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Abstract
In this paper, we propose SAMBA, a novel framework for safe reinforcement learning 
that combines aspects from probabilistic modelling, information theory, and statistics. 
Our method builds upon PILCO to enable active exploration using novel acquisition func-
tions for out-of-sample Gaussian process evaluation optimised through a multi-objective 
problem that supports conditional-value-at-risk constraints. We evaluate our algorithm on 
a variety of safe dynamical system benchmarks involving both low and high-dimensional 
state representations. Our results show orders of magnitude reductions in samples and vio-
lations compared to state-of-the-art methods. Lastly, we provide intuition as to the effec-
tiveness of the framework by a detailed analysis of our acquisition functions and safety 
constraints.

Keywords Gaussian process · Safe reinforcement learning · Active learning

1 Introduction

Reinforcement learning (RL) has seen successes in many problems such as video and board 
games (Mnih et al. 2013; Silver et al. 2016, 2017; Mnih et al. 2015), and control of simu-
lated robots (Ammar et al. 2014; Schulman et al. 2015, 2017). Though successful, these 
applications assume idealised simulators and require tens of millions of agent-environment 
interactions, typically performed by randomly exploring policies. However, on the time 
scales of physical (i.e., real-world) systems, sample-efficiency naturally becomes a more 
pressing concern due to time and cost burdens. Additionally, there are often important 
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safety considerations that one would like to integrate into the behaviour of the system. 
These can often be formalised through constraints on system trajectories (sequences of 
state and action pairs). For example, in autonomous drone navigation, one may desire to 
avoid sharp manoeuvres in cluttered environments, especially where there are people. A 
safety constraint can be integrated into the control optimisation formulation by quantifying 
the risk of safety violation by encoding a formal risk measure over the sequence of states 
(distance, velocity, acceleration, etc.), and actions (actuator control signals). Thus, taken 
together, the need for RL algorithms to integrate safety and sample-efficiency into a single 
coherent framework for real-world settings becomes clear.

To elaborate further on the issue of safety, there is a distinction to be made between 
requiring that a controlling agent/policy is safe (however that may be defined), and requir-
ing that the learning process itself is safe. The latter generally requires assumptions to be 
made about the dynamics of the system as well as starting conditions (such as access to a 
safe initial policy). For example, safety defined by constraining trajectories to safe regions 
of the state-action space is studied in (Akametalu et al. 2014) and partially-known control-
affine dynamics with Lipschitz regularity conditions are assumed. In Aswani et al. (2013) 
and Koller et al. (2018), strong assumptions on dynamics and initial control policies are 
required to give theoretical guarantees of safety. Safety in terms of Lyapunov stability 
(Khalil and Grizzle 2002) is studied in a model-free setting in Chow et al. (2018, 2019), 
which require a safe initial policy. Likewise, Lyapunov stability in a model-based setting 
is considered in Berkenkamp et al. (2016), which requires Lipschitz dynamics and a safe 
initial policy. In Dalal et al. (2018) a decision layer is added on top of the policy in order 
to perturb the actions chosen by the policy so as to remain within safety constraints. The 
safety layer relies on the dynamics being linearisable, and to be learnt by, e.g., a neural net-
work prior to policy training.

Whilst theoretical guarantees of safety are clearly appealing, the burden of extra 
assumptions and requirements needed is one we seek to avoid in this paper. As a trade-off, 
we are willing to tolerate some constraint violation during the learning process with the 
benefit of not requiring stringent assumptions on dynamics or a safe initial policy.

With regard to the form of the constraint, expectation (i.e., risk-neutral) constraints, 
which have a long history in the MDP literature (Altman 1999), have been studied in a 
number of recent RL papers (e.g., Achiam et al. 2017; Dalal et al. 2018; Chow et al. 2018, 
2019). Whilst expectation constraints are sufficient for some purposes, they are somewhat 
limited as a risk measure. A more general risk measure, and the one we exploit in this 
paper, is Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev 2000), which is used 
in a number of RL papers, such as Chow et al. (2017) (see discussion in Sect. 2.1). How-
ever, their approach is based on model-free methods for finite MDPs, and in particular, is 
not suitable for the continuous control use-cases considered in this paper.

Following the above discussion, in this paper we develop SAMBA, a model-based 
(deep) RL algorithm suitable for learning control in continuous state and action spaces, 
and which incorporates CVaR as a safety constraint. SAMBA exploits Gaussian processes 
(Rasmussen and Williams 2005) for dynamics learning, similar to PILCO (Deisenroth and 
Rasmussen 2011), but does not adopt the moment-matching approach that PILCO takes 
in order predict forward-dynamics. Instead SAMBA performs policy updates by sampling 
trajectories from learned dynamics and applying standard deep RL techniques (policy 
gradient updates in an actor-critic framework). In the context of safe GP-based RL we 
must mention Polymenakos et al. (2019, 2020), which still relies on moment matching to 
approximate the policy gradient, while our design relies on a stochastic gradient sampling 
strategy based upon simulations of the learnt dynamics. Furthermore, we also leverage 
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active learning (Gal et al. 2017) to promote exploration near the starting state (Sect. 2.2), 
wherein the agent is influenced to acquire states reducing model uncertainty.

Successful application of active learning is very much predicated upon the chosen 
method of quantifying potential uncertainty reduction, i.e., what we refer to as the acquisi-
tion function. Common acquisition functions are those which identify points in the model 
with large entropy or large variance, or where those quantities would be most reduced in a 
posterior model if the given point were added to the data set (Krause and Guestrin 2007; 
Krause et  al. 2008; Fedorov 2013; Settles 2009). However, our desire for safety adds a 
complication, since a safe learning algorithm will likely have greater uncertainty in regions 
where it is unsafe by virtue of not exploring those regions (Deisenroth and Rasmussen 
2011; Kamthe and Deisenroth 2018). Attacking the above challenges, we propose two 
novel acquisition functions for Gaussian processes that allow for exploration in novel areas 
while remaining close to training data, thus avoiding unsafe regions. To enable effective 
and grounded introduction of active exploration and safety constraints, we define a novel 
constrained bi-objective formulation of RL and provide a policy multi-gradient solver that 
is proven effective on a variety of safety benchmarks.

In short, our contributions can be stated as follows: (1) We define a novel constrained 
bi-objective formulation that trades off cost minimisation, exploration maximisation, and 
constraint feasibility. (2) We present a model-based deep RL algorithm for this constrained 
bi-objective formulation that is suitable for continuous state and action spaces and which 
exploits Gaussian processes. (3) We define safety-aware acquisition functions for explora-
tion. We test our algorithm on three stochastic dynamical systems after augmenting these 
with safety regions and demonstrate a significant reduction in sample and cost complexities 
compared to the state-of-the-art.

As a final note, an alternative approach to using reinforcement learning would be to use 
model predictive control (MPC) (Camacho and Alba 2013) instead of computing a policy 
(i.e., general map from states to actions), and this is the method of some of the aforemen-
tioned papers  (Koller et  al. 2018; Berkenkamp et  al. 2017; Aswani et  al. 2013; Kamthe 
and Deisenroth 2018). However, it is typically argued that an MPC controller is less robust 
than a policy controller (Mayne et al. 2005). In fact, robust MPC methods typically use a 
combination of a simple policy to ensure some form of robustness and an action plan to 
guarantee constraint satisfaction. Consequently, we chose to use a policy-based controller.

2  Background and notation

2.1  Reinforcement learning

We consider Markov decision processes (MDPs) with continuous states and action 
spaces; M = ⟨X,U,P, c, �⟩ , where X ⊆ ℝ

dstate denotes the state space, U ⊆ ℝ
dact the 

action space, P ∶ X × U × X → [0,∞) is a transition density function, c ∶ X × U → ℝ 
is the cost function and � ∈ [0, 1] is a discount factor. At each time step t = 0,… , T  , the 
agent is in state xt ∈ X  and chooses an action ut ∈ U transitioning it to a successor state 
xt+1 ∼ P

(
xt+1|xt, ut

)
 , and yielding a cost c(xt, ut) . Given a state xt , an action ut is sam-

pled from a policy � ∶ X × U → [0,∞) , where we write �(ut|xt) to represent the condi-
tional density of an action. Upon subsequent interactions, the agent collects a trajectory 
� = [x0∶T , u0∶T ] , and aims to determine an optimal policy 𝜋⋆ by minimising total expected 
cost: 𝜋⋆ ∈ argmin𝜋 ��∼p𝜋 (�)

[C(�) ∶=
∑T

t=0
𝛾 tc(xt, ut)] , where p�(�) denotes the trajectory 
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density defined as: p�(�) = �0(x0)
∏T−1

t=0
P(xt+1�xt, ut)�(ut�xt) , with �0(⋅) being an initial 

state distribution.

Constrained MDPs The above can be generalised to include various forms of constraints, 
often motivated by the desire to impose some form of safety measures. Examples are 
expectation constraints (Achiam et al. 2017; Altman 1999) (which have the same form as 
the objective, i.e., expected discounted sum of costs), constraints on the variance of the 
return (Prashanth and Ghavamzadeh 2013), chance constraints (a.k.a. Value-at-Risk (VaR)) 
(Chow et al. 2017), and Conditional Value-at-Risk (CVaR) (Chow and Ghavamzadeh 2014; 
Chow et al. 2017; Prashanth 2014). The latter is the constraint we adopt in this paper for 
reasons that will be elucidated upon below. Adding constraints means we cannot directly 
apply standard algorithms like policy gradient (Sutton and Barto 2018), and different tech-
niques are required, e.g., via Lagrange multipliers (Bertsekas 1997), as was done in (Chow 
and Ghavamzadeh 2014; Chow et al. 2017; Prashanth 2014) besides many others. Further, 
current methods only consider cost minimisation with no regard to exploration as we do in 
this paper.

Model-Based Reinforcement Learning Current solutions to the problem described above 
(constrained or unconstrained) can be split into model-free and model-based methods. 
Though effective, model-free algorithms are highly sample inefficient (Hessel et al. 2018). 
For sample-efficient solvers, we follow model-based strategies that we now detail. To 
reduce the number of interactions with the real environments, model-based solvers build 
surrogate models, Psurr , to determine optimal policies. These methods, typically,  
run two main loops. The first gathers traces from the real environment to update Psurr , 
while the second improves the policy using Psurr (Deisenroth and Rasmussen 2011;  
Hafner et al. 2020). Among various candidate models, e.g., world models (Ha and Schmid-
huber 2018), in this paper, we follow PILCO (Deisenroth and Rasmussen 2011) and adopt 
Gaussian processes (GPs) as we believe that uncertainty quantification and sample effi-
ciency are key for real-world considerations of safety. In this construction, one places a 
Gaussian process prior on a latent function f to map between input-output pairs. Such a 
prior is fully specified by a mean, m(x) = �

[
f (x)

]
 , and a covariance function 

k(x, x�) = �
[
(f (x) − m(x))(f (x�) − m(x�))

]
 (Rasmussen and Williams 2005). We write 

f ∼ GP(m(⋅), k(⋅, ⋅)) to emphasize that f is sampled from a GP (Rasmussen and Williams 
2005). Given a data-set of n1 input-output pairs {(x(i), y(i))}n1

i=1
 , corresponding, respectively, 

to state-action and successor state tuples, one can perform predictions on a query set of n2 
test data points {x(j)⋆ }

n2
j=1

 . Such a distribution is Gaussian with predictive mean-vectors and 
covariance matrices given by: �⋆ = Kn2,n1

An1,n1
yn1 and �n2,n2

= Kn2,n2
− Kn2,n1

An1,n1
Kn1,n2

 , 
where An1,n1

= [Kn1,n1
+ �2

�
I]−1 with �� being the noise covariance that is assumed to be 

Gaussian. In the above, we also defined yn1 as a vector concatenating all training labels, 
Kn1,n1

= K(X,X) = [k(x(i), x(j))]ij , Kn1,n2
= K�

n2,n1
= K(X,X⋆) = [k(x(i), x

(j)
∗ )]ij , and 

Kn2,n2
(X⋆,X⋆) = [k(x

(i)
∗ , x

(j)
∗ )]ij , where X and X⋆ are feature matrices with #input-dim × n1 

and #input-dim × n2 sizes respectively. We executed training in GPyTorch (Gardner et al. 
2018), and used multi-output-GPs as defined in (de Wolff et al. 2020).

2.2  Active learning in dynamical systems

In active learning (Fedorov 2013; Settles 2009), an agent chooses points to sample/query 
that best improve learning or model updates. This is often performed by optimising an 
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acquisition function, which gives some quantification of how much a model would improve 
if a given data point were queried, e.g., points where the model has high entropy or where 
variance can be most reduced. Active learning with GPs has been studied in the static 
case, where points can be selected at will (see, e.g., (Krause and Guestrin 2007; Krause 
et al. 2008)). In the context of dynamical systems, however, added complications arise as 
one is not always able to directly drive the system into a desired state. Recent work has 
attempted to resolve this problem, e.g., in (Buisson-Fenet et al. 2019) and (Schultheis et al. 
2019), receding horizon optimisation is used to iteratively update a model, and in (Buis-
son-Fenet et al. 2019), actions are favoured that maximise the sum of differential entropy 
terms at each point in the mean trajectory predicted to occur by those actions. Moreover, in 
(Schultheis et al. 2019), a sum of variance terms is optimised to improve Bayesian linear 
regression. Again, for computational tractability, the predicted mean of states is used as 
propagating state distributions in the model is difficult. Different to our paper, neither of 
these works deal with safety, nor do they have additional objectives to maximise/minimise. 
In (Jain et  al. 2018) a GP model that is used for MPC is updated by greedily selecting 
points which maximise information gain, i.e., reduction in entropy, as is done in Krause 
et al. (2008). Only very recently, Ball et al. (2020) proposed an active learning approach 
coupled with MBRL. Similar to SAMBA, they use an adaptive convex combination of 
objectives, however their acquisition function is based on reward variance computed from 
a (finite) collection of models increasing the burden on practitioners who now need to pre-
define the collection of dynamics. They do not use GPs as we do, and do not consider 
safety. Compared to Ball et  al. (2020), we believe SAMBA is more flexible supporting 
model-learning from scratch and enabling principled exploration coupled with safety con-
sideration. Further afield from our work, active learning has been recently studied in the 
context of GP time-series in Zimmer et al. (2018), and for pure exploration in Shyam et al. 
(2019), which uses a finite collection of models. Our functions generalise the above to con-
sider safe-regions and future information trade-off as we detail in Sect. 3.2.

3  SAMBA: framework & solution

3.1  Solution method

In designing SAMBA, we take PILCO (Deisenroth and Rasmussen 2011) as a template 
and introduce two novel ingredients allowing for active exploration and safety. Follow-
ing PILCO, SAMBA runs a main loop that gathers traces from the real environment and 
updates a surrogate model, PGP(⋅) ∶ X × U × X → [0,∞) , encoded by a Gaussian process. 
Given PGP(⋅) , PILCO and other model-based methods (Srinivas et  al. 2020) attempt to 
obtain a policy that minimises total-expect cost with respect to traces, � , sampled from the 
learnt model by solving

with C(�) =
∑T

t=0
� tc(xt, ut) and

min
�

��∼psurr(�)
[C(�)]

psurr(�) = �0(x0)

T−1∏
t=0

PGP(xt+1|xt, ut)�(ut|xt)
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Given a (GP) model of an environment, we formalise our problem as a constrained MDP 
with an additional active learning loss. We define a cost function c ∶ X × U → ℝ , con-
straint cost function (used to encode safety) l ∶ X × U → ℝ , additional objective function 
� ∶ X × U → ℝ , and discount factor � ∈ [0, 1).1 In our setting, for instance, l encodes the 
state-action’s risk by measuring the distance to an unsafe region, while � denotes an acqui-
sition function from these described in Sect.  3.2. To finalise the problem definition, we 
need to consider an approachable constraint to describe safety considerations. In incorpo-
rating such constraints, we are chiefly interested in those that are flexible (i.e., can sup-
port different user-designed safety criteria) and allow us to quantify events occurring in 
tails of cost distributions. When surveying constrained MDPs, we realise that the litera-
ture predominately focuses on expectation-type constraints (Achiam et al. 2017; Ray et al. 
2019) – a not so flexible approach restricted to being safe on average. Others, however, 
make use of conditional-value-at-risk (CVaR); a coherent risk measure (Chow et al. 2017) 
that provides powerful and flexible notions of safety (i.e., can support expectation, tail-
distribution, or hard – unsafe state visitation – constraints) and quantifies tail risk in the 
worst (1 − �)-quantile. Formally, given a random variable Z, CVaR�(Z) is defined as: 
CVaR�(Z) = min�[� +

1

1−�
�[(Z − �)+]] , where (Z − �)+ = max(Z − �, 0).

With such a constraint, we can write the optimisation problem as:

with L(�) =
∑T

t=0
� tl(xt, ut) being total accumulated safety cost along � , and � ∈ ℝ+ a 

safety threshold.
We transform this problem into a single objective one through a linear combination of 

C(�) and �LOO(�) . This relaxed yet constrained version is given by

where �� is a tuneable hyper-parameter in [0, 1] and �LOO is an acquisition function defined 
in Sect. 3.2. Please note that the negative sign in the linear combination is due to the fact 
that we used −�LOO(�).

From Constrained to Unconstrained Objectives We write an unconstrained problem 
using a Lagrange multiplier �CVaR:

Due to non-convexity of the problem, we cannot assume strong duality holds, so in our 
experiments, we schedule �CVaR proportional to gradients using a technique similar to that 
in Schulman et al. (2017) that has proven effective.2 To solve the above optimisation prob-
lem, we first fix � and perform a policy gradient step in �.3 To minimise the variance in 
the gradient estimator of the accumulated cost C(�) and the acquisition function �LOO(�) 

(1)min
�

��∼psurr(�)
[C(�), � (�)]� s.t. CVaR�(L(�)) ≤ �,

(2)min
�

����∼psurr(�)
[C(�)] − (1 − ��)��∼psurr(�)

[�LOO(�)] s.t. CVaR�(L(�)) ≤ �

(3)
min
𝜋

𝜆⋆
𝜋
��∼psurr(�)

[C(�)] − (1 − 𝜆⋆
𝜋
)��∼psurr(�)

[�LOO(�)]

+ 𝜆CVaR[CVaR𝛼(L(�)) − 𝜉]

1 It is worth noting that the acquisition functions we develop in Sect. 3.2 map to ℝ+ instead of ℝ.
2 Note that a primal dual-method as in (Chow et al. 2015) is not applicable due to non-convexity. In the 
future, we plan to study approaches from (Goh and Yang 2001) to ease determining �

CVaR
.

3 We resorted to policy gradients for two reason: (1) cost functions are not necessarily differentiable, and 
( 2) better experimental behaviour when compared to model back-prop especially on OpenAI’s safety gym 
tasks.
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(defined in Sect. 3.2), we build two neural network critics that we use as baselines. The first 
attempts to model the value of the standard cost, while the second learns information gain 
values. For the CVaR’s gradient, we simply apply policy gradients. As CVaR is non-Mark-
ovian, it is difficult to estimate its separate critic. In our experiments, a heuristic where 
discounted safety losses as unbiased baselines was used and proved effective. In short, our 
main update equations when using a policy parameterised by a neural network with param-
eters � can be written as:

where �k is a learning rate, and V�1

C
(xt) , V

�2

�
(xt) are neural network critics with parameters 

�1 and �2 . We present the main steps in Algorithm 1 and more details in the Appendix.

The updated policy is then used to sample new traces from the real system where the 
above process repeats. During this sampling process, model-based algorithms consider 
various acquisition functions in acquiring transitions that reveal novel information, which 
can be used to improve the surrogate model’s performance. PILCO, for instance, makes use 
of the GP uncertainty, while ensemble models (Saphal et al. 2020; van Amersfoort et al. 
2020) explore by their aggregated uncertainties. With sufficient exploration, this allows 
policies obtained from surrogate-models to control real-systems. Our safety considerations 
mean we would prefer agents that learn well-behaving policies with minimal sampling 
from unsafe regions of state-action spaces; a property we achieve later by incorporating 
CVaR constraints as we detail in Sect. 3.1. Requiring a reduced number of visits to unsafe 
regions, hence, lessens the amount of “unsafe” data gathered in such areas by definition. 
Therefore, model entropy is naturally increased in these territories and algorithms follow-
ing such exploration strategies are, as a result, encouraged to sample from hazardous states. 
As such, a naive adaptation of entropy-based exploration can quickly become problematic 
by contradicting safety requirements. To circumvent these problems, we introduce two new 
acquisition functions in Sect. 3.2, that assess information beyond training-data availability 
and consider input-output data distributions. Our acquisition functions operate under the 
assumption that during any model update step, “safe” transition data (i.e., a set of state-
action-successor states sampled from safe regions) is more abundant in number when com-
pared to “unsafe” triplets. Considering such a skew between distributions, our acquisition 

(4)
�[j][k+1] = �[j][k] − 𝜂k

(
��

[∑
t≥1

∇� log𝜋�(ut|xt)
(
𝜆⋆
𝜋
(QC(xt, ut) − V

𝜙1

C
(xt))

− (1 − 𝜆⋆
𝜋
)(Q� (xt, ut) − V

𝜙2

�
(xt))

)]
+ 𝜆CVaR∇�CVaR𝛼(L(�))

)
,
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functions yield increased values on test queries close to high-density training data. Given 
such an acquisition function, we enable novel model-based algorithms that attempts to 
minimise cost, while maximising active values and satisfying safety constraints.

Of course, the assumption of having skew towards safe regions in training data distribu-
tion is generally not true since solving the above only ensures good expected returns.

To frequently sample safe regions, we augment cost minimisation with a safety con-
straint that is encoded through the CVaR of a user-defined safety cost function with respect 
to model traces. Hence, SAMBA solves a constrained optimisation problem (Sect.  3.1) 
aimed at minimising cost, maximising active exploration, and meeting safety constraints.

3.2  �‑functions for safe active exploration

In general, � can be any bounded objective that needs to be maximised/minimised in addi-
tion to standard cost. Here, we choose one that enables active exploration in safe state-
action regions. To construct � , we note that a feasible policy – i.e., one abiding by CVaR 
constraints – of the problem in Eq. (1) samples tuples that mostly reside in safe regions. 
As such, the training data distribution is skewed in the sense that safe state-action pairs are 
more abundant than unsafe ones. Exploiting such skewness, we can indirectly encourage 
agents to sample safe transitions by maximising information gain functions that only grow 
in areas close-enough to training data.

�LOO: Leave-One-Out acquisition Consider a GP dynamics model, PGP , that is trained on 
a state-action-successor-state data set D = {⟨x̃(i), y(i)⟩}n1

i=1
 with x̃(i) = (x(i), u(i)).4 Such a GP 

induces a posterior allowing us to query predictions on n2 test points x̃⋆ = {(x
(j)
⋆ , u

(j)
⋆ )}

n2
j=1

 . 
As noted in Sect. 2.1, the posterior is also Gaussian with the following mean vector and 
covariance matrix:5 �⋆ = Kn2,n1

An1,n1
yn1 and �n2,n2

= Kn2,n2
− Kn2,n1

An1,n1
Kn1,n2

 . Our goal 
is to design a measure that increases in regions with dense training-data (due to the usage 
of CVaR constraint) to aid agents in exploring novel yet safe tuples. To that end, we pro-
pose using an expected leave-one-out acquisition function between two Gaussian processes 
defined, for a one query data point x̃⋆ , as:

with D¬i being D with point i left-out. Importantly, such a measure will only grow in 
regions which are close-enough to sampled training data, as posterior mean and covariance 
of p(f⋆|D¬i) shift by a factor that scales linearly and quadratically, respectively, with the 
total covariance between x̃⋆ and X¬i where X¬i denotes a feature matrix with the ith row 
removed.6 In other words, such a acquisition function fulfils our requirement in the sense 
that if a test query is distant (in distribution) from all training input data, it will achieve low 
�LOO score. Though appealing, computing a full-set of �LOO can be highly computationally 
expensive, of the order of O(n4

1
) – computing An1¬i,n1¬i

 requires O(n3
1
) and this has to be 

repeated n1 times. A major source contributing to this expense, well-known in GP litera-
ture, is related to the need to invert covariance matrices. Rather than following variational 

𝜁LOO(x̃⋆) = �i∼Uniform[1,n1]

[
KL

(
p(f⋆|D¬i)||p

(
f⋆|D

))]

4 As D changes at every outer iteration, we simply concatenate all data in one larger data set; see Algo-
rithm 1.
5 For clarity, we describe a one-dimensional scenario.
6 Though intuitive, we provide a formal treatment of the reason behind such growth properties in the 
Appendix.
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approximations (which constitute an interesting direction), we prioritise sample-efficiency 
and focus on exact GPs. To this end, we exploit the already computed An1,n1

 during the 
model-learning step and make-use of the matrix inversion lemma (Petersen et al. 2008) to 
recursively update the mean and covariances of p(f⋆|D¬i) for all i (see Appendix): 
�
(i)
⋆ = �⋆ − Kn2,n1

a�
i
ai

ai,i
yn1 and �(i)

n2,n2
= �n2,n2

+ Kn2,n1

a�
i
ai

ai,i
Kn1,n2

 , with ai being the ith row of 
An1,n1

 . Hence, updating the inverse covariance matrix only requires computing and adding 
the outer product of the ith row An1,n1

 , divided by the ith diagonal element. This, in turn, 
reduces complexity from O(n4

1
) to O(n3

1
) . Note that now the main contributors to the com-

putational cost of LOO are repeated matrix-vector, vector-vector multiplications, which 
can be efficiently distributed. Moreover, O(n3

1
) is also the complexity of the exact GP we 

rely on for the surrogate model, with the notable difference that the matrix inversions that 
are required for inference with a GP cannot be distributed as efficiently as the operations 
detailed above. As a consequence, one would not expect the computational budget to 
increase dramatically with the use of this acquisition function.

�Bootstrap: Bootstrapped symmetric acquisition We also experimented with another acqui-
sition function that quantifies posterior sensitivity to bi-partitions of the data as measured 
by symmetric KL-divergence7 (also called Jensen-Shannon divergence), averaged over pos-
sible bi-partitions: 𝜁Bootstrap(x̃⋆) = �⟨D1,D2⟩[KLsym(p(f⋆�D1)��p(f⋆�D2))] , where ⟨D1,D2⟩ is 
a random bi-partition of the data D . In practice, we randomly split the data in half, and do 
this K times (where K is a tuneable hyper-parameter) to get a collection of K bi-partitions. 
We then average over that collection. Similar to �LOO , �Bootstrap also assigns low importance 
to query points far from the training inputs, and hence, can be useful for safe-decision mak-
ing. In our experiments, �LOO provided better-behaving exploration strategy, see Sect. 4.

Transforming 𝜁
⋅
(x̃⋆) to �

⋅
(�) Both introduced functions are defined in terms of query test 

points x̃⋆ . To incorporate in Eq. (1), we define trajectory-based expected total information 
gain as

Interestingly, this characterisation trades off long-term versus short-term information gain 
similar to how cost trades-off optimal greedy actions versus long-term decisions. In other 
words, it is not necessarily optimal to seek an action that maximises immediate informa-
tion gain since such a transition can ultimately drive the agent to unsafe states (i.e., ones 
that exhibit low 𝜁

⋅
(x̃) values). In fact, such horizon-based definitions have also recently 

been shown to improve modelling of dynamical systems (Buisson-Fenet et al. 2019; Shyam 
et al. 2019). Of course, our problem is different in the sense that we seek safe policies in a 
safe decision-making framework, and thus require safely exploring acquisition functions.

�LOO(�) =

T�
t=0

� t�LOO(⟨xt, ut⟩),

�Bootstrap(�) =

T�
t=0

� t�Bootstrap(⟨xt, ut⟩).

7 A symmetric KL-divergence between two distributions p, and q is defined as: (KL(p‖q)+KL(q‖p))∕2.
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4  Experiments

We assess SAMBA in terms of both safe learning (train) and safe final policies (test) on 
five dynamical systems, two of which are adaptations of standard dynamical systems for 
MBRL (Safe Pendulum and Safe Cart-Pole Double Pendulum), while the third (Fetch 
Robot — optimally control end-effector to reach a 3D goal) we adapt from OpenAI’s 
robotics environments (Brockman et al. 2016). Lastly, we use the car and point safe robotic 
task from OpenAI Safety Gym (Ray et al. 2019). All environments and respective unsafe 
(hazard) regions are visualised in Fig. 1. Total cost (TC) during training is the constraint 
cost the agent acquires throughout all training interactions with the environment, and simi-
larly total cost during evaluation is the accumulated constraint cost at test time in the envi-
ronment. Total violation (TV) similarly is the total constraint violations through training/
testing. Note, constraints in general are not explicitly designed to minimise TV, and TV can 
be non-zero even in the optimality.

In each of the benchmark tasks, we define unsafe regions as areas in state space and 
design the safety loss (i.e., L(�) ) to correspond to the (linearly proportional) distance 
between the end-effector’s position (when in the hazard region) to the centre of the unsafe 
region. SAMBA implemented a more stable proximal update of Eq. (4) following a similar 
method to (Schulman et al. 2017). We compare against algorithms from both model-free 
and model-based literature. Unconstrained model-free comparisons against TRPO (Schul-
man et al. 2015), PPO (Schulman et al. 2017), while expectation constrained model-free 
methods include CPO (Achiam et al. 2017), STRPO (safety-constrained TRPO) (Ray et al. 
2019) and SPPO (safety-constrained PPO) (Ray et al. 2019). These expectation constrained 

Fig. 1  Environments with their respective unsafe regions visualised for evaluating safe algorithms
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and unconstrained algorithms enable us to determine if SAMBA improves upon the fol-
lowing: sample complexity during training (number of observations during training from 
the real system); total violations (TV), that is, the total number of timesteps spent inside 
the unsafe region; total accumulated safety cost.8 Comparison with unconstrained model-
based solvers (e.g., PlaNet (Hafner et al. 2019), PILCO (Deisenroth and Rasmussen 2011), 
MBPO (Janner et al. 2019)) sheds light on the importance of our acquisition functions for 
safe exploration. We use PlaNet and MBPO as generic model-based deep reinforcement 
learning algorithm that use neural network dynamic models, i.e., we do not anticipate a 
considerably higher sample efficiency from other methods with neural network dynamic 
models. It is important to note that when implementing PILCO, we preferred a flexible 
solution that does not assume moment-matching and specific radial-basis function control-
lers. Hence, we adapted PILCO to support proximal policy updates, referred to as PPILCO 
in our experiments. In our comparisons, we will also employ a variant of SAMBA, which 
does not use active learning (whilst the CVaR constraint is kept) and call it SAMBA w/o 
active learning. This algorithm can be seen as a safety-constrained adaptation of PPILCO 
(i.e., PPILCO with CVaR constraint). The adaptation of PPILCO with active learning (i.e., 
SAMBA without CVaR constraints) performed very similarly to PPILCO and therefore not 
presented. Note, we do not show time complexity analysis as we did not observe significant 
differences between algorithms overall run time, whilst the focus of this work remains on 
lowering the total unsafe interactions required by a safe algorithm at train and deployment 
(test). As SAMBA introduces exploration components to standard model-based learners, 
we analysed these independently before combining them and reporting TV and TC  (see 

Fig. 2  Comparing acquisition function values across the entire state space. Note, policies used within this 
framework are encouraged to visit regions with higher (yellow) values. We first generate samples by ran-
dom rollouts, as is typical in initial learning stages for most deep reinforcement learning algorithms. A GP 
dynamics model for each environment was then trained on 100 samples. The samples used to train the mod-
els are marked with black crosses. We then plot the varying acquisition function values using this GP for 
varying acquisition functions. More plots for different numbers of samples can be found in the Appendix 
(Color figure online)

8 Note, we report safe learning process TC, which is the total incurred safety cost throughout all training 
environment interactions, and safe evaluation TC and TV, which similarly is the total incurred safety cost 
during evaluation, and the total violations from the timesteps spent inside the unsafe region during evalua-
tion. Another metric used to compare safety algorithms is samples used for training, this is often referred to 
purely as samples, and is defined as the numbers of observations of the real system.
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Table  1 and Table  3).8 All policies are represented by two-hidden-layer (32 units each) 
neural networks with tanh non-linearities, which is one of the common choices for pol-
icy architectures in the RL literature. All hyper-parameters to reproduce our results can 
be found in the Appendix, we typically fixed all policy and critic parameters. The most 
crucial hyper-parameter to learning a safe policy was the cost constraint, whereby a sim-
ple random search over the range [0.01,  0.05] led to safe policies on all environments. 
We also invested resources in tuning the gamma used in PPO, searching over the values 
� ∈ [0.99, 0.98, 0.97, 0.96, 0.95] , although this was not detrimental to algorithms safety 
performance. We set 𝜆⋆

𝜋
= 0.9 , which provided reasonable results for all experiments.

Acquisition Function Component Evaluating our (acquisition) functions, we conducted an 
analysis that reports a 2D projection view of the state space at various intervals in the data-
collection process. We compare �LOO(�) and �Bootstrap(�) against a Max Entropy (Shannon 
2001) acquisition function and report the results on two systems in Fig. 2. Our results sug-
gest that LOO is much more conservative and will aim to guide the policy away from the 
dangerous area. At the same time, entropy encourages exploration into the unsafe area, 
additionally encouraged with the increase of number of samples - a highly undesirable 
property when safe active exploration is required. Similar results are demonstrated with 
the Fetch Reach robot task (in the Appendix). It is also worth noting that due to the high-
dimensional nature of the tasks, visual analysis can only give indications. Still, empirical 
analysis supports our claim and performance improvements are clear; see Table 1.

Learning and Evaluation Having seen initial results which highlight the benefit of using 
our acquisition functions, we then conducted learning and evaluation experiments compar-
ing SAMBA against state-of-the-art methods.

Results reported in Table  1 demonstrate that SAMBA reduces the amount of train-
ing TC, and samples  8 compared to others. This is, perhaps, expected while comparing 
SAMBA to model-free baselines (SPPO, CPO, STRPO), which are known to be sample 
inefficient, and PlaNet  w  RS, which was designed for high-dimensional environments. 
Interestingly, during safe evaluation (deploying learnt policy and evaluating performance), 
we see SAMBA’s safety performance competitive with (if not significantly better than) 
policies trained for safety in terms of TC and TV. 8 Such results are interesting as SAMBA 
was never explicitly designed to minimise test TV,  8 but it was still able to acquire sig-
nificant reductions. Of course, one might argue that these results do not convey a safe final 
policy, as violations are still non-zero. Recall, however, that we define safety in terms of 
CVaR constraints, which do not totally prohibit violations, rather, limit the average cost of 
excess violations beyond a (user-defined) risk level � . Indeed, as mentioned above, it is not 
possible to guarantee total safety without strong assumptions on dynamics and/or an ini-
tial safe policy (and of course, none of the algorithms in Table 1 achieve zero violations). 
Finally, note that SAMBA policies consistently deliver similar safety costs (TC and TV) as 
SPPO and STRPO, which can be explained by similar policy updates for all three methods.

Learning Reducing Constraint Cost & Sample Complexity. Figure  3 shows that SAMBA 
significantly reduces the total acquired constraint cost (top), and number of samples used 
to train an agent (bottom). This illustrates that sample efficiency does not come as a trade-
off to safety (the values of TC and TV) at the test or the evaluation time. We can attribute 
this behaviour to use of a Gaussian Process being able to accurately model the transition 
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Fig. 3  (Top) Percentage reduction of total constraint cost  8 acquired to train SAMBA compared to base-
lines. (Bottom) Percentage reduction of samples 8 used to train SAMBA compared to baselines

Fig. 4  (Top) Percentage reduction of total constraint cost acquired during evaluation of SAMBA compared 
to baselines. (Bottom) Percentage reduction of constraint violations during evaluation of SAMBA compared 
to baselines
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function in few samples, allowing us to transfer the dangerous learning process from the 
real environment into the dynamics model.

Evaluation Reducing Constraint Cost & Violations Figure   4 (top) shows large percent-
age improvements of SAMBA’s constraint costs during evaluation in the real environment, 
compared with baselines. From our ablation studies (Table  1), we can clearly see these 
gains are due to the addition of both the CVaR metric and the active learning component 
combined. Figure  4 (bottom) tells the same story as evaluation constraint cost, although 
the raw numbers for violations are significantly lower than the constraint costs acquired, to 
the violation region being much smaller than the constraint cost inducing region.

To evaluate risk performance, we conducted an in-depth study evaluating both expec-
tation and CVaR constraints on the two most challenging environments, Safe Cart Pole 
Double Pendulum and Safe Fetch Reach. We would expect all constrained methods to sat-
isfy their constraint at test time, which surprisingly is not what we observe for CPO, seen 
in Table 2. Secondly, we observe that CVaR constrained methods are able to meet their 
constraints, as we as the expectation constraints. Thirdly, it is clear that active learning 
can play a crucial role in producing a constraint satisfying policy, as is seen in the abla-
tion study in Safe Fetch Reach. Overall, Table 2 demonstrates that SAMBA achieves lower 
safety cost quartiles and lower expected safety cost, using cost limits � = 0.25 and � = 0.75 
(Table 3). Similarly, Table 4 demonstrates that SAMBA significantly outperforms others 
with respect to safety during evaluation, where we used a cost limit � = 5 and � = 10 for 

Table 1  Safe learning and safe evaluation for Safe Pendulum, Safe Cart Pole Double Pendulum, and Safe 
Fetch Reach. We averaged each policy’s safe evaluation over five random seeds, and collected 10000 evalu-
ation samples per seed8

The data is scaled by 103 . PlaNet w RS on Safe Fetch Reach diverged during training. We have stopped 
training the model-free approaches (PPO, TRPO, CPO, SPPO, STRPO) after collecting 1000 ⋅ 103 samples.

Learner Safe pendulum Safe cart pole double pen-
dulum

Safe fetch reach

Learning Evalua-
tion

Learning Evaluation Learning Evalua-
tion

Samples TC TV TC Samples TC TV TC Samples TC TV TC

TRPO 1000 109 4.3 4.9 1000 311 10 23 1000 793 1.8 2.7
PPO 1000 81 3.6 5 1000 144 5.5 35 1000 667 1.6 3.1
PlaNet 100 58 4.5 5.2 40 2.7 7.7 29 100 114 2.3 2.9
MBPO 90 50 4.3 5.6 50 3.3 6.9 31 80 102 2.7 3.1
PPILCO 2 0.04 2.8 4.5 6 0.097 7.1 33 5 0.49 1.9 3
PlaNet w RS 100 52 3.5 4.2 40 1.4 1.6 2.5 – – – –
CPO 1000 61 4.7 4.4 1000 98 1.1 5 1000 169 1.9 2.7
STRPO 1000 33 2.0 2.1 1000 86 2.1 2.7 1000 169 1.7 2.1
SPPO 1000 67 1.7 2.4 1000 65 1 1.8 1000 296 1.5 2
SAMBA (w/o 

active learn-
ing)

1.8 0.02 1.7 2.0 6 0.062 1.2 1.7 5 0.38 1.4 2.2

SAMBA 1.6 0.01 1.5 2.0 5 0.052 0.85 1.4 5 0.21 1.2 1.9
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Table 2  Constraint satisfaction ( ✓ ) or constraint violation ( × ) on Safe Cart Pole Double Pendulum and Safe 
Fetch of model-based (bold) and model-free (italics) solvers. We evaluated expectation constraints (Exp.) 
and CVaR over 5 seeds per algorithm. Results show SAMBA satisfied safety constraints, outperforming 
others in different quartiles. There is also a clear trade-off between returns and safety for all algorithms. 
Interestingly, SAMBA is safer yet acquiring acceptable expected returns – close to SPPO for instance. Note, 
all policies shown below solve the given tasks, i.e., reach the target states

PlaNet w RS on Safe Fetch Reach diverged during training.

Learner Safe cart pole double pendulum Safe fetch reach

Quartile Constraint �� [C(�)] Quartile Constraint �� [C(�)]

0.25 0.5 0.75 Exp. CVaR� 0.25 0.5 0.75 Exp. CVaR�

PPO 5.1 5.5 9.6 × × − 19 0.94 1.26 1.88 × × -0.26
PPILCO 5.2 5.4 8.7 × × − 21 0.91 1.22 1.45 × × − 0.36
PlaNet 5.2 6.1 8.7 × × − 21 0.62 1.13 1.87 × × − 0.39
MBPO 4.5 5.5 9.9 × × − 21 0.68 1.57 2.09 × × − 0.37
TRPO 5.0 5.7 7.4 × × − 22 0.68 0.83 0.94 × × − 0.57
CPO 0.44 0.49 0.94 × × − 23 0.86 0.90 1.01 × × − 0.43
PlaNet w RS 0.82 0.99 1.07 × × -24 – – – – – –
SAMBA (w/o 

active learn-
ing)

0.20 0.27 0.31 × × − 25 0.44 0.75 1.11 ✓ × − 0.57

STRPO 0.23 0.26 0.33 ✓ × − 28 0.13 0.47 0.87 ✓ × − 0.98
SPPO 0.20 0.23 0.32 ✓ × − 27 0.29 0.43 0.72 ✓ ✓ − 1.51
SAMBA 0.14 0.20 0.23 ✓ ✓ − 27 0.00 0.05 0.18 ✓ ✓ − 2.27

Table 3  Safe learning and safe 
evaluation for Safety Gym Car 
and Safety Gym Point. We 
averaged each policy’s safe 
evaluation over five random 
seeds, and collected 10000 
evaluation samples per seed. 8 . 
Note, we tested SAMBA against 
all other algorithms with a two 
sided T-test and highlighted 
a statistic in bold if SAMBA 
outperformed all others 
significantly. Where significance 
is defined by all tests having a 
p-value of ≤ 0.05

The data is scaled by 103 . We have stopped training the model-free 
approaches (PPO, TRPO, CPO, SPPO, STRPO) after collecting 
1000 ⋅ 10

3 samples.

Learner Safety gym car Safety gym point

Learning Evalua-
tion

Learning Evalua-
tion

Samples TC TV TC Samples TC TV TC

TRPO 1000 202 3.7 5.6 1000 26.8 8.6 13
PPO 1000 205 7.4 11 1000 9 6.1 9.2
PlaNet 100 3.5 3.2 4.9 100 2.6 7.7 16
MBPO 90 3.4 4.3 5.6 100 3.2 6.9 21
PPILCO 2 0.47 7.4 11 8 0.31 5.4 8.9
PlaNet w RS 100 3.4 3.1 3.9 100 2.5 7.9 13
CPO 1000 49 4.7 4.4 1000 14 1.1 5
STRPO 1000 64 2.0 2.1 1000 17 2.1 2.7
SPPO 1000 66 1.7 2.4 1000 10 1 1.8
SAMBA (w/o 

active learn-
ing)

0.8 0.13 1.4 4.8 0.7 0.56 1.8 2.5

SAMBA 0.6 0.01 1.3 2.2 0.5 0.04 1.3 1.5
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Safety Gym Car and Safety Gym Point environments, respectively. These results suggest 
that SAMBA produces safe-final policies in terms of its objective in Eq. (1).  

5  Conclusion and future work

We proposed SAMBA, a safe and active model-based learner that makes use of GP mod-
els and solves an objective constraint problem to trade-off cost minimisation, exploration, 
and safety. We evaluated our method on three benchmarks, including ones from Open AI’s 
safety gym and demonstrated significant reduction in training cost and sample complexity, 
as well as safe-final policies in terms of CVaR constraints compared to the state-of-the-art.

One of the strengths of our approach is the active learning component, which explores 
by sampling around the safe areas. This, however, can lead to overly cautious sampling 
impeding the task learning process. This may potentially be very restrictive in complex 
environments, such as, a humanoid robot learning to stand, walk and eventually run. In this 
case, a bold exploration outside the seen data may be needed. While overcoming this limi-
tation is outside the scope of this work, we plan to address it in future.

In future, we plan to generalise to variational GPs (Damianou et al. 2011) in order to 
scale to larger number systems, and to apply our method in real-world robotics. Addition-
ally, we want to study the theoretical guarantees of SAMBA to demonstrate convergence to 
well-behaving, exploratory, and safe policies.

Table 4  Constraint satisfaction ( ✓ ) or constraint violation ( × ) on Safety Gym Point and Car tasks (Ray 
et al. 2019). and Safe Fetch of model-based (bold) and model-free (italic) solvers. We evaluated expecta-
tion constraints (Exp.) and CVaR. Note, all policies shown below solve the given tasks, i.e., reach the target 
states. Note, we tested SAMBA against all other algorithms with a two sided T-test and highlighted a statis-
tic in bold if SAMBA outperformed all others significantly. Where significance is defined by all tests having 
a p-value of ≤ 0.05

Learner Safety gym car Safety gym point

Quartile Constraint �� [C(�)] Quartile Constraint �� [C(�)]

0.25 0.5 0.75 Exp. CVaR� 0.25 0.5 0.75 Exp. CVaR�

PPO 7.1 7.8 8.0 × × 2.4 0.79 1.15 18.3 × × 0.24
PPILCO 7.5 7.7 8.1 × × 2.1 0.83 1.01 14.9 × × 0.13
PlaNet 2.7 6.0 6.5 × × 1.03 9.4 11.6 22.9 × × 0.44
TRPO 3.5 6.7 7.3 × × 2.14 0.02 12 23.3 × × 0.43
CPO 2.8 4.3 4.8 ✓ × 2.8 0.0 2.3 13.5 ✓ × 0.12
PlaNet w RS 1.3 5.2 6.7 × × 0.9 7.5 13.6 20.1 × × 0.4
SAMBA (w/o 

active learn-
ing)

1.9 3.4 4.0 ✓ ✓ 1.1 1.8 2.2 5.4 ✓ × 0.6

STRPO 2.8 3.0 6.3 ✓ × 1.9 0.17 1.16 5.20 ✓ ✓ 0.13
SPPO 0.8 7.8 8.1 × × 1.1 0 1.02 4.49 ✓ ✓ 0.51
MBPO 1.7 7.4 8.2 × × 1.15 8.5 12.1 15.2 × × 0.39
SAMBA 0.7  2.7 3.5 ✓ ✓ 0.92 0.00 0.62 3.87 ✓ ✓ 0.58
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A Algorithm

In this section we provide a more detailed description of Algorithm  1. We shall use 
the following short-hand for the advantage function: A�1

C
(x, u) ∶= QC(x, u) − V

�1

C
(x) , 

A
�2

�
(x, u) ∶= Q� (x, u) − V

�2

�
(x) . Note that in our implementation we use 𝜆⋆

𝜋
 as a hyper-

parameter, but we have also experimented with its automatic determination as presented 
in Algorithm  3. In this case, 𝜆⋆

𝜋
 is determined using the estimates of ∇��� [C(�)] and 

∇��� [�LOO] and scheduled at every iteration. However, since the constant value showed a 
good performance, we opted to use 𝜆⋆

𝜋
 as a hyper-parameter.
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B Acquisition functions

B.1 Acquisition function intuition

We implement our code in GPyTorch (Gardner et al. 2018), which computes a Cholesky 
decomposition of A = LL� during training. The use of the triangular matrix L allows the 
problem to be divided in such a way that memory requirements are reduced, as most matrix 
multiplications can be pre-computed and re-used when needed. Note also that the diagonal 
elements of A can be readily computed as ai,i =

∑i

j=1
L2
i,j

 . All these operations considered, 
the total computational burden of a full-set LOO distribution is reduced from O(N4) to 
O(N3) . The number O(N3) is a result of N matrix multiplications (each per sample) cost-
ing O(N2) each. Note that we have eliminated matrix inversion contribution to the cost as 
we show in Appendix  B.2, and these computations can be distributed fairly easily. Fur-
thermore, as we mentioned in the main text O(N3) is also the complexity of the exact GP, 
which comes from matrix inversion and cannot be easily distributed. The space complexity 
of our batch operations, however, can increase due to the need of storing a large tensor. 
Rather than doing so, we implement a batched version that eliminates such a need and 
achieves desirable results.

To illustrate what information the LOO acquisition function brings, we analyse under 
which conditions its value is null. Coming back to our definition, we can write explicitly 
the KL-divergence from p(f⋆|D¬i) to p(f⋆|D) , for a single test data-point (i.e., n2 = 1):

where we use non-bold and non-capitalised fonts in order to signify that �(i)
n2,n2

 , �n2,n2 , 𝜇
(i)
⋆  

and 𝜇⋆ are scalars. Note that the second expression is non-negative since log(x) ≤ x − 1 for 
all x and the equality is achieved if and only if x = 1 . Therefore for the KL divergence in 
Equation (5) to be zero, two main conditions need to be met: 𝜇(i)

⋆ = 𝜇⋆ and �(i)
n2,n2

= �n2,n2 . 
Since in general �(i)

n2,n2
= �n2,n2 + Kn2,n1

a�
i
aiKn2,n1

∕ai,i we obtain another necessary condi-
tion for the KL divergence being equal to zero: Kn2,n1

a�
i
= 0 . Now we will show that 

Kn2,n1
a�
i
= 0 (and hence �(i)

n2,n2
= �n2,n2 ) is also sufficient. Developing the condition 𝜇(i)

⋆ = 𝜇⋆ 
we have Kn2,n1

a�
i
aiyn1 = 0 since 𝜇(i)

⋆ = 𝜇⋆ − Kn2,n1
a�
i
aiyn1 . As both Kn2,n1

a�
i
 and aiyn1 are 

scalars this equivalently amounts to Kn2,n1
a�
i
= 0 or aiyn1 = 0 . Therefore if Kn2,n1

a�
i
= 0 (or 

equivalently �(i)
n2,n2

= �n2,n2 ) then 𝜇⋆ = 𝜇
(i)
⋆  and the KL divergence in Equation (5) is equal to 

zero. In other words, the KL divergence between the two distribution will be zero if and 

(5)

KL
�
p(f⋆�D¬i)‖p(f⋆�D)

�
=

1

2

⎛
⎜⎜⎜⎜⎜⎝

�
𝜇⋆ − 𝜇

(i)
⋆

𝜎n2,n2

�2

���������������
≥0

+

�
𝜎(i)
n2,n2

𝜎n2,n2

�2

− log

�
𝜎n2,n2

(i)

𝜎n2,n2

�2

− 1

�������������������������������������������������
≥0

⎞
⎟⎟⎟⎟⎟⎠

,
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only if the covariance of the test data and the target training data is zero when all other 
points are observed. As a consequence, the LOO acquisition function can be seen as a 
proxy to the expected reduction of uncertainty about training output values conditioned on 
the observation of the queried datapoint.

The intuition behind these conditions is that the expected KL divergence between 
LOO and the full distributions answers a completely different question when compared to 
entropy bonus: whereas entropy bonus indicates how much “absolute” uncertainty there 
is about a test output – which we always expect to be high for points situated at a distance 
of the training inputs – the LOO acquisition function indicates how much, on average, we 
can learn (i.e. how big would be the reduction in uncertainty would be) about the training 
outputs if we were to observe the queried test data. Therefore, the LOO acquisition func-
tion truly answers the question of how much we can learn about the current model when 
observing the queried point.

B.2 LOO computation

Without loss of generality, assume that we leave the last sample out, i.e., we will set i = n1 . 
We have the following expressions for the means:

and the covariance matrices:

where

The main difficulty in computing the updates �(n1)

⋆ − �⋆ , �(n1)
n2,n2

−�n2,n2
 is actually dealing 

with the update involving the matrices An1−1,n1−1
 and An1,n1

.
Note that there exist b0 , b1 , c0 such that:

We have

As A−1
n1,n1

= Kn1,n1
+ �2

�
I , using the block inversion lemma it is straightforward to show 

that:

(6)
�⋆ = Kn2,n1

An1,n1
yn1 ,

�
(n1)

⋆ = Kn2,n1−1
An1−1,n1−1

yn1−1,

(7)
�n2,n2

= Kn2,n2
− Kn2,n1

An1,n1
Kn1,n2

,

�(n1)
n2,n2

= Kn2,n2
− Kn2,n1−1

An1−1,n1−1
Kn1−1,n2

,

An1,n1
=
[
Kn1,n1

+ �2
�
I
]−1

,

An1−1,n1−1
=
[
Kn1−1,n1−1

+ �2
�
I
]−1

.

(8)
Kn2,n1

=
[
Kn2,n1−1

c0
]

Kn1,n1
=

[
Kn1−1,n1−1

b�
0

b0 b1

]

An1,n1
=
[
Kn1,n1

+ �2
�
I
]−1

=

[
A¬n1,¬n1

a�
n1,¬n1

an1,¬n1 an1,n1

]
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and consequently:

For simplicity, let us introduce the following matrix:

where an1 =
[
an1,¬n1 an1,n1

]
 is the n1-th row of the matrix An1,n1

.
Now:

Similarly,

Hence, we have that

for any i(Table 5).

C Environmental settings

We limit all environments to have a maximum horizon/ trajectory length of 100 
steps. We implemented a safety cost function with the following settings; The 
unsafe region started at USRmin = 20�∕180 and ended at USRmax = 30�∕180 , 
therefore if �1 was in USRmin ≤ �1 ≤ USRmax we would refer to this as a vio-
lation and safety cost would be incurred. The Hazard Region contained within 
HZmin = USRmin − �∕4 ≤ HZ ≤ USRmax + �∕4 = HZmax . Where �1 is transformed to 

Kn1−1,n1−1
+ �2

�
I =

[
A¬n1,¬n1

− a�
n1,¬n1

a−1
n1,n1

an1,¬n1

]−1
,

An1−1,n1−1
=
[
Kn1−1,n1−1

+ �2
�
I
]−1

= A¬n1,¬n1
− a�

n1,¬n1
a−1
n1,n1

an1,¬n1 ,

� = An1,n1
−

[
An1−1,n1−1

0

0 0

]
=

[
A¬n1,¬n1

a�
n1,¬n1

an1,¬n1 an1,n1

]
−

[
A¬n1,¬n1

− a�
n1,¬n1

a−1
n1,n1

an1,¬n1 0

0 0

]
=

[
a�
n1,¬n1

a−1
n1,n1

an1,¬n1 a�
n1,¬n1

an1,¬n1 an1,n1

]
=

[
a�
n1,¬n1

an1,n1

] [
an1,¬n1 an1,n1

]
∕an1,n1 =

a�
n1
an1

an1,n1

,

�(n1)
n2,n2

−�n2,n2
= Kn2,n1
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− Kn2,n1−1
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[
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�

[
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n1
an1
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�
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always remain in the region �1 ∈ [−�,�] . Therefore, safety cost is linearly proportional to 
the distance from the edge of the hazard region ( HZmin or HZmax ) to the centre of the hazard 
region (HZmax + HZmin)∕2 . We also implemented batched versions of the pendulum reward 
function as well as batched versions of the pendulum safety function using torch. We also 
implement the unsafe region centre as the middle between the fetchers starting position 
and its goal (with respect to the x position only), then the hazard region expands around 
this point with respect to 1/4 of the total distance between the fetchers start state and goal 

Fig. 5  Comparison between Entropy vs. LOO values across the entire state space of Safe Pendulum across 
true sampled data points. Yellow corresponds to a higher acquisition function values, while blue to a lower. 
Note that PPO (or any policy used within this framework) is encouraged to visit regions with higher (yel-
low) weight. The red box indicates the unsafe region of the state space (Color figure online)
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state. Note, we terminated Safe Pendulum once the last 5 rewards in a trajectory were all 
≤ −0.01 , as this provides an adequately stabilised pendulum.

For the safety gym robots we take the following state values: velocities, magnetome-
ter measurements, centre of mass position of the robot (all in the x and y axes) and gyro-
scope measurement (only in z axis). This choice is made to increase the dimension of the 
observation space, while also making the environment more GP-friendly. For instance, we 
remove the velocity, magnetometer and position readouts in the z axis as our car moves in a 
two dimensional plane. Similarly, we include only the measurement of the yaw angle rate, 
which is provided by the gyroscope measurement in the z axis. The robot’s initial position 
is at (0, 0) coordinates, while the goal is placed at (3, 3) and marked in green in Fig. 1. The 
centre of the hazard region of radius 0.5 (marked in blue in Fig. 1), which the robot should 
avoid, is placed halfway between the robot’s initial position and the goal. Note that we do 
not place other objects in the safety gym such as pillars, buttons etc.

D Experimental evaluation

D.1 LOO performance analysis

This section empirically compares the typical entropy-based method with LOO. For com-
parison, we collected N random rollouts from Safe Pendulum to train our GP. Next, we cal-
culated the entropy/LOO acquisition function for unseen random rollouts totaling 20, 000 
test samples. Figure 5 shows the result of this evaluation, where we compared Entropy vs. 
LOO for differing sizes of training data N for the GP ( N = 20 , N = 40 and N = 100 ). The 
red box contains the USR (Unsafe Region). The experiment suggests that LOO is much 
more conservative and will aim to guide the policy away from the dangerous area (Fig. 6). 
At the same time, entropy encourages exploration into the unsafe area, additionally encour-
aged with the increase of N - a highly undesirable property when safe active exploration is 
required (Fig. 7).  

D.2 Dynamics model analysis

This section presents and compares sample traces between different GP dynamics models 
trained on a different number of data points (20, 40, and 100 samples). The procedure for 

Fig. 6  Comparison Entropy vs. LOO values across the entire state space of Safe Pendulum and Safe Cart-
pole Double Pendulum. Yellow corresponds to a higher acquisition function value, while blue to a lower. 
Note that PPO (or any policy used within this framework) is encouraged to visit regions with higher (yel-
low) weight. The red box indicates the unsafe region of the state space (Color figure online)

▸
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the comparison is the following: We rollout the real environment for one full trajectory 
with random actions and record states and actions. For each GP, we show three sample 
traces of length 100 time steps (dashed blue line). The sampled traces are compared to 
the true trajectories by concatenating the true action taken (from the true trajectory) to the 
open-loop predicted states. We can see in Fig. 8    how even when the dynamical system 
differences to the model, there is still many similarities to the transition dynamics (Fig. 9).  

Fig. 7  Comparison Entropy vs. LOO values across the entire state space of Safety Fetcher. Yellow cor-
responds to a higher acquisition function value, while blue to a lower. Note that PPO (or any policy used 
within this framework) is encouraged to visit regions with higher (yellow) weight. The red box indicates the 
unsafe region of the state space (Color figure online)



199Machine Learning (2022) 111:173–203 

1 3

Fig. 8  Samples trace from Pendulum
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Fig. 9  Sampled traces from Safe 
Fetch Reacher
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