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Abstract
Data stream classification is one of the most vital areas of contemporary machine learn-
ing, as many real-life problems generate data continuously and in large volumes. However, 
most of research in this area focuses on vector-based representations, which are unsuitable 
for capturing properties of more complex multi-dimensional structures, such as images and 
video sequences. In this paper, we propose a novel methodology for learning adaptive deci-
sion trees from data streams of tensors. We introduce Chordal Kernel Decision Tree for 
continual learning from tensor data streams. In order to maintain the tensor characteristics, 
we propose to train and update classifiers in the kernel space designed to work with tensor 
representation. We use chordal distance to compute similarities between tensors and then 
apply it as a new feature space in which decision trees are trained. This allows for a direct 
decision tree induction on tensors. In order to accommodate the streaming and drifting 
nature of data, we propose a concept drift detection scheme based on tensor representation. 
It allows us to reconstruct the kernel feature space every time when change is detected. The 
proposed approach allows for fast and efficient induction of decision trees on streaming 
data with tensor representation. Experimental study, conducted on 4 real-world and 52 arti-
ficial large-scale tensor data streams, shows that using the native tensor feature space leads 
to more accurate classification than outperforms the vectorized representations.

Keywords Data stream mining · Continual learning · Concept drift · Online learning · 
Decision trees

1 Introduction

Learning from data streams is one of the most rapidly developing fields in the contempo-
rary machine learning (Sun 2008; Ditzler et al. 2015). This is motivated by a plethora of 
real-world applications in which data arrives continuously and floods the system. This calls 
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for developing new algorithms that are able to handle the ever-growing data volume and 
constantly update their structure within time and resource limits. Additionally, data streams 
may be subject to changes over time, a phenomenon known as concept drift (Gama et al. 
2014). Such a change point must be detected as soon as possible in order to handle the drift 
appropriately and allow for fast recovery of the system. Data streams are strongly con-
nected with the recently emerging paradigm of continual learning, where it is assumed that 
the machine learning model must be capable of continuous self-improvement and accumu-
lation of new knowledge (Parisi et al. 2019). It is interesting to note that data streams are de 
facto a task-free continual learning scenario (Aljundi et al. 2019).

Vast majority of data stream mining algorithms are designed only for vector representa-
tion of input data. This representation is not a proper one for many real-world problems that 
generate multi-dimensional data with dependencies between different dimensions, such as 
computer vision (Yang et  al. 2018) or social networks (Nakatsuji et  al. 2017). Although 
one may easily vectorize such information, it will lead to loss of information, as relation-
ships between factors in the input space will not be preserved (Gu et al. 2018). In order to 
overcome this limitations a tensor representation has been proposed, where input data is 
stored as multi-dimensional cubes that preserve the dependencies between factors (Lathau-
wer 2009; Fu et al. 2015). Tensors gained popularity in various areas of machine learning 
and data mining (Sidiropoulos et al. 2017; Maruhashi et al. 2018), but their application to 
data streams is very limited. At the same time, many modern data sources generate multi-
dimensional data streams (Mardani et al. 2015) and these areas may definitely benefit from 
dedicated tensor-based streaming algorithms (Shin et al. 2017; Song et al. 2017). Most of 
existing works focus on tensor factorization (Smith et al. 2018), using stochastic descent 
approaches (Mardani et  al. 2015), Tucker model (Sun et  al. 2008), and online canonical 
polyadic decomposition (Smith et al. 2018). At the same time, best to our knowledge, the 
field of tensor classification has not been studied in the data stream setup, especially in the 
context of concept drift. This paper aims at bridging this gap and proposing an efficient 
framework for data stream classification with tensor input.

1.1  Goal

To propose a novel continual decision tree induction technique that allows for learning 
from drifting data streams using tensor-based data representation.

1.2  Motivation

Among classifiers dedicated to data streams, decision trees have gained a significant atten-
tion, due to their excellent capabilities for incremental learning by creating new splits with 
arriving instances, high classification accuracy, and low model complexity (Ditzler et al. 
2015). However, existing decision trees for data streams work only with vector representa-
tion. This limits their applicability to modern data sources, such as texts or images. Vec-
torization of such data leads to a significant loss of information. Thus it is beneficial to use 
tensor-based representation of such data that maintains all the properties of such complex 
data. However, current techniques dedicated for tensor classification are not suitable for 
data streaming scenarios, nor poses any mechanisms to handle the presence of concept 
drift. The same holds for modern deep learning architectures that, while being extremely 
effective for static tensor data, cannot handle velocity and rapidly evolving nature of data 
streams (Sahoo et al. 2018).



3017Machine Learning (2021) 110:3015–3035 

1 3

1.3  Overview

In this paper, we propose a novel framework classifying data streams with tensor representa-
tion. We introduce a decision tree learning scheme capable of handling tensors directly, with-
out a need for vectorization. at the same time, our proposal maintains all the advantages of 
decision trees. We achieve this by training classifiers in the similarity space that is defined by 
a kernel using tensor representation. Chordal distance allows to measure a similarity between 
two tensors and may be used to construct a kernel feature space, which in turns allow for 
induction of a decision tree directly from tensors. Additionally, we propose a concept drift 
detection scheme working with tensor representation. It allows to effectively detect the 
moment of change and update our model in two ways: (1) by reconstructing the kernel feature 
space using new instances; and (2) by retraining the decision tree on the current concept and 
new feature space. Experimental study shows the efficacy of the proposed approach and its 
wide usability in various data stream classification scenarios, where tensor representation is 
required.

1.4  Main contributions

This paper offers following insights into learning from drifting data streams with complex 
data:

• Chordal Kernel Decision Tree We propose a novel decision tree classifier (CKDT) for con-
tinual learning from drifting data streams with data arriving in tensor form. CKDT is a full 
adaptive classifier, capable of both continual accumulation of new knowledge from arriv-
ing tensors, as well as flexible adaptation to drifts in the stream, when previously learned 
concepts become outdated. CKDT uses McDiarmid’s inequality to control the continual 
splitting procedure from streaming tensor data.

• Adaptive tensor kernel similarity space We introduce a kernel similarity space for con-
tinual induction of decision trees from tensor data streams. A subsampled kernel is used 
to create a new tensor-based representation that allows for continual learning from tensor 
data streams. We present a mechanism for rebuilding the kernel space whenever concept 
drift occurs, allowing for adaptive feature crafting from evolving data.

• First concept drift detector for tensors We propose a simple, yet effective tool for monitor-
ing properties of tensors incoming from the data stream. This allows us for early detection 
of any changes in tensor properties, allowing for cost-efficient adaptation of CKDT when-
ever streams becomes subject to significantly strong changes. The proposed drift detector 
works directly on tensor representation of data.

• Experimental study We provide a detailed experimental benchmark on drifting tensor 
data streams, comparing the proposed approach with three state-of-the-art method for 
incremental tensor classification. We use 4 real-world and 52 artificial tensor data stream 
benchmarks that capture various domains and learning difficulties.
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2  Background

2.1  Learning from data streams

We will now provide a short background for data stream setting in the context of machine 
learning.

Definition 1 (Data stream) Data stream is a sequence < S1, S2,… , Sn,… > , where each 
element Sn is a new instance arriving over time. Each instance in the stream is independent 
and randomly drawn from a stationary probability distribution Ψn(�, y) . Data stream is a 
task-free continual learning problem (Aljundi et al. 2019).

Definition 2 (Concept drift) Concept drift is a phenomenon that influences estimated 
decision rules or classification boundaries, reducing or voiding their relevance to the new 
state of the stream. Real concept drift influences the conditional probabilities pj(y|�) over 
time.

Concept drift has crucial impact on the learning system and must be handled as soon 
as it occurs (Gama et al. 2014). There are three main approaches for handling this learning 
difficulty. The first one relies on an external tool, known as concept drift detector. It moni-
tors the properties of stream and informs when a significant change takes place in order to 
rebuilt the model. This solution is often combined with decision trees. The second one uses 
a sliding window that keeps most recent instances in the temporal memory, using them 
as the current representation of the stream. The third one relies on online classifiers and 
ensemble models (Krawczyk et al. 2017) that adapt to changes on their own, resulting in an 
implicit drift detection.

2.2  Tensors in machine learning and classification

We will define now the basic notations for representation and classification of data coming 
in the form of tensors.

Definition 3 (Tensor) A tensor is a L-dimensional cube of real valued data, where each 
individual dimension represents a different factor in the input data space:

The j-mode of the K-th order tensor (tensor order standing for its number of directions/
dimensionality) is a vector that is calculated from A by manipulating selected dimension 
k ∈ {1, 2,⋯ ,Nj} , while remaining dimensions are intact.

Definition 4 (Tensor flattening) A j-mode tensor flattening (known also as tensor matrici-
zation) is matrix A(j) for which its columns are j-mode vectors of A:

The j-th index is a row index of A(j) , while a product of all remaining L-1 indices is its col-
umn index.

(1)A ∈ ℜ
N1×N2×…NL

(2)�(j) ∈ ℜ
Nj×(N1N2…Nj−1Nj+1…NL)
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Definition 5 (Tensor product) A p-mode product of a tensor A ∈ ℜN1×N2×…NL with 
matrix � ∈ ℜ

Q×Np creates a tensor B ∈ ℜ
N1×N2×…Np−1×Q×Np+1×…NL with elements:

where an1n2...nL is an element of A at index (n1, n2, ..., nL) and analogously mqnp
 is an element 

of � at index (q, np).

The p-mode product can be represented in an equivalent manner as flattened tensors A(p) 
and B(p) . Assuming the following holds:

then

Each distinctive tensor flattening creates an unique matrix with specific properties. There-
fore, by analyzing each flattening A(j) we obtain an unique perspective on A from j-th 
dimension. We will use this property to construct a tensor-based kernel for data stream 
representation, which will be discussed in details in the next subsection.

Definition 6 (Singular Value Decomposition) SVD is a procedure for analyzing the prop-
erties of each flattening as follows:

where �,1 and �,2 denote respectively indices of block matrices related to the kernel and null 
spaces of �(j) . �

(j)

�,1
 and �T(j)

�,1
 are unitary matrices of the kernel of �(j) . �

(j)

�,1
 is a diagonal 

matrix with R A non-zero elements.

By assuming this definition of SVD, it follows that:

Analogous properties are preserved for j-th mode flattening of the tensor B . However, its 
rank may be different and thus we will denote it as R B.

In this work, we focus the task of tensor classification, i.e., assigning a class label to an 
input tensor (Li and Schonfeld 2014).

Definition 7 (Tensor classification) This task aims at creating a classifier defined as a 
function Ψ with domain A and codomain M:

(3)

Bn1n2…np−1qnp+1…nL
=
(
A×p�

)
n1n2…np−1qnp+1…nL

=

Np∑
np=1

an1n2…np−1npnp+1…nL
mqnp

.

(4)B = A×p�

(5)�(p) = ��(p)

(6)

�(j) =�
(j)�(j)�(j)T =

RA(j)∑
i=1

v
(j)

i
�
(j)

i
�
(j)T

i

=
[
�
(j)

�,1
�
(j)

�,2

][
�

(j)

�,1
�

� �

][
�

(j)T

�,1

�
(j)T

�,2

]
.

(7)�
(j)T

�,1
�

(j)

�,1
= �R�×R�
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where M = {1,⋯ ,M} stands for a set of class labels.

2.3  Related works for streaming tensor analysis

Streaming tensors have been considered in the literature mainly from the perspective of 
a singular tensor that evolves over time (Yang et al. 2021). This may include changes in 
existing dimensions / factors (Chhaya et  al. 2020), or emergence of new ones over time 
(Letourneau et al. 2018). CP decomposition has been successfully used for streaming ten-
sors, either based on simultaneous diagonalization, or weighted least squares that track the 
online third-order decomposition. (Rambhatla et al. 2020) Other approaches use grid divi-
sion for large streaming tensors and using local factorization independently for each sub-
tensor (Gujral et al. 2020). OnlineCP (Zhou et al. 2016) incrementally tracks CP decom-
position of streaming tensor with arbitrary modes. There exist also Tucker decomposition 
methods for online tensor analysis that can be effectively used under streaming conditions 
(Sun et al. 2020). From the data stream mining perspective, there exist a plethora of effec-
tive classification and drift detection methods, but all of them are dedicated to shallow vec-
tor representations and therefore cannot properly capture multi-dimensional relationships 
in tensor data(Pinage et al. 2020)(Zyblewski et al. 2021).

3  Decision tree learning for tensor data streams

3.1  Decision trees in the era of deep learning

Deep learning have dominated the world of learning from complex and high-dimensional 
data, offering unparalleled predictive and generative capabilities power. However, research 
in traditional (shallow) machine learning algorithms is still as vibrant as ever, due to a 
number of limitations of current deep learning architectures in specific learning scenarios. 
This is especially visible for learning from data streams, where existing deep architectures 
have difficulties with handling the presence of concept drift (Sahoo et al. 2018), or their 
adaptation mechanisms, while well-designed, are too slow for high-speed data streams 
(Ashfahani and Pratama 2019). Decision trees are well-known and attractive learning algo-
rithms for data streams, offering low computational cost with excellent adaptation capabili-
ties to concept drift (Gomes et al. 2019). Furthermore, they are explainable and interpret-
able models, offering white-box approach for streaming data. While their predictive power 
is weak on their own, they can be efficiently combined in ensemble architectures, leading 
to significant increase in their accuracy (Krawczyk et al. 2017). All this factors motivate us 
to develop novel decision tree model that is capable of learning from tensor data streams 
under concept drift.

3.2  Proposed algorithm overview

We present the details of Chordal Kernel Decision Tree (CKDT) for continual learning 
from tensor data streams. We discuss the used decision tree model for unbounded data 

(8)Ψ ∶ A → M,
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streams, the usage of kernel feature space designed for working with tensor represen-
tation, as well as concept drift detection from tensor data. Overview of the proposed 
CKDT algorithm is presented in pseudo-code form in Fig. 1.

3.3  Decision tree induction from streaming data

Decision tree induction algorithms for data streams are based on Hoeffding inequality 
in order to determine what number of new instances is sufficient to conduct a new split. 
Recent study highlighted the existing flaws in the Hoeffding bound (Rutkowski et  al. 
2013), showing its potential for incorrect calculations. Therefore, in this work we use 
McDiarmid’s inequality for decision tree induction from streaming data. It can be seen 
as a generalized version of Hoeffding’s inequality, more capable of handling various 
types of input data and measuring the split quality.

Theorem 1 (McDiarmid’s Theorem) We define X1,⋯ ,Xn as a set of independent random 
variables and define a function f (x1,⋯ , xn) that fulfills inequality :

Fig. 1  Pseudocode of the proposed Chordal Kernel Decision Tree
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For any 𝜖 > 0 the following is true:

McDiarmid’s inequality can be used in combination with any splitting measure to 
estimate the lowest number of instances n sufficient to conduct a split when new data 
arrives. It has been shown to work well with Gini gain (Rutkowski et al. 2013), thus we 
use this metric. Gini gain is defined as:

where S is a set of instances in the current tree node, L and R are left and right child nodes, 
nq,i(S) is the number of instances in the current node that will go to q-th child node if the 
split will be conducted on i-th feature, and nk

q,i
(S) is the number of instances from k-th class 

that will be passed to q-th child node if the split will be conducted on i-th feature.With this 
we may formulate McDiarmid’s inequality for computing and comparing Gini gains for 
any two selected features.

Theorem 2 (McDiarmid’s Inequality for Gini Gain) Let �gG
h
(S) and �gG

i
(S) be the Gini 

gain values (see Eq. 11) for h-th and i-th considered feature. If the condition is satisfied:

then the inequality holds with probability of 1 − � or higher:

Theorem  3 (McDiarmid’s Split Criterion for Gini Gain) We assume that �gG
i1
(S) and 

�gG
i2
(S) are the metric values for features with respectively highest and second highest Gini 

gain. If the condition is satisfied:

then following Theorem 2, with the probability equal to (1 − �)d−1 the following statement 
is true:

where d is the number of features and i1-th feature is selected to split the current node.

(9)
supx1,⋯,x̂i

|f (x1,⋯ , xi,⋯ , xn) − f (x1,⋯ , x̂i,⋯ , xn)|
≤ ci,∀i=1,⋯,n.

(10)
Pr

�
f (X1,⋯ ,Xn) − E

�
f (X1,⋯ ,Xn)

�
≥ �

�
≤ exp

�
−

2�2∑n

i=1
c2
i

�
= �.

(11)�gG
i
(S) = gG(S) −

�
q∈{L,R}

nq,i(S)

n(S)

⎛⎜⎜⎝
1 −

K�
k

�
nk
q,i
(S)

nq,i(S)

�2⎞⎟⎟⎠
,

(12)𝛥gG
h
(S) − 𝛥gG

i
(S) >

√
8 ln(1∕𝛿)

n(S)
,

(13)E[𝛥gG
i
(S)] > E[𝛥gG

h
(S)].

(14)𝛥gG
i1
(S) − 𝛥gG

i2
(S) >

√
8 ln(1∕𝛿)

n(S)
,

(15)i1 = arg max
i=1,⋯,d

{
E[gG

i
(S)]

}
,
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3.4  Induction of decision trees in kernel feature space

Existing decision tree induction algorithms, including the presented one using McDiar-
mid’s Inequality, work only with vector inputs. Therefore, it is not possible to apply them 
directly on tensor data without conducting vectorization. In order to alleviate this drawback 
and extend the applicability of decision trees to tensor data streams, we propose to conduct 
the tree induction procedure in an alternative feature space. We need a simple, yet efficient 
representation of tensors that will maintain their multi-dimensional properties and relation-
ships among different factors. In this paper, we propose to construct the new feature space 
using kernels.

A kernel K can be used to transform the original feature space into a projected space 
�K(X) such that K(x, y) = ⟨�K(x),�K(y)⟩ . Kernels are tricky to use in data stream scenar-
ios, as they require a computation of the whole Gram matrix, which is of size O(N2) . In 
order to speed up the computations, one may use a random sampling of the input instances 
to create a new projected feature space. By sampling s instances from the stream, one may 
create a subsampled kernel:

One must note that this is fundamentally different from sampling the incoming instances 
from the stream, as all of them will be used for decision tree induction and incremental 
update - the subsample is only used for a faster computation of the new feature space. This 
allows for a significant reduction of feature space projection computational complexity.

Now one required a proper kernel that is capable of working directly with tensor rep-
resentation. For this, we propose to use chordal distance kernel, capable of returning pure 
tensor-based similarities that will allow us to span a new feature space for the decision tree 
induction.

3.5  Chordal distance kernel for tensor similarity

Definition 8 (Chordal distance) A chordal distance (Signoretto et al. 2011) is defined as 
a similarity between two tensors represented by their j-th flattened mode matrices �(j) and 
�(j):

where Π�(j)
 stands for a projection matrix of �(j):

Then one may insert Eq. 17 into Eq. 18, obtaining:

Definition 9 (Chordal kernel) A chordal distance-based kernel (Signoretto et  al. 2011) 
can be formulated as follows:

(16)�rand
K

(x) = [K(x, x1), ...,K(x, xs)]T .

(17)D2
ch

(
�(j),�(j)

)
= D2

F

(
Π�(j)

,Π�(j)

)
=
‖‖‖Π�(j)

− Π�(j)

‖‖‖
2

F

(18)Π�(j)
= �

(j)

�,1
�

T(j)

�,1

(19)D2
ch

(
�(j),�(j)

)
=
‖‖‖�

(j)

�,1
�

T(j)

�,1
− �

(j)

�,1
�

T(j)

�,1

‖‖‖
2

F
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which allows to formulate a kernel for a L-dimensional tensor product (Cyganek et  al. 
2015):

Computation of Eq. 21 requires computation of 2 ⋅L SVD decompositions. This makes it 
prohibitive to be used in the considered scenario of learning from data streams, as new tensors 
will continuously arrive and latency in their processing must be avoided. However, one may 
simplify this computation as follows. We start by denoting the squared norm in Eq. 19 as:

where Tr(.) stands for matrix trace, and P and Q are defined as:

Matrices P and Q are of the same size. We may supply this to the first term in Eq. 22:

Analogously, this holds for the third term in Eq. 22:

The second term in Eq. 22 can be expanded accordingly:

These transformations of three terms allows us to write Eq. 22 as:

(20)
Kj(A,B) = exp

(
−

1

2�2
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(
�(j),�(j)

))

= exp

(
−

1
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T(j)

�,1
− �

(j)

�,1
�

T(j)

�,1

‖‖‖
2

F

)
.

(21)

K(A,B) =

L∏
j=1

Kj(A,B)

=

L∏
j=1
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(
−

1

2�2

‖‖‖�
(j)

�,1
�

T(j)

�,1
− �

(j)

�,1
�

T(j)
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2

F

)
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�
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�
− 2Tr

�
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�
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�
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where

Obtaining this allows us to significantly speed-up computations of chordal distance and 
related kernel, as Eq.  27 and Eq.  28 have significantly lower computational complexity 
than Eq. 22. This is because only �(j) needs to be computed after carrying out SVD decom-
positions of j-th mode flattening of tensors A and B , respectively. In order to obtain the 
chordal kernel, we need to repeat these computations L times (to account for the dimen-
sionality of tensors).

This, combined with the input subsampling (subsampled kernel) presented in Eq.  16 
makes the computational cost of tensor-based feature space spanning via kernel projections 
suitable for data stream scenarios.

4  Concept drift detection in tensor data streams

Having defined the used decision tree induction method, creation of a tensor-based feature 
space for it, and a proper kernel for computing similarities between tensors, we need a 
concept drift detector fitting this framework. Most of existing drift detectors are based on 
either statistical properties of new vectors arriving from the stream, or on the error of clas-
sifiers (Gama et al. 2014). The former ones cannot be directly used for tensor data, while 
the latter ones are criticized as in real-world scenario we do not have an instant oracle 
access to classifier error. Therefore, we propose a concept drift detection method based on 
tensor properties.

For drift detection, we need to keep a window of w most recent tensors and use them 
for comparison with the newest incoming tensor, to check if it still falls into the cur-
rent concept. We propose to conduct drift detection using j-mode tensor flattening (see 
Eq.  2), computing it for all tensors in the window and the recently arrived one. Mean 
( �(j) =

1

w

∑w

i=1
�(j)

(i) ) and standard deviation ( �2 =
1

w−1

∑w

i=1
(�(j)

(i) − �(j))
2 ) of these flat-

tening matrices can be used to describe the current concept. When a new tensor arrives, its 
j-mode tensor flattening can be used to check how well it fits the current concept using a 
popular 3� rule, allowing for a two-level signal output with alarm level and drift detection 
level:

We use these two-level signals for two important actions in our tensor data stream classifi-
cation framework.

4.1  Spanning new feature space after drift

As we use a subsample of tensors to span the kernel similarity-based feature space for 
decision tree induction, we must take into consideration that after the concept drift the 
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current projection may no longer be representative. Therefore, we need to span a new 
projection, which imposes additional computational cost on the system. As it is not fea-
sible to do this after every new tensor arrives, we propose to combine this with the drift 
detector. Whenever an alarm signal is being raised, we start collecting the incoming 
tensors in a temporal buffer. Then, when changes become significant and a drift alarm 
is being raised, we randomly subsample this buffer (see Eq. 16) and use it to span a new 
feature space with chordal kernel. This approach significantly reduces the number of 
times when we need to recompute similarity-based feature projections. The entire buffer 
(all stored tensors) will be then used to train a new decision tree in the newly spanned 
kernel feature space.

4.2  Updating the decision tree classifier after drift

As decision trees do not have in-built mechanisms for handling concept drift, they are 
combined with drift detector to guide their update. When concept drift occurs, it is less 
computationally expensive to discard the old classifier and build a new one on the cur-
rent concept than to try to adapt the pre-existing tree structure. As after the alarm signal 
has been raised we already collect incoming tensors for calculating new feature space, 
we may use them as well for training a new decision tree. While the new feature space 
is created using only a subsample of tensors from the buffer, the new decision tree is 
trained using all of the stored tensors. When a drift alarm is being raised, we train a 
new decision tree using newly created kernel feature space, discard the old model, and 
replace it with the new decision tree. Then we may discard all the tensors stored in the 
temporal buffer, as they will not be needed.

5  Experimental study

In this section, we present the experimental evaluation of the proposed framework 
for tensor data stream classification with decision trees. We conduct two independent 
experiments: (i) on large-scale real-world tensor benchmarks that have streaming char-
acteristics in order to examine the usability of the kernel feature space for training deci-
sion trees; (ii) on artificial datasets with injected specific type of concept drift in order 
to evaluate the scalability of the proposed framework to growing number of tensor fac-
tor dimensionality.

The experimental study was designed to answer the following research questions: 

RQ1: Does the proposed chordal kernel-based decision tree is capable of more accurate 
classification of tensor data streams than the state-of-the-art reference methods?
RQ2: Does the proposed online kernel transformation of tensors and training decision 
trees in the kernel feature space do not impose prohibitive computational costs on the 
classification system?
RQ3: How does the proposed kernel-based decision tree handle increasing tensor 
dimensionality (number of factors)?
RQ4: Does the proposed method can efficiently handle various types of concept drifts 
present in tensor data streams?
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5.1  Tensor benchmarks for data stream classification

We have selected four real-world tensor datasets that display streaming characteristics, as 
well as generated 52 artificial tensor datasets with injected specific types of concept drift. 
Their details are presented below and in Table 1.

5.1.1  Chicago Crime (CC)

A collection of crime reports in the city of Chicago, ranging from January 1st, 2001 to 
December 11th, 2017. We split the original tensor into 5 000 000 separate small tensors, 
each representing a single crime. The classification task is to predict the crime based on 
remaining information from the report.

5.1.2  Yahoo Music (YM)

A collection of user ratings of music items in Yahoo! services. Concept drift is strongly 
embedded, as data reflects the changes in music distribution platforms and market needs. 
We subsampled the dimensionality each of individual factors to make it feasible for a sin-
gle machine computation. Original task was to predict the user rating of an item. We dis-
cretized this task into class labels via average ranking values for items.

5.1.3  Street View House Numbers (SVHN)

A collection of 640 420 images representing house numbers, each digit displayed indi-
vidually in a form of 32x32x3 RGB color image tensor. The classification task is digit 
recognition.

5.1.4  CIFAR‑100 (C100)

A collection of 60 000 images, each stored as 32x32x3 RGB color image tensor. The task 
is to predict to which group target image belongs to.

Table 1  Details of used real-
world and artificial tensor 
benchmarks

Name # Tensors Dimensionality # Classes

Real-world tensor data streams
CC 5,000,000 6186 x 24 x 77 x 32 31
YM 1,710,000 625 x 844 x 101 5
SVHN 640,420 32 x 32 x 3 10
C100 60,000 32 x 32 x 3 100
Artificial tensor data stream generators
STnd 2,000,000 100[3;15] 2
STgd 2,000,000 100[3;15] 2
STid 2,000,000 100[3;15] 2
STsd 2,000,000 100[3;15] 2
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5.1.5  SimTensor (ST)

An artificial tensor generator (Fanaee-T and Gama 2016) that we are using to evalu-
ate the impact of different factor dimensionality in tensor data streams on decision tree 
induction. Each artificial benchmark consists of 2 000 000 tensors and each tensor fac-
tor has 100 values. We investigate tensor factor dimensionality ∈ [3;15] . By combin-
ing it with MOA (Bifet et  al. 2010) functionality, we are able to create four datasets 
with distinctive types of concept drift (none, incremental, gradual, sudden). SimTen-
sor allows for streaming data generation with defined change points that served as drift 
injection moments. Each artificial tensor data stream is a two-class problem, with each 
tensor class generated from a distinct Gamma distributions. Class labels are assigned to 
each distribution generator, leading to a supervised learning problem and allowing for 
creation of 52 unique tensor data stream benchmarks.

5.2  Experimental set‑up

5.2.1  Reference methods

As mentioned, up to our best knowledge this is the first work proposing usage of deci-
sion trees for classification of tensor data streams. As we propose a native tensor rep-
resentation via chordal kernel (named Chordal Kernel Decision Tree, CKDT), as refer-
ence method we selected three state-of-the-art approaches for tensor vectorization that 
are able to work in an incremental fashion. We adapted them to this particular learn-
ing scenario. Online Robust Low-Rank Tensor Modeling for Streaming Data Analysis 
(LRTCR) (Li et al. 2019) uses the bilinear formulation of tensor nuclear norms and a 
stochastic optimization algorithm to learn the tensor low-rank structure alternatively for 
online updating. Online PCA with Optimal Regret (OPOR) (Nie et al. 2016) was pro-
posed for low-dimensional data representation in online scenarios, thus can be used for 
tensors. Low-rank tensor decomposition (LRTD) (Guo et  al. 2017) was developed for 
motion detection from videos using deep learning. In order to ensure a fair comparison, 
we train identical McDiarmid’s decision tree on these tensors representations, as we 
use for our kernel-based feature space spanning. Additionally, as none of these methods 
were developed for concept drift, we enhance them with our tensor-based drift detector. 
Furthermore, we present results for a standard McDiarmid’s decision tree (MDDT) that 
uses vector-based representation. This allows us to evaluate if operating in tensor space 
holds advantages over vector space for drifting data streams.

5.2.2  Parameters

For drift detection, we use a window w = 100 tensors. For subsampling procedure dur-
ing kernel feature space spanning, we use 20% of tensors stored in the window.

5.2.3  Evaluation metrics

We evaluate examined tensor classifiers according to their prequential classifica-
tion accuracy (accumulative metric used in data streams) and prequential multi-class 
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AUC (Wang and Minku 2020), model update time (in seconds) and memory usage (in 
RAM-hours).

5.3  Experiment 1: real‑world tensor streams

In this experiment, we compare our proposed CKDT with three recent approaches for 
incremental tensor vectorization on four diverse real-world benchmarks that display 
streaming characteristics. We are interested in evaluating, if the proposed kernel feature 
space is more information-rich than vectorized spaces, which will translate into improved 
classification rates. Additionally, we wanted to evaluate the speed and memory consump-
tion of analyzed approaches, in order to evaluate their usefulness for data stream scenarios.

Prequential accuracies and prequential multi-class AUC results are presented in Table 2, 
while Fig.  2 depicts streaming dependencies between prequential accuracy and number 
of processed tensors. Table 3 presents update time and memory consumption of analyzed 
models, while Table 4 presents the outcome of Shaffer multiple comparison statistical test 
of significance with � = 0.05.

Obtained results show that vector-based adaptive decision tree (MDDT) cannot handle 
drifting data streams with tensor representation. On the other hand, experiments highlight 
the high efficacy of the proposed CKDT framework. Our approach is able to achieve sig-
nificantly better classification accuracies than the same decision tree model trained using 
state-of-the-art incremental tensor vectorization. This shows how information-rich is the 
tensor representation in the context of data stream classification and that it is highly ben-
eficial to maintain it. Our kernel-based feature space is capable of capturing these valuable 

Table 2  Prequential accuracy (%) and prequential multi-class AUC (%) metrics for analyzed streaming-
based tensor classification methods

Best values are presented in bold
Results for artificial tensor benchmarks averaged over 13 different tensor dimensionality sizes

Dataset Metric MDDT LRTCR OPOR LRTD CKDT

CC pACC 7.28 ± 6.02 43.21 ± 9.23 47.33 ± 7.45 47.21 ± 6.29 52.45 ± 5.88
pmAUC 10.83 ± 5.81 48.34  ± 9.18 50.22 ± 7.29 51.67 ± 6.14 58.63 ± 5.72

YM pACC 13.83 ± 4.07 37.82 ± 5.29 39.30 ± 5.91 40.02 ± 4.82 44.83 ± 4.19
pmAUC 12.75 ± 5.22 42.65 ± 5.18 43.17 ± 5.83 41.12 ± 4.55 46.99 ± 4.03

SVHN pACC 33.52 ± 8.62 78.44 ± 10.06 82.19 ± 9.18 79.58 ± 8.28 87.92 ± 7.81
pmAUC 27.48 ± 7.59 72.04 ± 10.75 75.98 ± 10.04 73.19 ± 8.59 83.02 ± 7.53

C100 pACC 4.91 ± 0.60 11.23 ± 1.45 10.04 ± 1.84 11.49 ± 2.10 14.92 ± 0.94
pmAUC 3.28 ± 0.52 10.43 ± 1.19 10.01 ± 1.37 10.72 ± 1.89 13.98 ± 0.81

STnd pACC 22.75 ± 9.82 82.19  ±  14.65 77.93  ±  12.34 82.83  ±  14.99 83.86 ± 11.02
pmAUC 19.86 ± 7.49 81.49 ± 13.98 76.54 ± 11.96 81.04 ± 13.84 83.22 ± 10.68

STgd pACC 18.43 ± 10.03 72.38 ± 16.81 70.03 ± 10.76 72.84 ± 17.45 82.19 ± 11.99
pmAUC 16.92 ± 8.42 70.18 ± 14.99 67.95 ± 11.38 70.03 ± 12.58 81.96 ± 11.63

STid pACC 13.73 ± 5.91 67.93 ± 17.98 62.78 ± 16.89 68.45 ± 18.92 80.86 ± 12.87
pmAUC 11.88 ± 4.83 65.84 ± 17.26 59.73 ± 16.03 65.27 ± 18.48 80.11 ± 12.56

STsd pACC 7.04 ± 2.66 57.44 ± 20.05 54.89 ± 18.97 58.93 ± 21.02 79.28 ± 13.94
pmAUC 5.82 ± 1.98 56.11 ± 18.56 52.07 ± 17.82 56.01 ± 19.77 78.80 ± 12.90
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properties and translating them into a more effective decision tree induction. In analyzed 
real-world datasets (especially in CC and YM) we can observe significant drops in per-
formance of each analyzed classifier. These moments stand for a severe drift presence that 
renders the entire system outdated and needs to be handled by a drift detector that will 
replace the decision tree. While all methods suffer from the presence of drift, we should 
notice that CKDT achieves faster recovery rates after changes and its performance does not 
drop as significantly as in reference approaches. This can be contributed to efficient span-
ning of the similarity-based feature space that leads to better handling of new concepts and 
quicker adaptation after the occurrence of concept drift (RQ1 answered).

When analyzing the computational performance of CKDT, one should notice its shorter 
update time and lower memory consumption than these displayed by reference methods. 
This can be contributed to the computational tricks discussed in chordal kernel section, as 
well as to computing the new feature space only when concept drift took place. Addition-
ally, we may observe that CKDT scales much better to bigger tensor representations (as 
seen with Chicago Crime and Yahoo Music datasets), outperforming significantly other 
algorithms (RQ2 answered).
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5.4  Experiment 2: evaluating the impact of tensor dimensionality

In this experiment, we wanted to evaluate the scalability of our framework to high-dimen-
sional input tensors (i.e., tensors containing a high number of factors). Most existing ten-
sor datasets have between 3 to 5 factors (as they are either images, link relationships, or 
reviews), but we can predict that soon more complex tensor domains will become increas-
ingly popular. Therefore, we used SimTensor generator to create a number of tensor data 
streams with varying number of associated factors. This also allowed us to inject concept 
drift in a controlled manner. Prequential accuracies are presented in Fig. 3.

Obtained results confirm our assumption that increasing number of factors will pose 
progressively increasing difficulty for all classifiers. We can see that CKDT shows much 
better scalability to high number of factors than other methods, as chordal distance allows 
for maintaining the tensor properties regardless of the input. The quality of feature spaces 
obtained by vectorization methods suffer in a much more significant manner, making their 
usage prohibitive in such cases (RQ3 answered).

It is interesting to analyze the interplay between the type of concept drift and the 
increasing number of factors. One can see that more complex tensors make proper drift 

Table 3  Average update time [s.] and memory consumption [RAM-hours] (calculated over 1000 tensors 
each) of analyzed decision tree approaches for tensor data stream classification

Best values are presented in bold

Dataset Metric MDDT LRTCR OPOR LRTD CKDT

CC Time 72.39 ± 11.04 236.43 ± 21.43 345.12 ± 68.28 183.21 ± 44.19 84.83 ± 11.28
Memory 0.72 ± 0.13 2.38 ± 0.48 5.21 ± 0.66 1.87 ± 0.71 1.21 ± 0.29

YM Time 18.42 ± 5.93 73.34 ± 19.35 139.31 ± 41.18 70.95 ± 20.09 56.72 ± 11.28
Memory 0.38 ± 0.07 1.87 ± 0.44 2.89 ± 0.90 1.72 ± 0.52 0.98 ± 0.40

SVHN Time 48.47 ± 13.59 99.23 ± 28.03 109.31 ± 33.92 94.02v14.29 95.01 ± 15.22
Memory 0.11 ± 0.03 0.45 ± 0.10 1.02 ± 0.31 0.36 ± 0.08 0.37 ± 0.05

C100 Time 38.46 ± 11.99 97.13 ± 18.29 111.47 ± 22.89 90.76 ± 16.32 68.09 ± 17.04
Memory 0.10 ± 0.03 0.44 ± 0.07 1.03 ± 0.18 0.33 ± 0.08 0.31 ± 0.07

STnd Time 62.49 ± 17.88 174.34 ± 31.56 204.98 ± 44.92 136.86 ± 21.47 74.82 ± 11.59
Memory 0.51 ± 0.11 1.93 ± 0.19 4.41 ± 1.03 1.38 ± 0.16 1.07 ± 0.11

STgd Time 78.81 ± 15.93 208.41 ± 22.98 229.72 ± 33.71 161.06 ± 31.02 104.82 ± 19.93
Memory 0.55 ± 0.22 2.19 ± 0.38 4.82 ± 1.02 1.58 ± 0.33 1.39 ± 0.34

STid Time 88.91 ± 20.74 221.09 ± 37.85 258.03 ± 39.99 142.16 ± 22.19 88.98 ± 13.69
Memory 0.79 ± 0.44 2.28 ± 0.39 4.96 ± 0.83 1.70 ± 0.32 1.50 ± 0.22

STsd Time 91.38 ± 27.54 241.64 ± 38.44 201.77 ± 39.91 122.58 ± 19.27 79.94 ± 12.86
Memory 0.80 ± 0.31 2.62 ± 0.23 5.19 ± 1.38 2.01 ± 0.14 1.69 ± 0.12

Table 4  Outcome of Shaffer post-hoc statistical test for comparison among CKDT and reference methods 
over multiple datasets (4 real-world and 52 benchmarks)

CKDT vs. MDDT LRTCR OPOR LRTD

p-value 0.000000 0.000183 0.000149 0.000199
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detection much more difficult, leading to overall drops in accuracy. Most challenging type 
of drift is sudden one, which come to no surprise, as system has no time to react to it. Sec-
ond most difficult drift is much more surprising, as incremental changes are usually easy to 
handle (Ditzler et al. 2015). In this case, we may attribute this learning difficulty to the way 
we designed our drift detector. If the change is small enough, the detection signal ( 3� rule) 
will never be triggered, thus never reconstructing the feature space. We will continue our 
work in this direction, to propose more advanced tensor-based drift detector that is robust 
to such situations.

Overall, the proposed CKDT offers superior performance to all reference methods, 
even when they are enhanced with the proposed tensor-based drift detector. This can 
be contributed to the combination of the drift detection with kernel feature space that is 
more sensitive to changes in data distributions (RQ4 answered).
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6  Conclusions and future works

6.1  Summary

In this paper, we have presented a first framework for tensor data stream classification 
with decision trees under concept drift. We have identified the drawback of existing 
data stream classification approaches, namely their limitation to vector representation 
of input data. We argued that as many real-world data sources generate multi-dimen-
sional data that cannot be vectorized without a loss of information, there is a need for 
tensor-based classifiers for data streams. As a base classifier we selected McDiarmid’s 
incremental decision tree. In order to alleviate its limitations, we proposed to create a 
new feature space that operates on tensors and use it for decision tree induction. To this 
aim we employed kernel feature mapping, where a dedicated similarity measure using 
chordal distance was used. It allowed for calculating direct similarity between two ten-
sors, without a need for vectorization. We showed how to speed-up the creation of the 
new feature space using random subsampling. We also proposed a concept drift detec-
tor based on tensor data representation that was used to control when to create a new 
feature space and when to update the classifier. Experimental study carried out on large-
scale real-world and artificial tensor data streams showed that our framework preserves 
the information within tensors, leading to an excellent classification accuracy. Addition-
ally, it scales-up to high-dimensional tensors and is much less computationally expen-
sive than online vectorization.

6.2  Future works

In our future works, we plan to continue developing a holistic framework for tensor data 
stream classification that will encompass the following research directions:

• Ensembles of CKDTs. A natural step forward will be to propose adaptive and online 
ensembles of Chordal Kernel Decision Trees to boost their predictive accuracy and 
make them competitive to modern deep learning algorithms (González et al. 2020).

• Explainable learning from tensor streams. Decision tree structure offers a natural 
explainable and interpretable format (Sagi and Rokach 2020). This can be leveraged 
towards understanding the nature of changes in drifting tensor streams.

• Speeding-up CKDTs. Current implementation of CKDT is efficient and faster than 
state-of-the-art methods, but can be further improved by using approximate decomposi-
tion approaches (Cyganek and Wozniak 2016).

• Evolving tensor dimensionality. A fully robust framework for tensor data stream min-
ing must offer the capability of adapting to evolving dimensionality and factors of ten-
sors (da Silva Fernandes et al. 2019).
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