameter sensitivity, and its adaptability to other
frameworks.

4.1 Datasets

Aside from our synthetic toy dataset, we use ten publicly available real-world HIN data-
sets. We divide the datasets into three groups. The first group is datasets where both node
types and relations are more than one: DBLP (Hu et al., 2019), Yelp ( Hu et al., 2019),
Douban Movie (Shi et al., 2019), Douban Book (Shi et al., 2019), and Amazon-Large2 (N1
et al., 2019). The second group is multiplex networks (|Z7] = 1 and |[R| > 1): Amazon, You-
Tube, and Twitter. We obtain the data from Cen et al., (2019). The last group is multiplex
networks with node labels: ACM and IMDB. We obtain node labels and attributes from
Park et al., (2020) for node clustering and classification evaluation purpose. Basic statistics
of the datasets are summarized in Table 2. Additional details can be found in Sect. A in the
appendix.

4.2 Compare HIME with baselines

We first compare our proposed HIME to various unsupervised models which can be poten-
tially applied to HINs:

e Traditional homogeneous graph embedding: LINE (Tang et al., 2015b), DeepWalk
(Perozzi et al., 2014)°

e HIN-based embedding: BHIN2vec (Lee et al., 2019b), metapath2vec (Dong et al.,
2017), HEER (Shi et al., 2018b)

e Knowledge graph embedding: TransE (Bordes et al., 2013), DistMult (Yang et al.,
2014), CompleEx (Trouillon et al., 2016), RotatE (Sun et al., 2019)

2 We use the data in “sports and outdoors” category.

3 Note that DeepWalk can serve as a representative of skip-gram (Mikolov et al., 2013) based methods,
which have been successfully applied to different problems such as Prod2vec (Grbovic et al., 2015; Bianchi
et al., 2020) for recommender systems and multimodal models (Lazaridou et al., 2015) for context predic-
tion.
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e GNN for homogeneous graph: GraphSAGE (Hamilton et al., 2017), DGI (Velickovi¢
et al., 2018)
GNN for multiplex network: DMGI (Park et al., 2020)
GNN for HIN: RGCN (Schlichtkrull et al., 2018), HAN* (Wang et al., 2019), GATNE
(Cen et al., 2019), and HGT (Hu et al., 2020b).

Note that all GNNs for HIN in the list are bi-level aggregations. Because the core idea
of DMGI (Park et al., 2020) and HDGI (Ren et al., 2019) is similar but DMGI has an
improved regularization, we select DMGI to represent global infomax approach for mul-
tiplex networks. GATNE in Link Prediction section refers to GATNE-T while GATNE in
Node Clustering and Classification section refers to GATNE-I. GATNE* refers to a variant
of GATNE by changing its initialization and loss function to Eq. (1). HAN* refers to a var-
iant of HAN by changing the semantic attention to be an independent and learnable param-
eter. For a fair comparison, we fix the embedding dimensions d to 128. Without specifying,
all models are trained in unsupervised manner. Please see Sect. B in the appendix for addi-
tional details about the implementation and hyper-parameter settings.

4.2.1 Link prediction

To evaluate the quality of embedding methods on preserving the information of a HIN,
we conduct link prediction experiments following Shi et al., (2018b). For each HIN, we
split its edges into three sets for training, validation, and testing with numbers 85, 5, and
10% from the total, respectively. An evaluated model is trained on the training set, while
the validation set is used for stopping criteria and finding suitable parameters. The task is
to predict the edges in the test set using the learned embeddings from the training set. We
sample 10 negatives instead of all possible candidates because of computation cost. We
rank positive edges among both positives and negatives and report the mean reciprocal
rank (MRR) by micro- and macro-average. In particular, the micro-average MRR averages
all reciprocal rank without considering relations, whereas macro-average MRR averages
over the mean of values of reciprocal rank associated with each relation. Mathematically,

MRRmicm = L l( ! + ;)a
IEM,I (it,/)esm, 2 rank; ~ rank;
MRR,, == Y% Y 5 .
Roacro |R| “c (et 2 rank rankj
L, I",] € test
r=t

where &, denotes the test set and ¢’ denotes the number of test edges with a relation 7 in
the test set. We average over relations for which their appearances exceed 5%. Table 3 lists
the results. We observe that HIME achieves the best performance for all cases. Particularly,

HIME significantly outperforms the baselines, with p-value < 0.01.

4 HAN was proposed for semi-supervised learning. For training in unsupervised manner, we apply RGCN
training framework.
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Table 3 Micro- and macro-average MRR results of each model in link prediction task in HINs. Bold texts
indicate the best result in each case. Underline texts indicate the best among baselines. x indicates the sig-
nificant improvement of HIME over baselines, with p-value < 0.01

DBLP Yelp Douban Movie Douban Book
Macro Micro Macro Micro Macro Micro Macro Micro
Deepwalk 57.46 50.56 54.43 49.88 35.26 35.86 44.51 42.65
LINE-1st 59.25 56.67 68.60 62.96 54.74 55.63 61.07 59.94
LINE-2nd 37.51 42.40 44.92 46.33 44.71 49.15 33.40 32.65
metapath2vec 64.26 62.77 72.59 70.94 61.16 63.99 55.66 53.72
BHIN2vec 65.66 67.31 72.89 68.96 58.66 61.34 55.28 53.36
HEER 70.82 65.64 76.12 71.07 69.01 71.48 66.17 65.11
TransE 54.96 55.98 68.56 68.21 53.63 56.81 44.54 43.98
DistMult 61.11 58.33 75.63 73.61 69.48 1249 65.20 63.96
ComplEx 59.47 57.15 71.55 70.29 68.17 71.23 64.01 62.72
RotatE 65.72 66.54 76.65 74.16 67.72 70.61 61.20 60.44
GraphSAGE 63.14 57.60 68.07 65.08 49.04 51.28 50.28 49.05
RGCN 65.29 66.16 74.06 70.56 60.20 62.85 58.74 57.85
HAN 51.23 53.09 50.95 45.83 44.53 47.67 37.78 36.61
HAN* 66.47 66.63 76.68 72.41 61.20 64.32 57.68 56.46
HGT 62.92 64.72 74.07 70.89 61.04 64.20 57.02 55.69
GATNE 45.14 49.66 71.94 66.79 48.72 51.25 42.22 42.24
GATNE* 60.47 62.44 79.24 74.80 69.84 72.44 65.55 64.49
HIME 72.88* 69.83* 80.05* 76.31* 73.29* 75.56* 68.41* 67.41*
Tablg 4. Pe.rformapCf: for link Amazon YouTube Twitter
prediction in multiplex networks.
The result of [#] are taken from AUC F1 AUC F1 AUC F1
the corresponding paper
TransE 88.77 82.61 7845 7074 6330 61.09
DistMult 98.86 95.60 93.67 86.19 9265 85.08
ComplEx 85.82 8245 7992 7219 8501 7644
RotatE 98.05 93.66 8495 7564 93.15 86.22
DGI 88.27 80.36 7795 71.18 9152  84.06
DMGI 9043 8321 88.77 81.22 89.70  83.60
RGCN 98.05 93.72 8547 7750 9192 8431
HAN 9559 90.00 63.59 6025 86.02 81.27
HAN* 9824 94.04 87.67 80.01 92.10 84.51
HGT 98.33  94.10 8594 78.07 9128 83.73
GATNE [f] 9744 9287 84.61 7683 9230 84.96
GATNE* 98.11 94.04 9243 8476 8735 794l
HIME 99.09 9592 9586 89.07 9459  87.69
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Table 5 Node classfication

ACM IMDB
results (MiF1, MaF1) and node ¢

clustering results (NMI) on MaFl  MiFl NMI  MaFl  MiFl  NMI
multiplex networks. [] refers to

semi-supervised training. Bold HEER 73.8 73.1 433 48.8 51.0 .009
texts indicate the best result TransE 753 748 390 457 502 027

in each case. Underline texts .
indicate the best among baselines DistMult 69.9 69.1 .389 40.6 41.7 .009

ComplEx 77.4 76.6 .389 41.6 42.5 .005

RotatE 78.2 712 .389 43.4 44.0 .016
DGI 79.1 80.2 .644 59.3 60.7 174
DMGI 88.5 88.7 687 63.9 644 .193
RGCN 88.2 88.2 .654 62.2 61.4 194
HAN 71.9 78.4 510 60.1 59.0 .045
HAN [7] 88.2 88.3 .650 62.9 63.0 .163
HGT 88.0 88.0 558 61.7 60.6 196
GATNE* 66.5 66.0 .009 38.8 40.6 .020
HIME 89.2 89.1 721 63.9 64.6 202

4.2.2 Link prediction on multiplex networks

In multiplex networks, nodes of the same type are connected to each other with multiple
relations. We conduct link prediction in multiplex networks to see whether our model can
handle effectively this scenario. We obtain data from Cen et al., (2019) and conduct experi-
ments following them. We use their source code for evaluation and report the performance.

We report a summary of the results in Table 4. We observe that HIME shows superior
performance over other models. The highest gap in performance is in the YouTube data-
set, which has the highest number of relations among those three datasets. This implies
the effectiveness and distinguishability of the model for dealing with multiple relations.
Although DMGI and DGI aiming to capture global properties are good for node clustering
and classification, they are inferior to models with graph context optimization (first- and
second-order in graphs) for the link prediction task.

4.2.3 Node clustering and classification

Node clustering aims to group nodes belonging to the same class, while node classifica-
tion is to identify their classes which can be considered as either multi-class classification
or multi-label classification (Tsoumakas and Katakis, 2007; Do et al., 2019). We conduct
experiments for both cases following Park et al., (2020) with the same data split for train-
ing, validation, and test sets. For methods that ignore node attributes, we concatenate the
raw attributes with the learned node representations following Park et al., (2020). Since our
methods generate multiple node representations for different edge types, for a fair compari-
son, we select the node representations of an edge type that yields the best results in the
validation set, then evaluate the performance on the test set. In practice, we can combine
such different node representations and use fast and highly scalable feature selection meth-
ods including ensemble techniques to enhance the performance. We report normalized
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Fig.4 Link prediction performance of models for each relation in Douban Book dataset by optimizing rela-
tion-aware embedding. The number in round brackets indicates the percentage of the relation

mutual information (NMI) for node clustering®, and macro- (MaF1) and micro-average F1
(MiF1) for node classification. For comparison, we include bi-level aggregations: RGCN,
HAN, and HGT trained in unsupervised manner with Eq. (1) as the objective function.

The results are summarized in Table 5. HIME demonstrates the best performance, while
DMGTI is the second best. For node classification, we observe that our unsupervised model
HIME even outperforms the semi-supervised model HAN [f]. For node clustering in ACM
dataset, HIME achieves performance gain as high as 4.9% over DMGI which is signifi-
cantly superior to other baselines.

4.3 Bi-level vs single-level aggregation

In this section, we explain why bi-level aggregation performs worse than single-level aggregation
for relation-aware HIN embedding. First, we look at where the performance is improved by single-
level over bi-level aggregation. We conduct further experiments for the link prediction task on
Douban Book dataset, which has the largest number of relations by switching between graph con-
volutional methods using the same objective function as defined in Sect. 3.1. For bi-level aggrega-
tions, we include well-known methods such as RGCN (Schlichtkrull et al., 2018), HAN (Wang
etal., 2019), and HGT (Hu et al., 2020b), and for single-level aggregations, we include commonly
used methods such as GraphSAGE (Hamilton et al., 2017) and GAT (Velickovi€ et al., 2017) and
also our proposed HIME. We also include our proposed single-level aggregator without infomax
encoding as “HIME (-IM)”.

Figure 4 presents the link prediction results for each relation. We can see that the single-
level aggregations significantly outperform bi-level aggregations in minority relations. To
explain why bi-level aggregations perform worse, we aim to investigate the importance
of each relation to node representations for a minority relation. Intuitively, an appropriate
aggregator should transfer abundant information from majority relations to the minority.
One can simply look at the attention score of the bi-level. However, it lacks the considera-
tion of the magnitude of a feature and the transformation along the aggregation path.

To provide a better concrete analysis, we derive an idea from a neural network prun-
ing technique SNIP (Lee et al., 2019a) which can also be considered as an application of
an attribution method gradient*input (Shrikumar et al., 2017). SNIP uses the derivative

3 Node clustering is conducted on nodes in the test set, following Wang et al., (2019); Park et al., (2020).
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Fig.5 Average saliency score of nodes connected to output nodes via each relation (x-axis) for generating
the node representations for a target relation (y-axis) on Douban Book dataset

of a loss function with respect to an auxiliary variable ¢ representing connectivity of
a parameter w. The purpose is to find important connections based on the change of ¢
called saliency score. To measure the importance of a node v;, the saliency score of the
node s; can be calculated as:

IL(c; ©x7:0,6)
s; = abs < %

1

c,:l)Tl’ )

where 6 is a set of the model’s parameters, XEO) denotes an initial feature vector of node v;
before the aggregation, and abs denotes a function calculating absolute value of each ele-
ment in an input. The higher saliency score, the higher significance of a node.

Figure 5 shows the average nodes’ saliency score of each relation to a target rela-
tion’s node representations. Note that Fig. Sa—c are from bi-level aggregations, while
Fig. 5d—f are from single-level aggregations. RGCN has very high saliency scores on
minority relations because it uses the mean across relations in the second-level. HAN*
uses attention mechanism in the second-level that can slightly gravitate the significance
to majority relations and improve the performance. HGT deploys an attention mecha-
nism considering each message from a neighbor instead. This can alleviate the down-
weighting problem and make its results closer to those of single-level aggregations than
others. However, we observe that for most target relations, HGT has very high saliency
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Fig.6 Link prediction performance of models for each relation in Douban Book dataset by optimizing link
prediction task for each relation. The number in round brackets indicates the percentage of the relation

scores on the same relation. This suggests that it tends to underutilize the information
of HIN. However, the saliency scores of majority relations,“U-G” and “U-U”, of bi-
level aggregations are still much lower than those of minority relations for most cases.
This demonstrates that bi-level aggregation scheme down-weights the information of
the majority. On the other hand, Fig. 5d—f support that single-level aggregations much
less suffer from the down-weighting issue.

However, the disadvantage of both GraphSAGE and GAT is the lack of awareness of
relations in the aggregation that reduces their powerfulness when performing on HIN. For
example, if we aim to directly optimize link prediction for each relation instead of relation-
aware embedding. Figure 6 informs us that bi-level aggregation is better than single-level
aggregation (excluding HIME) in all cases, following a similar finding by other research-
ers. This suggests that there is room for improvement to find a method that considers rela-
tions in the aggregation without suffering from the down-weighting issue. By considering
relations in the aggregation to improve the powerfulness alone, we can see the increase in
performance in HIME (-IM), while still performing well for minority relations in Fig. 4,
unlike bi-level aggregations. Finally, by incorporating infomax encoding to encourage
graph smoothing, we observe that HIME outperforms HIME (-IM) in all cases in Fig. 6
and most cases in Fig. 4 implying that it can utilize more information from graph structure.
We can conclude that HIME is effective and powerful for HIN embedding and does not
suffer from the down-weighting issue, satisfying both requirements.

4.4 Study of infomax encoding
In this section, we provide study and analyze of the effect of the infomax encoding. For

these purposes, we conduct further experiments with three settings: insusceptibility to
attack on node features, horizontal improvement, and vertical improvement.

4.4.1 Insusceptibility to attack on node features

As we introduce the infomax encoding, we hypothesize that the infomax encoding aug-
ments the graph smoothness. Feng et al., (2019) show that implementing the graph
smoothness in the prediction stage can increase the performance and robustness against
attacks on node input features in node classification, and Jin & Zhang (2019) obtain a
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Table 6 Node classification

Attack HIME (-IM HIME
performance of HIME on IMDB x© M
graph with node feature attacks. Type Node MaF1 MiF1 MaF1 MiF1
Bold values indicate the best
result in each case Noise Random  61.9 63.0 64.1 64.7
Top 61.7 62.4 63.3 64.0
Shuffle Random 61.4 62.2 63.2 63.8
Top 60.0 61.4 63.3 63.7
Zero Random 61.2 62.1 63.7 64.0
Top 60.7 61.7 63.7 64.2
No (Original) 61.6 62.8 64.7 65.1
75.0 //.\ //'//.\\i
745 o . ‘
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Z 740 sl /
2 735 o 640 I
3 /1 e
g RO 5 620
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(a) Douban Movie (b) Douban Book

Fig. 7 Performance of HIME with/without infomax w.r.t. the number of sampled neighbors

similar achievement by perturbing the latent presentation in GCN. We will demonstrate
that the infomax encoding follows the same conjecture and improves the robustness.

We choose the node classification task as in Sect. 4.2.3. We perform node feature
attacks on either 5% uniformly sampled nodes or top 5% of nodes ranked by node
degree. The attacks are 1. Noise: injecting Gaussian noise A{0,0.01) 2. Shuffle: row
shuffling between the attacked nodes 3. Zero: substituting constant for its features. Then
we train HIME and evaluate the performance on an attacked graph. The results are col-
lected and presented in Table 6. We can see that HIME with infomax encoding out-
performs its variance without infomax encoding (-IM) regardless of attack types and
attacked nodes.

4.4.2 Horizontal improvement

The second setting is to see its benefit when going wide (horizontal) in the graph. We
set the number of layers L to 1, gradually increase the number of sampled neighbors
N from 5 to 100, and run the model with and without the infomax encoding. We plot
the performance of the model against the number of sampled neighbors in Fig. 7. We
can see that the model achieves higher performance with infomax encoding than with-
out it when N is high enough. This follows our assumption that infomax encoding can
improve the usage of each neighbor’s information.
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Table 7 Performance (Micro-
avg. MRR) of the model with
and without infomax encoding by

Dataset Infomax L=1 L=2 L=3 L=4 L=5

. DBLP w/o 65.13 65.54 66.97 66.81 66.25
varying the number of layers
w 69.83 68.99 68.36 68.75 66.82
Yelp w/o 7526 7536 75.00  75.52 75.30
w 76.31 76.09 75.65 76.00 75.45
Table 8 Performance (Micro- . _ _ _ _
avg. MRR) of the model with Dataset Style L=2 L=3 L=4 L=5
different aggregation styles DBLP GCN 69.87 69.30 68.88 65.34
by varying the number of
layers. Bold values indicate the RGCN 70.08 69.55 69.04 67.21
best result in each case GRU 70.73 69.95 69.26 67.90
Yelp GCN 76.02 75.57 75.71 74.25
RGCN 76.25 75.44 75.46 73.85
GRU 76.04 75.94 76.13 75.87

4.4.3 Vertical improvement

In the last setting, we investigate whether the infomax encoding can improve the perfor-
mance when going deep (vertical) in the graph. We conduct additional experiments by
varying the number of layers L from 1 to 5, which can reach up to five-hop neighbors, and
run the model with and without using infomax encoding in all layers. Due to the limitation
in our memory space, we set the number of neighbors to 50, 20, 8, 5, 3 for L from 1 to 5.
The results are listed in Table 7. As can be seen, the model with infomax encoding
outperforms the one without it in all cases. The performance gain becomes lower when the
number of layers is higher. The reason is that when the number of layers is higher, (1) the
number of sampled neighbors becomes lower, and (2) the smoothing effect of the GNN
becomes stronger, leading to more homogeneity when infomax encoding is not used.

4.5 Additional analysis

In this section, we provide additional studies about (1) oversmoothing issue (2) training
time, scalability, and convergence, (3) ablation study, (4) hyper-parameter sensitivity, and
(5) adaptability of HIME to other frameworks.

4.5.1 Oversmoothing issue

First, we investigate whether HIME suffers from the oversmoothing issue, which is a
common issue in GNNs. In addition, we aim to provide empirical evidences to support
our motivation behind using GRUs. Therefore, we introduce two variants of the single-
level aggregator by replacing GRU (x; « GRU (x;,n;)) with GCN and RGCN styles:
x; < o(w;Wx; + (1 — w;)n;), where ¢ denotes the rectified linear unit (ReLU), W is a
learnable transformation matrix, and w is a balancing factor between the information of
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Fig.8 MAD values of HIME with different aggregation styles and layers. Lower MAD value indicates
smoother the node representations in the graph. The GRU variant is the least prone to the oversmoothing
issue
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Fig.9 Training time until convergence of each model with respect to the number of training edges. The
number of layers is set to 1 for all models

1 1
s for GCN style and IS for RGCN style.

We conduct additional experiments for the GCN and RGCN styles by varying the num-
ber of layers L from 2 to 5 with the same setting as in Sect. 4.4.3.

The results are listed in Table 8. We observe that all variants achieve comparable
results when L = 2. However, as the number of layers increases, the performance gap
becomes larger on both datasets, and the GRU variant retains the performance the most
among all of them. The results demonstrate the possibility of using GRU to alleviate the
oversmoothing issue. To further investigate the difference among them, we use Mean
Average Distance (MAD) between node representations (Chen et al., 2020) to measure
the smoothness of the representations. The distance is defined as one minus the cosine
similarity between the representations between a pair of nodes. Lower MAD value indi-
cates smoother the node representations in a graph, where the zero value means that all
the node representations become indistinguishable. The results are shown in Fig. 8. We
observe significant drops in the MAD values of the GCN and RGCN variants on Yelp
dataset indicating the possibility of oversmoothing. In contrast, the MAD values of the

a node and its neighbors that equals to

@ Springer



4246 Machine Learning (2023) 112:4227-4256

Table 9 Performance (MRR) and time analysis in link prediction task on Amazon-Large dataset. “t/step”
and “T” denotes time per step and total training time, respectively

Macro Micro t/step (s) T (h)
HIME (-IM) 86.73 78.54 102 2.59
HIME 87.32 79.34 .109 2.71
90
1.75
- 80
1.50
1.25 - 70
—— Training loss |
2 100 | 6o
3 1.00 Micro avg. MRR ‘ 60 DE:
-
0.75 , Macro avg. MRR 1 s
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- 40
0.25
- 30
0.00 -
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Fig. 10 Convergence curve for HIME on Amazon-Large dataset. The plotted performances are on the vali-
dation set

GRU slightly reduce when the number of layers increases on both datasets. This sup-
ports that HIME with GRU (default) does not suffer from the oversmoothing issue.

4.5.2 Training time, scalability, and convergence analysis

We aim to analyze the training time of HIME and compared it with bi-level aggregation
models. We conduct experiments by training models on Douban Movie with varying the
number of training edges. To see it clearly, we include the time for variants of HIME with
varying the transformations 4 and with/without infomax encoding (IM). We plot the results
in Fig. 9. As can be seen, the characteristics of the training time can be vary depending on
models. For HIME, we find that its training time linearly grows with the number of edges,
but the slope is smaller compared with GATNE, HAN, and HGT because of the less train-
ing steps until convergence. The faster convergence is probably due to the simplicity of sin-
gle-level aggregations compared with those of bi-level aggregations employing attention
mechanisms. On the other hand, RGCN demonstrates the similar training time as HIME
because RGCN employs the mean pooling instead. .

Furthermore, to investigate the scalability of HIME, we run HIME on Amazon-Large
dataset consisting of 12.8 million edges. We compare the link prediction performance of
HIME to its variant without the infomax encoding. Table 9 shows the performance and
its training time on a single GPU, NVIDIA Tesla V100. HIME with the infomax encod-
ing performs better while costing a tiny amount of time. We plot the convergence curve
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Table 10 Ablation study of HIME in comparison to RGCN in the link prediction task. Bold values indicate
the best result for each dataset and metric

DBLP Yelp Douban Movie Douban Book

Macro Micro Macro Micro Macro Micro Macro Micro
RGCN 65.29 66.16 74.06 70.56 60.20 62.85 58.74 57.85
HIME (i) 61.54 62.51 73.48 69.86 68.79 71.58 65.28 64.29
HIME (i,ii) 65.44 65.29 79.50 75.57 72.22 74.63 67.56 66.54

HIME (i.ii,iii) 72.56 69.94 80.87 76.91 73.73 76.01 68.41 67.41

of HIME in Fig. 10. We observe that the training loss is steadily converged and inversely
proportional to the performance on the validation set.

4.5.3 Ablation study

We provide ablation study to clarify the contributions of our work in the methodology over
RGCN. Thus far, our contributions are as follows.

(i) We proposed single-level aggregation (Sect. 3.1), which uses mean pooling over all
types of neighbors instead of averaging over each type of neighbors in RGCN.
(i) We introduced the transformation / (Sect. 3.1) that should be carefully selected and
fine-tuned, unlike RGCN that uses only linear transformation.
(iii) We proposed infomax encoding (Sect. 3.4), which can reduce the heterogeneity and
promote the homogeneity between neighbors in the graph.

To demonstrate the effect of these three contributions, we perform ablation study of HIME
by considering three variants of it that illustrate the contribution of each point on the top of
its previous. Note that for (ii), we use the hyperplane transformation to distinguish from the
linear transformation in RGCN.

The results are listed in Table 10. We observe that the effect of each contribution is sig-
nificantly different and depends on the datasets. Specifically, the first contribution shows
the highest performance gain over other contributions on Douban Movie and Douban Book
datasets, where the average degree of a graph is high and the edges are heavily dominated
by the majority relations (please see Table 12 in Appendix A for the statistics). Such a situ-
ation will cause a severe down-weighting issue in bi-level aggregations, and that explains
the performance gain from the first contribution. Conversely, it performs significantly
worse than RGCN on DBLP, where the average degree is much lower compared with Dou-
ban Movie and Douban Book datasets. This empirically supports the application of RGCN
that was originally proposed for knowledge graphs, which usually have a small number of
average degree. The second contribution positively yields significant improvements in all
cases. Please be reminded that we have thoroughly investigated the effect of the third con-
tribution in Sect. 4.4.
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Table 11 Performance of HGT Task HGT HIME*

and HIME* on multiple tasks

with and without pretrain. Bold MRR NDCG MRR NDCG
values indicate the best result for

each downstream task and metric ~ Without pretrain

AD 57.96 79.82 61.66 81.77
PF 26.84 30.82 34.94 34.97
PV 16.39 32.88 20.33 36.83
With pretrain

AD 67.18 84.21 65.88 84.08
PF 43.29 39.42 45.17 41.16
PV 24.61 41.90 28.90 45.62

4.5.4 Hyper-parameter sensitivity

We conduct parameter sensitivity analysis by adjusting important hyper-parameters: d and
a with L = 1. We plot the model performance against them as shown in Fig. 11a, b. As d
increases, the performance is raised until becoming plateau when d > 100. Then, the per-
formance of the model is slightly affected by d when setting d high enough. On the other
hand, the performance improves as « increases from 0.001 to 0.1, then it declines. HIME
achieves the best results at around @ = 0.1, where the infomax loss positively contributes to
the performance.

4.5.5 Adaptability of HIME to other frameworks

We investigate whether HIME can be used on other frameworks with a similar setting. We
select GPT-GNN (Hu et al., 2020a) which is a framework for pretraining graph neural net-
work and applicable for HINs. GPT-GNN aims to generate or reconstruct an input graph
which is similar to the objective of HIME. The main difference between GPT-GNN and
HIME is that GPT-GNN operates on subgraph sampling while HIME samples an observed
edge, then generates relevant node representations in the training stage.
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We conduct experiments based on GPT-GNN framework by comparing augmented
HIME (HIME*) to HGT. HIME* uses relative temporal encoding, as in HGT, in relation-
specific transformation to generate edge vectors. However, to keep the concept of single-
level aggregation, HIME* does not use any attention. We use the same hyper-parameter
setting® as being provided without tuning. We use Open Academic Graph (OAG) data on
computer science (CS) provided by the GPT-GNN authors. we follow the original set-
ting for time-transfer, then evaluate the models on three downstream tasks: prediction of
Paper-Field (PF), Paper—Venue (PV), and Author Disambiguation (AD). Please see Sect. 4
in GPT-GNN literature for more details.

Table 11 shows the performance on the downstream tasks of both models. We observe
that HIME* shows its superior over HGT with and without pretrain for most cases. This
demonstrates that the concept of HIME, a heterogeneous single-level aggregator with info-
max encoding, is applicable to other frameworks.

5 Conclusion

In this work, we proposed the single-level aggregation scheme and the application of info-
max to learn node embedding for heterogeneous information networks. The single-level
aggregation scheme is not only simpler than the bi-level scheme adopted by the state-of-
the-art methods but it also has higher performance across many benchmark tests. The pro-
posed infomax helps in bridging heterogeneous embedding to homogeneous embedding by
encouraging graph smoothness and allows scalability. We conducted extensive experiments
to verify and compare the performance of our model with the state-of-the-art methods.

Our results with single-level aggregation justify that the bi-level aggregation scheme
down-weights some popular node types and edge types (such as users and user interac-
tions) by design. In the light of this, it is beneficial to use our single-level aggregation
scheme in future studies as a benchmark method.

For future direction, we aim to investigate a way to combine existing homogeneous
GNNs and HIN embedding frameworks efficiently to accommodate a variety of homogene-
ous GNNs to HIN domain.

Appendix A: Additional statistics of datasets

Table 12 provides additional details including node types and relations. We choose to
conduct experiments on ACM and IMDB with metapath pre-processing because of the
extreme sparsity of the originals. For additional details about Amazon, YouTube, and Twit-
ter datasets, please see the appendix of GATNE literature (Cen et al., 2019).

® Note that the corresponding authors of GPT-GNN and HGT are the same. We assume that this hyper-
parameter setting is suitable for pretraining with HGT.
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Table 12 Additional statistics of
HIN datasets

Appendix B: Implementation notes and parameter settings

Node type Number of Nodes  Relation Number of Edges

Toy

User (U) 1,000 U-1 8,250

Item (I) 100 I-T 300

Tag (T) 10

DBLP (Binbin Hu et al., 2019)

Author (A) 14,475 A-P 41,794

Paper (P) 14,376 P-C 14,376

Conference (C) 20 P-T 114,624

Term (T) 8,920

Yelp (Binbin Hu et al., 2019)

User (U) 16,239 U-U 158,590

Business (B) 14,284 U-B 198,397

Category (C) 47 B-C 40,009

Location (L) 511 B-L 14,267

Douban Movie (Shi et al., 2019)

User (U) 13,367 U-u 4,085

Group (G) 2,753 U-G 570,047

Movie (M) 12,677 U-M 1,068,278

Actor (A) 6,311 M-A 33,587

Director (D) 2,449 M-D 11,276

Douban Book (Shi et al., 2019)

User (U) 13,024 U-U 169,150

Book (B) 22,347 U-B 1,584,124

Group (G) 2,936 U-G 2,378,542

Location (L) 6,311 U-L 21,184

Author (A) 453 B-A 22,836

Publisher (D) 1,815 B-P 43,546

Year (Y) 64 B-Y 42,384

Amazon-Large (Ni et al., 2019)

User (U) 452,208 interact 7,557,648

Item (I) 598,935 also-view 2,395,093
also-buy 2,844,386

ACM (Wang et al., 2019)

Author 3,025 P-A-P 29,281
P-S-P 2,210,761

IMDB (Wang et al., 2019)

Movie 3,550 M-A-M 66,428
M-D-M 13,788

For a fair comparison, we fix the embedding dimensions d to 128. Without being men-
tioned, the number of negative samples is set to 5, and any other hyper-parameters are left
with the default values as being provided. For DeepWalk, BHIN2vec, and metapath2vec,
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we set the number of walks per node to 10, the walk length to 100 and the window size to
5. For knowledge graph embedding methods including TransH (Wang et al., 2014), Dist-
Mult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), and RotatE (Sun et al., 2019)
, we use the source code’ provided by Sun et al., (2019). We use the binary cross-entropy
loss for training DistMult and ComplEx. Note that ComplEx and RotatE embeds the node
representations in a complex space C?, whereas other methods embeds them in a real space
R¢. For HAN and HGT, we set the number of multi-head attention to 8 and the output size
of each head to 16. For a fair comparison between single-level and bi-level aggregations,
we use the same hyper-parameter setting® for RGCN, HAN, HGT, and HIME without fine-
tuning. For datasets which have no node attributes, all initial feature vectors xio) are ran-
domly initialized and learnable parameters.

1. DeepWalk (Perozzi et al., 2014): We perform random walk, then use Word2Vec in
gensim9 library, which is also used in the corresponding authors’ code, to learn node
representations.

2. LINE (Tang et al., 2015b): We set the number of samples to 10000M and initial learn-
ing rate to 0.01. We use the source code'® provided by the authors to perform node
embedding.

3. BHIN2vec (Lee et al., 2019b): We use the source code'! provided by the authors for
training the model. We set other hyper-parameters as the default setting. Specifically,
we set & = 0.05 and r, = 0.0025.

4. metapath2vec (Dong et al., 2017): To cover all node types and relations, we use meta-
paths: ("APA", "APCPA", "PTP") for DBLP, ("UU", "UBU", "BCB", "BLB") for Yelp,
("uu", "uGuU", "UMU", "MAM", "MDM") for Douban Movie and ("UBU", "UGU",
"Uu", "ULU", "BAB", "BPB", "BYB") for Douban Book. We performs meta-path-
based random walk, then use Word2Vec to obtain node representations. We do not use
the code from the authors because it is only for specific datasets, and is not applicable
to others.

5. HEER (Shi et al., 2018b): We use the source code!? from the authors for training
the model. We take LINE-1st as pre-trained embedding for the model, followed the
authors’ setting.

6. GraphSAGE (Hamilton et al., 2017): We use the source code!® provided by the
authors. We choose mean aggregator to make it more closer to GATNE and HIME
compared to other aggregators (max and LSTM). We set the number of layers to 2, and
the numbers of sampled neighbors are set to 50 and 20 for one- and two-hop neighbors,
respectively. It is optimized via Adam with learning rate 0.0001.

7. DGI (Velickovic et al., 2018): We use the source code provided by DMGI authors
since it is more suitable for multiplex networks than that provided by the corresponding
authors.

7 https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

8 We do not apply the same hyper-parameter setting to GATNE because it uses distinct node features in
aggregation and optimizes another objective: heterogeneous skip-gram.

% https://radimrehurek.com/gensim/

10" https://github.com/tangjianpku/LINE

' https://github.com/sh0416/BHIN2VEC

12 https://github.com/GentleZhu/HEER

13 https://github.com/williamleif/GraphSAGE
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10.

11.

12.

13.

DMGI (Park et al., 2020): We use the source code'* from the corresponding authors.
Since the original liturature uses the same datsets: ACM and IMDB, We use the same
setting as provided: dropout, consensus regularization, and [, regularization to 0.5,
0.001, and 0.0001, respectively.

GATNE (Cen et al., 2019): We use the source code'” from the corresponsing authors.
Since its performance is surprisingly low for link prediction in HINs, we try tuning
many hyper-parameters: heterogeneous skip-gram, edge embedding dimensions, and
early stopping criteria. None of these yields positively noticeable change. We report the
results with its default hyper-parameter setting: numbers of edge embedding dimen-
sions, attention dimensions, sampled neighbors, and negative samples are 10, 20, 10,
and 5, respectively. The same hyper-parameter setting is applied to GATNE*.
RGCN (Schlichtkrull et al., 2018): We re-implement the model based on the code
provided by corresponding authors and the implementation in PyG library due to
performance and scalablity issues.

HAN (Wang et al., 2019): We re-implement the model based on the code provided by
corresponding authors since we use RGCN-based for unsupervised learning. Generally,
the aggregation of HAN can be understood as multiple GAT convolution modules for
distinct metapaths (or relations) with semantic attention for combining the outputs in
the second-level. We use relations instead of metapaths which require supervision. For
semi-supervised HAN [1], use the implementation'® in Deep Graph Library!” (DGL).
HGT (Hu et al., 2020b): Since the code provided by the corresponding authors uses
different settings'® than us, we use RGCN-based for unsupervised training instead.
For a fair comparison to other models, we do not use layer normalization. Since all
datasets have no time information, we turn off relative temporal encoding.

HIME: We intuitively set number of layers and sampled neighbors N to 1 and 50,
respectively. From that, we find the suitable « from {10, 1,0.1,0.01,0.001} and het-
erogeneous projection ki from {hyperplane translation'® (Wang et al., 2014), linear
transformation} via grid search. We found that « = 0.1 performs best in all cases. For
node clustering and classification tasks, we set dropout to 0.6.

Running environment

The experiments are conducted on Intel(R) Xeon(R) Gold 6148 CPU @ 2.4 GHz, 20
Cores, 60GB RAM, NVIDIA Tesla V100-16GB. We implement our model with PyTorch*
1.5 in Python 3.6. Alternatively, we have implemented our model in PyTorch Geometric
library®! (Fey and Lenssen, 2019) for future benchmarking.

4 https://github.com/pcy 1302/DMGI
15 hitps://github.com/THUDM/GATNE

16
7

18

https://github.com/dmlc/dgl/tree/master/examples/pytorch/han
https://github.com/dmlc/dgl
In their implementation, the model is optimized on each downstream task instead of learning node repre-

sentation in general.

19 . atics — v — wl
Mathematically, h(xj, r)= X; — W, X;W

where w, € R?, ||w, || = 1, is a relation-specific hyperplane.

7o

20 https://pytorch.org
21 https://github.com/rusty 1 s/pytorch_geometric
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