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Abstract
We study the problem of identifying the policy space available to an agent in a learning

process, having access to a set of demonstrations generated by the agent playing the

optimal policy in the considered space. We introduce an approach based on frequentist

statistical testing to identify the set of policy parameters that the agent can control, within a

larger parametric policy space. After presenting two identification rules (combinatorial and

simplified), applicable under different assumptions on the policy space, we provide a

probabilistic analysis of the simplified one in the case of linear policies belonging to the

exponential family. To improve the performance of our identification rules, we make use of

the recently introduced framework of the Configurable Markov Decision Processes,

exploiting the opportunity of configuring the environment to induce the agent to reveal

which parameters it can control. Finally, we provide an empirical evaluation, on both

discrete and continuous domains, to prove the effectiveness of our identification rules.

Keywords Reinforcement learning � Configurable Markov decision processes � Likelihood
ratio test � Policy space identification

1 Introduction

Reinforcement Learning (RL, Sutton and Barto, 2018) deals with sequential decision–

making problems in which an artificial agent interacts with an environment by sensing

perceptions and performing actions. The agent’s goal is to find an optimal policy, i.e., a

prescription of actions that maximizes the (possibly discounted) cumulative reward col-

lected during its interaction with the environment. The performance of an agent in an

environment is constrained by its perception and its actuation possibilities, along with the
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ability to map observations to actions. These three elements define the policy space
available to the agent in the learning process. Agents having access to different policy

spaces may exhibit different optimal behaviors, even in the same environment. Therefore,

the notion of optimality is necessarily connected to the space of policies the agent can

access, which we will call the agent’s policy space in the following. While in tabular RL

we typically assume access to the complete space of Markovian stationary policies, in

continuous control, the policy space needs to be limited. In policy search meth-

ods (Deisenroth et al., 2013), the policies are explicitly modeled considering a parametric

functional space (Sutton et al., 1999; Peters and Schaal, 2008) or a kernel

space (Deisenroth and Rasmussen, 2011; Levine and Koltun, 2013); but even in value–

based RL, a function approximator induces a set of representable (greedy) policies. It is

important to point out that the notion of policy space is not just an algorithmic conve-

nience. Indeed, the need to limit the policy space naturally emerges in many industrial

applications, where some behaviors have to be avoided for safety reasons.

The knowledge of the agent’s policy space might be useful in some subfields of RL.

Recently, the framework of Configurable Markov Decision Process (Conf-MDP, Metelli

et al., 2018a) has been introduced to account for the scenarios in which it is possible to

configure some environmental parameters. Intuitively, the best environment configuration

is intimately related to the agent’s possibilities in terms of policy space. When the con-

figuration activity is performed by an external supervisor, it might be helpful to know

which parameters the agent can control in order to select the most appropriate configu-

ration. Furthermore, in the field of Imitation Learning (IL, Osa et al., 2018), figuring out

the policy space of the expert’s agent can aid the learning process of the imitating policy,

mitigating overfitting/underfitting phenomena.

In this paper, motivated by the examples presented above, we study the problem of

identifying the agent’s policy space in a Conf–MDP,1 by observing the agent’s behavior

and, possibly, exploiting the configuration opportunities of the environment. We consider

the case where the agent’s policy space is a subset of a known super–policy space PH

induced by a parameter space H � Rd . Thus, any policy ph is determined by a d–di-
mensional parameter vector h 2 H. However, the agent has control over a smaller number

dAg\d of parameters (which are unknown), while the remaining ones have a fixed value,

namely zero.2 The choice of zero as a fixed value might appear arbitrary, but it is rather a

common case in practice. Indeed, the formulation based on the identification of the pa-
rameters effectively covers the limitations of the policy space related to perception,

actuation, and mapping. For instance, in a linear policy, the fact that the agent does not

observe a state feature is equivalent to set the corresponding parameters to zero. Similarly,

in a neural network, removing a neuron is equivalent to neglecting all of its connections,

which in turn can be realized by setting the relative weights to zero. Figure 1 shows three

examples of policy space limitations in the case of a 1–hidden layer neural network policy,

which can be realized by setting the appropriate weights to zero.

1 Although we assume to act in a Conf–MDP, we stress that our primary goal is to identify the policy space
of the agent, rather than learning a profitable configuration in the Conf–MDP.
2 By ‘‘controllable’’ parameter we mean a parameter whose value can be changed by the agent, while the
‘‘uncontrollable’’ parameters are those which are permanently set to zero. This is a way of modeling the
limitations of the policy space.
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Our goal is to identify the parameters that the agent can control (and possibly change)

by observing some demonstrations of the optimal policy pAg in the policy space PH.
3 To

this end, we formulate the problem as deciding whether each parameter hi for i 2 f1; :::; dg
is zero, and we address it by means of a frequentist statistical test. In other words, we check

whether there is a statistically significant difference between the likelihood of the agent’s

behavior with the full set of parameters and the one in which hi is set to zero. In such a

case, we conclude that hi is not zero and, consequently, the agent can control it. On the

contrary, either the agent cannot control the parameter, or zero is the value consciously

chosen by the agent.

Indeed, there could be parameters that, given the peculiarities of the environment, are

useless for achieving the optimal behavior or whose optimal value is actually zero, while

they could prove essential in a different environment. For instance, in a grid world where

the goal is to reach the right edge, the vertical position of the agent is useless, while if the

goal is to reach the upper right corner, both horizontal and vertical positions become

relevant. In this spirit, configuring the environment can help the supervisor in identifying

whether a parameter set to zero is actually uncontrollable by the agent or just useless in the

current environment. Thus, the supervisor can change the environment configuration

x 2 X, so that the agent will adjust its policy, possibly by changing the parameter value

and revealing whether it can control such a parameter. Consequently, the new configura-

tion should induce an optimal policy in which the considered parameters have a value

significantly different from zero. We formalize this notion as the problem of finding the

new environment configuration that maximizes the power of the statistical test and we

propose a surrogate objective for this purpose.

The paper is organized as follows. In Sect. 2, we introduce the necessary background.

The identification rules (combinatorial and simplified) to perform parameter identification

in a fixed environment are presented in Sect. 3 and the simplified one is analyzed in

Sect. 4. Sect. 5 shows how to improve them by exploiting the environment configurability.

The experimental evaluation, on discrete and continuous domains, is provided in Sect. 6.

Besides studying the ability of our identification rules in identifying the agent’s policy

space, we apply them to the IL and Conf-MDP frameworks. The proofs not reported in the

main paper can be found in Appendix A.

(a) (b) (c)

Fig. 1 An example of policy space modeled as a 1-layer neural network showing a limitation in the
a perception, b mapping, and c actuation

3 We stress that, since we restrict the search to the policy space PH, pAg might be suboptimal compared to
the optimal policy in the space of Markovian stationary policies.
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2 Preliminaries

In this section, we report the essential background that will be used in the subsequent

sections. For a given set X , we denote with PðXÞ the set of probability distributions over

X .

(Configurable) Markov Decision Processes A discrete–time Markov Decision Pro-

cess (MDP, Puterman, 2014) is defined by the tuple M ¼ S;A; p; l; r; cð Þ, where S and A
are the state space and the action space respectively, p : S � A ! PðSÞ is the transition

model that provides, for every state-action pair ðs; aÞ 2 S �A, a probability distribution

over the next state pð�js; aÞ, l 2 PðSÞ is the distribution of the initial state, r : S �A ! R

is the reward model, defining the reward collected by the agent r(s, a) when performing

action a 2 A in state s 2 S, and c 2 ½0; 1� is the discount factor. The behavior of an agent is
defined by means of a policy p : S ! PðSÞ that provides a probability distribution over

the actions pð�jsÞ for every state s 2 S. We limit the scope to parametric policy spaces

PH ¼ ph : h 2 Hf g, where H � Rd is the parameter space. The goal of the agent is to find

an optimal policy within PH, i.e., any policy parametrization that maximizes the expected
return:

hAg 2 argmax
h2H

JMðhÞ ¼ E
s0 �l

at � phð�jstÞ
stþ1 � pð�jst; atÞ

Xþ1

t¼0

ctrðst; atÞ
" #

:

ð1Þ

In this paper, we consider a slightly modified version of the Conf–MDPs (Metelli et al.,

2018a).

Definition 1 A Configurable Markov Decision Process (Conf–MDP) induced by the

configuration space X � Rp is defined as the set of MDPs:

CX ¼ Mx ¼ S;A; px; lx; r; cð Þ : x 2 Xf g:

The main differences w.r.t. the original definition are: i) we allow the configuration of the

initial state distribution lx, in addition to the transition model px; ii) we restrict to the case

of parametric configuration spaces X; iii) we do not consider the policy space PH as a part

of the Conf–MDP.

Generalized Likelihood Ratio Test The Generalized Likelihood Ratio test (GLR, Bar-

nard, 1959; Casella and Berger, 2002) aims at testing the goodness of fit of two statistical

models. Given a parametric model having density function pð�jhÞ with h 2 H, we aim at

testing the null hypothesis H0 : h
Ag 2 H0, where H0 � H is a subset of the parametric

space, against the alternative H1 : h
Ag 2 H nH0. Given a dataset D ¼ Xif gn

i¼1 sampled

independently from pð�jhAgÞ, where hAg is the true parameter, the GLR statistic is:

K ¼
suph2H0

pðDjhÞ
suph2H pðDjhÞ ¼

suph2H0

bLðhÞ
suph2H

bLðhÞ
; ð2Þ

where pðDjhÞ ¼ bLðhÞ ¼
Qn

i¼1 pðXijhÞ is the likelihood function. We denote with b‘ðhÞ ¼
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� log bLðhÞ the negative log–likelihood function, bh 2 arg sup
h2H

bLðhÞ and

bh0 2 arg sup
h2H0

bLðhÞ, i.e., the maximum likelihood solutions in H and H0 respectively.

Moreover, we define the expectation of the likelihood under the true parameter:

‘ðhÞ ¼ E
Xi � pð�jhAgÞ

½b‘ðhÞ�. As the maximization is carried out employing the same dataset D

and recalling that H0 � H, we have that K 2 ½0; 1�. It is usually convenient to consider the

logarithm of the GLR statistic: k ¼ �2 logK ¼ 2ðb‘ðbh0Þ � b‘ðbhÞÞ. Therefore, H0 is rejected

for large values of k, i.e., when the maximum likelihood parameter searched in the

restricted set H0 significantly underfits the data D, compared to H. Wilk’s theorem pro-

vides the asymptomatic distribution of k when H0 is true (Wilks, 1938; Casella and

Berger, 2002).

Theorem 1 (Casella and Berger, (2002), Theorem 10.3.3) Let d ¼ dimðHÞ and
d0 ¼ dimðH0Þ\d. Under suitable regularity conditions (see Casella and Berger, (2002)

Section 10.6.2), if H0 is true, then when n ! þ1, the distribution of k tends to a v2

distribution with d � d0 degrees of freedom.

The significance of a test a 2 ½0; 1�, or type I error probability, is the probability to reject

H0 when H0 is true, while the power of a test 1� b 2 ½0; 1� is the probability to reject H0

when H0 is false, b is the type II error probability.

3 Policy space identification in a fixed environment

As we introduced in Sect. 1, we aim at identifying the agent’s policy space by observing a

set of demonstrations coming from the optimal policy of the agent. We assume that the

agent is playing a policy pAg belonging to a parametric policy space PH.

Assumption 1 (Parametric Agent’s Policy) The agent’s policy pAg belongs to a known

parametric policy space PH, i.e., there exists a (maybe not unique) hAg 2 H such that

phAgð�jsÞ ¼ pAgð�jsÞ almost surely for all s 2 S.

It is important to stress pAg is one of the possibly many optimal policies within the policy

space PH, which, in turn, might be unable to represent the optimal Markovian stationary

policy. Furthermore, we do not explicitly report the dependence on the agent’s parameter

hAg 2 H as, in the general case, there might exist multiple parameters yielding the same

policy pAg.
We have access to a dataset D ¼ fðsi; aiÞgn

i¼1 where si � m and ai �pAgð�jsiÞ sampled

independently.4 m is a sampling distribution over the states. Although we will present the

method for a generic m 2 PðSÞ, in practice, we employ as m the c–discounted stationary

distribution induced by pAg, i.e., dpAg
l ðsÞ ¼ ð1� cÞ

Pþ1
t¼0 Prðst ¼ sjM; pAgÞ (Sutton et al.,

1999). We assume that the agent has control over a limited number of parameters dAg\d

4 For exposition simplicity, we limit the presentation to the case of i.i.d. samples (Sutton et al., 2008).
Nevertheless, by means of the blocking technique (Yu, 1994), it is possible to generalize the concentration
results to b-mixing strictly stationary processes, provided that the mixing rate is exponential (e.g., Antos
et al., 2008; Lazaric et al., 2012; Dai et al., 2018).
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whose value can be changed during learning, while the remaining d � dAg are kept fixed to

zero.5 Given a set of indexes I � f1; :::; dg we define the subset of the parameter space:

HI ¼ h 2 H : hi ¼ 0; 8i 2 f1; :::; dg n If g. Thus, the set I represents the indexes of the

parameters that can be changed if the agent’s parameter space were HI . Our goal is to find

a set of parameter indexes IAg that are sufficient to explain the agent’s policy, i.e.,

pAg 2 PHIAg
but also necessary, in the sense that when removing any i 2 IAg the remaining

ones are insufficient to explain the agent’s policy, i.e., pAg 62 PHIAgnfig
. We formalize these

notions in the following definition.

Definition 2 (Correctness) Let pAg 2 PH. A set of parameter indexes IAg � f1; :::; dg is

correct w.r.t. pAg if:

pAg 2 PHIAg
^ 8i 2 IAg : pAg 62 PHIAgnfig

:

We denote with IAg the set of all correct set of parameter indexes IAg.

Thus, there exist multiple IAg when multiple parametric representations of the agent’s policy

pAg are possible. The uniqueness of IAg is guaranteed under the assumption that each policy

admits a unique representation in PH, i.e., under the identifiability assumption.

Assumption 2 (Identifiability) The policy space PH is identifiable, i.e., for all h; h0 2 H,

we have that if phð�jsÞ ¼ ph0 ð�jsÞ almost surely for all s 2 S than h ¼ h0.

The identifiability property allows rephrasing Definition 2 in terms of the policy param-

eters only, leading to the following result.

Lemma 1 (Correctness under Identifiability) Under Assumption 2, let hAg 2 H be the

unique parameter such that phAgð�jsÞ ¼ pAgð�jsÞ almost surely for all s 2 S. Then, there

exists a unique set of parameter indexes IAg � f1; :::; dg that is correct w.r.t. pAg defined as:

IAg ¼ i 2 f1; :::; dg : hAgi 6¼ 0
n o

:

Consequently, IAg ¼ fIAgg.

Proof The uniqueness of IAg is ensured by Assumption 2. Let us rewrite the condition of

Definition 2 under Assumption 2:

pAg 2 PHI Ag
^ 8i 2 IAg : pAg 62 PHI Agnfig

() hAg 2 HI Ag ^ 8i 2 IAg : hAg 62 HIAgnfig
ðP:1Þ

() 8i 2 IAg : h
Ag
i 6¼ 0 ^ 8i 2 f1; :::; dg n IAg : h

Ag
i ¼ 0

() IAg ¼ i 2 f1; :::; dg : hAgi 6¼ 0
n o

;
ðP:2Þ

5 The extension of the identification rules to (known) fixed values different from zero is straightforward.
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where line (P.1) follows since there is a unique representation for pAg determined by

parameter hAg and line (P.2) is obtained from the definition of HI . h

Remark 1 (About the Optimality of pAg) We started this section stating that pAg is an

optimal policy within the policy space PH. This is motivated by the fact that typically we

start with an overparametrized policy space PH and we seek for the minimal set of

parameters that allows the agent to reach an optimal policy within PH. However, in

practice, we usually have access to an �-optimal policy pAg� , meaning that the performance

of pAg� is �-close to the optimal performance.6 Nevertheless, the notion of correctness

(Definition 2) makes no assumptions on the optimality of pAg. If we replace pAg with pAg�
we will recover a set of parameter indexes IAg� that is, in general, different from IAg� , but we

can still provide some guarantees. If IAg � IAg� , then IAg� is sufficient to explain the optimal

policy pAg, but not necessary in general (it might contain useless parameters for pAg).
Instead, if IAg 6� IAg� , then IAg� is not sufficient to explain the optimal policy pAg. In any

case, IAg� is necessary and sufficient to represent, at least, an �-optimal policy.

The following two subsections are devoted to the presentation of the identification rules
based on the application of Definition 2 (Sect. 3.1) and Lemma 1 (Sect. 3.2) when we only

have access to a dataset of samples D. The goal of an identification rule consists in

producing a set bI , approximating IAg. The idea at the basis of our identification rules

consists in employing the GLR test to assess the correctness (Definition 2 or Lemma 1) of

a candidate set of indexes.

3.1 Combinatorial identification rule

In principle, using D ¼ fðsi; aiÞgn
i¼1, we could compute the maximum likelihood parameter

bh 2 arg sup
h2H

bLðhÞ and employ it with Definition 2. However, this approach has, at least,

two drawbacks. First, when Assumption 2 is not fulfilled, it would produce a single

approximate parameter, while multiple choices might be viable. Second, because of the

estimation errors, we would hardly get a zero value for the parameters the agent might not

control. For these reasons, we employ a GLR test to assess whether a specific set of

parameters is zero. Specifically, for all I � f1; :::; dg we consider the pair of hypotheses

H0;I : pAg 2 PHI
against H1;I : pAg 2 PHnHI

and the GLR statistic:

kI ¼ �2 log
suph2HI

bLðhÞ
suph2H

bLðhÞ
¼ 2 b‘ðbhIÞ � b‘ðbhÞ
� �

; ð3Þ

where the likelihood is defined as bLðhÞ ¼
Qn

i¼1 phðaijsiÞ, bhI 2 arg sup
h2HI

bLðhÞ and

bh 2 arg sup
h2H

bLðhÞ. We are now ready to state the identification rule derived from

Definition 2.

6 We can also look at pAg� as the optimal policy within PH for a different MDP M�, that is an approxi-

mation of the original MDP M.
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Identification Rule 1 The combinatorial identification rule with threshold function cl

selects bI c containing all and only the sets of parameter indexes I � f1; :::; dg such that:

kI 	 cjIj ^ 8i 2 I : kInfig [ cjIj�1: ð4Þ

Thus, I is defined in such a way that the null hypothesisH0;I is not rejected, i.e., I contains

parameters that are sufficient to explain the data D, and necessary since for all i 2 I the set
I n fig is no longer sufficient, as H0;Infig is rejected. The threshold function cl, which

depend on the cardinality l of the tested set of indexes, controls the behavior of the tests. In

practice, we recommend setting them by exploiting Wilk’s asymptotic approximation

(Theorem 1) to enforce (asymptotic) guarantees on the type I error. Given a significance

level d 2 ½0; 1�, since for Identification Rule 1 we perform 2d statistical tests by using the

same dataset D, we partition d using Bonferroni correction and setting cl ¼ v2l;1�d=2d , where

v2l;
 is the 
–quintile of a chi square distribution with l degrees of freedom. Refer to

Algorithm 1 for the pseudocode of the identification procedure.

3.2 Simplified identification rule

Identification Rule 1 is hard to be employed in practice, as it requires performing Oð2dÞ
statistical tests. However, under Assumption 2, to retrieve IAg we do not need to test all

subsets, but we can just examine one parameter at a time (see Lemma 1). Thus, for all

i 2 f1; :::; dg we consider the pair of hypothesesH0;i : hAgi ¼ 0 againstH1;i : hAgi 6¼ 0 and

define Hi ¼ fh 2 H : hi ¼ 0g. The GLR test can be performed straightforwardly, using

the statistic:

ki ¼ �2 log
suph2Hi

bLðhÞ
suph2H

bLðhÞ
¼ 2 b‘ðbhiÞ � b‘ðbhÞ
� �

; ð5Þ
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where the likelihood is defined as bLðhÞ ¼
Qn

i¼1 phðaijsiÞ, bhi ¼ arg sup
h2Hi

bLðhÞ and

bh ¼ arg sup
h2H

bLðhÞ.7 In the spirit of Lemma 1, we define the following identification rule.

Identification Rule 2 The simplified identification rule with threshold function c1 selects

bI c containing the unique set of parameter indexes bI c such that:

bI c ¼ i 2 f1; :::; dg : ki [ c1f g: ð6Þ

Therefore, the identification rule constructs bI c by taking all the indexes i 2 f1; :::; dg such

that the corresponding null hypothesis H0;i : hAgi ¼ 0 is rejected, i.e., those for which

there is statistical evidence that their value is not zero. Similarly to the combinatorial

identification rule, we recommend setting the threshold function c1 based on Wilk’s

approximation. Given a significance level d 2 ½0; 1�, since we perform d statistical tests, we

employ Bonferroni correction and we set c1 ¼ v21;1�d=d . Refer to Algorithm 2 for the

pseudocode of the identification rule.

This second procedure requires a test for every parameter, i.e., OðdÞ instead of Oð2dÞ
tests. However, the correctness of Identification Rule 2, in the sense of Definition 2, comes

with the cost of assuming the identifiability property (Assumption 2). What happens if we

employ this second procedure in a case where the assumption does not hold? Consider, for

instance, the case in which two parameters h1 and h2 are exchangeable, we will include

none of them in bI c as, individually, they are not necessary to explain the agent’s policy,

while the pair ðh1; h2ÞT
is indeed necessary. We will discuss how to enforce Assumption 2,

for the case of policies belonging to the exponential family, in the following section.

Remark 2 (On Frequentist and Bayesian Statistical Tests) In this paper, we restrict our

attention to frequentist statistical tests, but, in principle, the same approaches can be

extended to the Bayesian setting (Jeffreys, 1935). Indeed, the GLR test admits a Bayesian

7 This setting is equivalent to a particular case the combinatorial rule in which HH;i � HH;f1;:::;dgnfig, with
H 2 f0; 1g and, consequently, ki � kf1;:::;dgnfig and Hi ¼ Hf1;:::;dgnfig.
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counterpart, known as the Bayes Factor (BF, Goodman, 1999; Morey et al., 2016). We

consider the same setting presented in Sect. 2 in which we aim at testing the null

hypothesis H0 : h
Ag 2 H0, against the alternative H1 : h

Ag 2 H nH0. We take the

Bayesian perspective, looking at each h not as an unknown fixed quantity but as a real-

ization of prior distributions on the parameters defined in terms of the hypothesis: pðhjHHÞ
for H 2 f0; 1g. Thus, given a dataset D ¼ Xif gn

i¼1, we can compute the likelihood of D
given a parameter h as usual: pðDjhÞ ¼

Qn
i¼1 pðXijhÞ. Combining the likelihood and the

prior, we define the Bayes Factor as:

The Bayesian approach has the clear advantage of incorporating additional domain

knowledge by means of the prior. Furthermore, if also a prior on the hypothesis is available

pðHHÞ forH 2 f0; 1g it is possible to compute the ratio of the posterior probability of each
hypothesis:

Compared to the GLR test, the Bayes factor provides richer information, since we can

compute the likelihood of each hypothesis, given the data D. However, like any Bayesian

approach, the choice of the prior turns out to be of crucial importance. The computationally

convenient prior (which might allow computing the integral in closed form) is typically not

correct, leading to a biased test. In this sense, GLR replaces the integral with a single-point

approximation centered in the maximum likelihood estimate. For these reasons, we leave

the investigation of Bayesian approaches for policy space identification as future work.

4 Analysis for the exponential family

In this section, we provide an analysis of the Identification Rule 2 for a policy ph linear in
some state features / that belongs to the exponential family.8 The section is organized as

follows. We first introduce the exponential family, deriving a concentration result of

independent interest (Theorem 2) and then we apply it for controlling the identification

errors made by our identification rule (Theorem 3).

Exponential Family We refer to the definition of linear exponential family given

in (Brown, 1986), that we state as an assumption.

Assumption 3 (Exponential Family of Linear Policies) Let / : S ! Rq be a feature

function. The policy space PH is a space of linear policies, belonging to the exponential

family, i.e., H ¼ Rd and all policies ph 2 PH have form:

phðajsÞ ¼ hðaÞ exp hT t s; að Þ � Aðh; sÞ
� �

; ð7Þ

8 We limit our analysis to Identification Rule 2 since we will show that, in the case of linear policies
belonging to the exponential family, the identifiability property can be easily enforced.
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where h is a positive function, t s; að Þ is the sufficient statistic that depends on the state via

the feature function / (i.e., t s; að Þ ¼ tð/ðsÞ; aÞ) and Aðh; sÞ ¼
log
R
A hðaÞ expfhT tðs; aÞgda is the log partition function. We denote with tðs; a; hÞ ¼

tðs; aÞ � E
a�phð�jsÞ

tðs; aÞ½ � the centered sufficient statistic.

This definition allows modeling the linear policies that are a popular choice in linear time-

invariant systems and a valid option for robotic control (Deisenroth et al., 2013), some-

times even competitive with complex neural network parametrizations (Rajeswaran et al.,

2017). Table 1 shows how to map the Gaussian linear policy with fixed covariance, typ-

ically used in continuous action spaces, and the Boltzmann linear policy, suitable for finite

action spaces, to Assumption 3 (details in Appendix A.1).

For the sake of the analysis, we enforce the following assumption concerning the tail

behavior of the policy ph.

Assumption 4 (Subgaussianity) For any h 2 H and for any s 2 S the centered sufficient

statistic tðs; a; hÞ is subgaussian with parameter r� 0, i.e., for any a 2 Rd:

E
a� phð�jsÞ

exp aT tðs; a; hÞ
� �� �

	 exp
1

2
ak k22r2

� 	
:

A sufficient condition to ensure that Gaussian and Boltzmann are subgaussian is that the

features /ðsÞ are bounded in L2-norm, uniformly over the state space S (Proposition 2).

Furthermore, limited to the policies complying with Assumption 3, the identifiability

(Assumption 2) can be restated in terms of the Fisher Information matrix (Rothenberg

et al., 1971; Little et al., 2010).

Lemma 2 (Rothenberg et al., (1971), Theorem 3) Let PH be a policy space, as in
Assumption 3. Then, under suitable regularity conditions (see Rothenberg et al., (1971)), if
the Fisher Information matrix (FIM) FðhÞ:

FðhÞ ¼ E
s� m

a� phð�jsÞ

tðs; a; hÞtðs; a; hÞT� �

ð8Þ

is non–singular for all h 2 H, then PH is identifiable. In this case, we denote with
kmin ¼ infh2H kmin FðhÞð Þ[ 0.

Proposition 1 of Appendix A.2.1 shows that a sufficient condition for the identifiability in

the case of Gaussian and Boltzmann linear policies is that the second moment matrix of the

feature vector E
s� m

/ðsÞ/ðsÞT� �
is non–singular along with the fact that the policy ph plays

each action with positive probability for the Boltzmann policy.

Remark 3 (How to enforce identifiability?) Requiring that E
s� m

/ðsÞ/ðsÞT� �
is full rank is

essentially equivalent to require that all features /i are linearly independent for all

i 2 f1; :::; dg. This condition can be easily met with a preprocessing phase that removes the
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linearly dependent features, for instance, by employing Principal Component Analy-

sis (PCA, Jolliffe, 2011). For this reason, in our experimental evaluation we will always

consider the case of linearly independent features.

When working with samples, however, we need to estimate the FIM from samples, leading

to the empirical FIM, in which the expectation over the states of Eq. (8), is replaced with

the sample mean:

bF ðhÞ ¼ 1

n

Xn

i¼1

E
a� phð�jsÞ

tðsi; a; hÞtðsi; a; hÞT� �
; ð9Þ

where fsign
i¼1 � m. We denote with bkmin ¼ infh2H kminð bF ðhÞÞ the minimum eigenvalue of

the empirical FIM. In order to carry out the subsequent analysis, we need to require that

this quantity is non-zero.

Assumption 5 (Positive Eigenvalues of Empirical FIM) The minimum eigenvalue of the

empirical FIM bF ðhÞ is non-zero for all h 2 H, i.e., bkmin ¼ infh2H kminð bF ðhÞÞ[ 0.

The condition of Assumption 5 can be enforced as long as the true FIM FðhÞ has a positive
minimum eigenvalue kmin, i.e., under identifiability assumption (Lemma 2) and given a

sufficiently large number of samples. Proposition 4 of Appendix A.2.1 provides the

minimum number of samples such that with high probability it holds that bkmin [ 0.

We are now ready to present a concentration result, of independent interest, for the

parameters and the negative log–likelihood that represents the central tool of our analysis.

Theorem 2 Under Assumptions 1, 2, 3, 4, and 5, let D ¼ fðsi; aiÞgn
i¼1 be a dataset of

n[ 0 independent samples, where si � m and ai � phAgð�jsiÞ. Let bh ¼ argmin
h2H

b‘ðhÞ and

hAg ¼ argmin
h2H

‘ðhÞ. Then, for any d 2 ½0; 1�, with probability at least 1� d it holds that:

Table 1 Action space A, probability density function peh , sufficient statistic t, and function h for the

Gaussian linear policy with fixed covariance and the Boltzmann linear policy

Policy Gaussian Boltzmann

A a 2 Rk ai 2 fa1; :::; akþ1g
peh 1

ð2pÞ
k
2 detðRÞ

1
2

e�
1
2
ða�eh/ðsÞÞT

R�1ða�eh/ðsÞÞ e
ehT

i /ðsÞ

1þ
Pk

j¼1 e
ehT

j /ðsÞ
if i	 k

1

1þ
Pk

j¼1 e
ehT

j /ðsÞ
if i ¼ k

8
>>>>><

>>>>>:

t R�1a /ðsÞ ei  /ðsÞ if i	 k
0 if i ¼ k þ 1

�

h 1

ð2pÞ
k
2 det Rð Þ

1
2

e�
1
2
aTR�1a 1

For convenience of representation eh 2 Rk�q is a matrix and h ¼ vecðehT Þ 2 Rd , with d ¼ kq. We denote

with ei the i–th vector of the canonical basis of Rk and with  the Kronecker product
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bh � hAg









2
	 r
bkmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d

n
log

2d

d

r
:

Furthermore, with probability at least 1� d, it holds that individually:

‘ðbhÞ � ‘ðhAgÞ	 d2r4

bk
2

minn
log

2d

d
and b‘ðhAgÞ � b‘ðbhÞ	 d2r4

bk
2

minn
log

2d

d
:

Proof sketch The idea of the proof is to first obtain a probabilistic bound on the parameter

difference in norm bh � hAg









2
. This result is given in Theorem 6. Then, we use the latter

result together with Taylor expansion to bound the differences ‘ðbhÞ � ‘ðhAgÞ and

b‘ðhAgÞ � b‘ðbhÞ, as in Corollary 1. The full derivation can be found in Appendix A.2.3.

The theorem shows that the L2–norm of the difference between the maximum likelihood

parameter bh and the true parameter hAg concentrates with rate Oðn�1=2Þ while the likeli-

hood b‘ and its expectation ‘ concentrate with faster rate Oðn�1Þ.
Identification Rule Analysis We are now ready to start the analysis of Identification

Rule 2. The goal of the analysis is, informally, to bound the probability of an identification

error as a function of the number of samples n and the threshold function c1. For this
purpose, we define the following quantities.

Definition 3 Consider an identification rule producing bI as approximate parameter index

set. We define the significance a and the power 1� b of the identification rule as:

a ¼ Pr 9i 62 IAg : i 2 bI
� �

; b ¼ Pr 9i 2 IAg : i 62 bI
� �

:

Thus, a represents the probability that the identification rule selects a parameter that the

agent does not control, whereas b is the probability that the identification rule does not

select a parameter that the agent does control.9

By employing the results we derived for the exponential family (Theorem 2) we can

now bound a and b, under a slightly more demanding assumption on bkmin.

Theorem 3 Let bI c be the set of parameter indexes selected by the Identification Rule 2

obtained using n[ 0 i.i.d. samples collected with phAg , with hAg 2 H. Then, under

Assumptions 1, 2, 3, 4, and 5, let h
Ag
i ¼ argmin

h2Hi

‘ðhÞ for all i 2 f1; :::; dg and

n ¼ min 1; kmin

r2
� �

. If bkmin � kmin

2
ffiffi
2

p and ‘ðhAgi Þ � lðhAgÞ� c1, it holds that:

9 We use the symbols a and b to highlight the analogy between these probabilities and the type I and type II
error probabilities of a statistical test.
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a 	 2d exp � c1k
2
minn

16d2r4

� 	

b 	 ð2d � 1Þ
X

i2IAg

exp �
lðhAgi Þ � lðhAgÞ � c1

� �
kminnn

16ðd � 1Þ2r2

8
<

:

9
=

;:

Proof sketch Concerning a ¼ Pr 9i 62 IAg : i 2 bI c

� �
, we employ a technique similar to that

of Lemma 2 in (Garivier and Kaufmann, 2019) to remove the existential quantification.

Instead, for b ¼ Pr 9i 2 IAg : i 62 bI c

� �
we first perform a union bound over i 2 IAg and then

we bound the individual Pr i 62 bI c

� �
. The full derivation can be found in Appendix A.3. h

In principle, we could employ Theorem 3 to derive a proper value of c1 and n, given a

required value of a and b. Unfortunately, their expression depend on kmin which is

unknown in practice. As already mentioned in the previous sections, we recommend

employing Wilk’s asymptotic approximation to set the threshold function as c1 ¼ v21;1�d=d.

This choice allows an asymptotic control of the significance of the identification rule.

Theorem 4 Let bI c be the set of parameter indexes selected by the Identification Rule 2

obtained using n[ 0 i.i.d. samples collected with phAg , with hAg 2 H. Then, under suit-

able regularity conditions (see Casella and Berger, (2002) Section 10.6.2), if c1 ¼ v21;1�d=d

it holds that a	 d when n ! þ1.

Proof Starting from the definition of a, we first perform a union bound over i 62 IAg to

remove the existential quantification.

a ¼ Pr 9i 62 IAg : i 2 bI c

� �
¼ Pr

_

i 62IAg

i 2 bI c

0
@

1
A	

X

i 62IAg

Pr i 2 bI c

� �
:

Now, we bound each Pr i 2 bI c

� �
individually, recalling that ki is distributed asymptotically

as a v2 distribution with 1 degree of freedom and that c1 ¼ v21;1�d=d:

Pr i 2 bI c

� �
¼ Pr ki [ v21;1�d=d

� �
! d

d
; n ! 1:

Thus, we have that when n ! þ1:

a	 d � dAg

d
d	 d: ðP:3Þ

h
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5 Policy space identification in a configurable environment

The identification rules presented so far are unable to distinguish between a parameter set

to zero because the agent cannot control it or because zero is its optimal value. To

overcome this issue, we employ the Conf–MDP properties to select a configuration in

which the parameters we want to examine have an optimal value other than zero. Intu-

itively, if we want to test whether the agent can control parameter hi, we should place the

agent in an environment xi 2 X where hi is ‘‘maximally important’’ for the optimal policy.

This intuition is justified by Theorem 3, since to maximize the power of the test (1� b), all

other things being equal, we should maximize the log–likelihood gap lðhAgi Þ � lðhAgÞ,
i.e., parameter hi should be essential to justify the agent’s behavior. Let I � f1; :::; dg be a
set of parameter indexes we want to test, our ideal goal is to find the environment xI such

that:

xI 2 argmax
x2X

lðhAgI ðxÞÞ � lðhAgðxÞÞ
n o

; ð10Þ

where hAgðxÞ 2 argmax
h2H

JMx
ðhÞ and h

Ag
I ðxÞ 2 argmax

h2HI

JMx
ðhÞ are the parameters of

the optimal policies in the environment Mx considering PH and PHI
as policy spaces

respectively. Clearly, given the samples D collected with a single optimal policy pAgðx0Þ
in a single environment Mx0

, solving problem (10) is hard as it requires performing an

off–distribution optimization both on the space of policy parameters and configurations.

For these reasons, we consider a surrogate objective that assumes that the optimal

parameter in the new configuration can be reached by performing a single gradient step.10

Theorem 5 Let I 2 f1; :::; dg and I ¼ f1; :::; dg n I. For a vector v 2 Rd, we denote with

vjI the vector obtained by setting to zero the components in I. Let hAgðx0Þ 2 H the initial

parameter. Let a� 0 be a learning rate, h
Ag
I ðxÞ ¼ h0 þ arhJMx

ðhAgðx0ÞÞjI and

hAgðxÞ ¼ h0 þ arhJMx
ðhAgðx0ÞÞ. Then, under Assumption 2, we have:

‘ðhAgI ðxÞÞ � ‘ðhAgðxÞÞ� kmina2

2
rhJMx

ðhAgðx0ÞÞjI









2

2
:

Proof By second-order Taylor expansion of ‘ and recalling that rh‘ðhAgðxÞÞ ¼ 0, we
have:

10 This idea shares some analogies with the adapted parameter in the meta-learning setting (Finn et al.,
2017).
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‘ðhAgI ðxÞÞ � ‘ðhAgðxÞÞ� kmin

2
h
Ag
I ðxÞ � hAgðxÞ









2

2

¼ kmin

2
hAgðx0Þ þ arhJMx

ðhAgðx0ÞÞjI � hAgðx0Þ � arhJMx
ðhAgðx0ÞÞ









2

2

¼ kmina2

2
rhJMx

ðhAgðx0ÞÞjI









2

2
:

h

Thus, we maximize the L2–norm of the gradient components that correspond to the

parameters we want to test. Since we have at our disposal only samples D collected with

the current policy phAgðx0Þ and in the current environment x0, we have to perform an off–

distribution optimization over x. To this end, we employ an approach analogous to that

of (Metelli et al., 2018b, 2020) where we optimize the empirical version of the objective

with a penalization that accounts for the distance between the distribution over trajectories:

ð11Þ

where f� 0 is a regularization parameter. We assume to have access to a dataset of

trajectories D ¼ fsign
i¼1 independently collected using policy ph in the environment Mx0

.

Each trajectory is a sequence of triples fðsi;t; ai;t; ri;tÞgT
t¼1, where T is the trajectory horizon.

The expression of the gradient estimator is given by:

The expression is obtained starting from the well–known G(PO)MDP gradient estimator

and adapting for off–distribution estimation by introducing the importance weight (Metelli

et al., 2018b). The dissimilarity penalization term corresponds to the estimated 2–Rényi

divergence (Rényi, 1961) is obtained from the following expression, which represents the

empirical second moment of the importance weight:

bd2ðxkx0Þ ¼
1

n

Xn

i¼1

lxðsi;0Þ
lx0

ðsi;0Þ
YT

t¼1

pxðsi;tþ1jsi;t; ai;tÞ
px0

ðsi;tþ1jsi;t; ai;tÞ

 !2

:

Refer to (Metelli et al., 2018b) for the theoretical background behind the choice of this

objective function. For conciseness, we report the pseudocode of the identification pro-

cedure in a configurable environment for Identification Rule 2 only (Algorithm 3), while

the pseudocode for Identification Rule 2 can be found in Appendix B.
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6 Experimental results

In this section, we present the experimental results, focusing on three aspects of policy

space identification.

• In Sect. 6.1, we provide experiments to assess the quality of our identification rules in

terms of the ability to correctly identifying the parameters controlled by the agent.

• In Sect. 6.2, we focus on the application of policy space identification to Imitation

Learning, comparing our identification rules with commonly employed regularization

techniques.

• In Sect. 6.3, we consider the Conf-MDP framework and we show how properly

identifying the parameters controlled by the agent allows learning better (more specific)

environment configurations.

Additional experiments together with the hyperparameter values are reported in

Appendix C.

6.1 Identification rules experiments

In this section, we provide two experiments to test the ability of our identification rules in

properly selecting the parameters the agent controls in different settings. We start with an

experiment on a discrete grid world (Sect. 6.1.1) to highlight the beneficial effects of

environment configuration in parameter identification. Then, we provide an experiment on

a simulated car driving domain (Sect. 6.1.2) in which we compare the combinatorial and

the simplified identification rules.

6.1.1 Discrete grid world

The grid world environment is a simple representation of a two-dimensional world (5�5

cells) in which an agent has to reach a target position by moving in the four directions.

123

Machine Learning (2022) 111:2093–2145 2109



Whenever an action is performed, there is a small probability of failure (0.1) triggering a

random action. The initial position of the agent and the target position are drawn at the

beginning of each episode from a Boltzmann distribution lx. The agent plays a Boltzmann

linear policy ph with binary features / indicating its current row and column and the row

and column of the goal.11 For each run, the agent can control a subset IAg of the parameters

hIAg associated with those features, which is randomly selected. Furthermore, the super-

visor can configure the environment by changing the parameters x of the initial state

distribution lx. Thus, the supervisor can induce the agent to explore certain regions of the

grid world and, consequently, change the relevance of the corresponding parameters in the

optimal policy.

The goal of this set of experiments is to show the advantages of configuring the

environment when performing the policy space identification using rule 2. Figure 2 shows

the empirical ba and bb, i.e., the fraction of parameters that the agent does not control that

are wrongly selected and the fraction of those the agent controls that are not selected

respectively, as a function of the number m of episodes used to perform the identification.

We compare two cases: conf where the identification is carried out by also configuring the

environment, i.e., optimizing Eq. (11), and no-conf in which the identification is per-

formed in the original environment only. In both cases, we can see that ba is almost

independent of the number of samples, as it is directly controlled by the threshold function

c1. Differently, bb decreases as the number of samples increases, i.e., the power of the test

1� bb increases with m. Remarkably, we observe that configuring the environment gives a

significant advantage in understanding the parameters controlled by the agent w.r.t. using

a fixed environment, as bb decreases faster in the conf case. This phenomenon also

empirically justifies our choice of objective (Eq. (11)) for selecting the new environment.

Hyperparameters, further experimental results, together with experiments on a continuous

version of the grid world, are reported in Appendix C.1.1–C.1.2.

6.1.2 Simulated car driving

We consider a simple version of a car driving simulator, in which the agent has to reach the

end of a road in the minimum amount of time, avoiding running off-road. The agent

Fig. 2 Discrete Grid World: ba
and bb error for conf and no-conf
cases varying the number of
episodes. 25 runs 95% c.i

11 The features are selected to fulfill Lemma 2.
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perceives its speed, four sensors placed at different angles that provide distance from the

edge of the road and it can act on acceleration and steering.

The purpose of this experiment is to show a case in which the identifiability assumption

(Assumption 2) may not be satisfied. The policy ph is modeled as a Gaussian policy whose

mean is computed via a single hidden layer neural network with 8 neurons. Some of the

sensors are not available to the agent, our goal is to identify which ones the agent can

perceive.

In Fig. 3, we compare the performance of the Identification Rules 1 (Combinatorial)

and 2 (Simplified), showing the fraction of runs that correctly identify the policy space. We

note that, while for a small number of samples, the simplified rule seems to outperform,

when the number of samples increases, the combinatorial rule displays remarkable sta-

bility, approaching the correct identification in all the runs. This is explained by the fact

that, when multiple representations for the same policy are possible (like in this case when

having a neural network as policy), considering one parameter at a time might induce the

simplified rule to select a wrong set of parameters. Hyperparameters are reported in

Appendix C.1.3.

6.2 Application to imitation learning

IL aims at recovering a policy replicating the behavior of an expert’s agent. Selecting the

parameters that an agent can control can be interpreted as applying a form of regularization

to the IL problem (Osa et al., 2018). In the IL literature, a widely used technique is based

on entropy regularization (Neu et al., 2017), which was employed in several successful

algorithms, such as Maximum Causal Entropy IRL methods (MCE, Ziebart et al., 2008,,

2010), and Generative Adversarial IL (Ho and Ermon, 2016). Alternatively, other

approaches aim at enforcing a sparsity constraint on the recovered policy parameters (e.g.,

Lee et al., 2018; Reddy et al., 2019; Brantley et al., 2020).

The goal of this experiment consists in showing that if we have appropriately identified

the expert’s policy space, we can mitigate overfitting/underfitting phenomena, with a

general benefit on the process of learning the imitating policy. This experiment is con-

ducted in the grid world domain, introduced in Sect. 6.1.1, using the same setting. In each

run, the expert agent plays a (near) optimal Boltzmann policy phAg that makes use of a

subset of the available parameters and provides a dataset D ¼ fðsi; aiÞgn
i¼1 of n samples

coming from m episodes.

Fig. 3 Simulated Car Driving:
fraction of correct identifications
varying the number of episodes.
100 runs 95% c.i
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In the IL framework knowing the policy space of the expert agent means properly

tailoring the hypothesis space in which we search for the imitation policy. For this reason,

we propose a comparison with common regularization techniques applied to maximum

likelihood estimation. Figure 4 shows on the left the norm of the parameter difference

bh � hAg









2
between the parameter recovered by the different IL methods bh and the true

parameter employed by the expert hAg, whereas on the right we plot the estimated expected

KL-divergence between the imitation policy and the expert’s policy computed as:

bDKL phAgkpbh
� �

¼ 1

n

Xn

i¼1

DKL phAgð�jsiÞkpbhð�jsiÞ
� �

:

The lines Conf and No-conf refer to the results of ML estimation obtained by restricting the

policy space to the parameters identified by our simplified rule with and without employing

environment configurability, respectively (precisely as in Sect. 6.1.1). ML, Ridge, and
Lasso correspond to maximum likelihood estimation in the full parameter space. Specif-

ically, they are obtained by minimizing the objective:

For ML we perform no regularization (kR ¼ kL ¼ 0), for Ridge we set kR ¼ 0:001 and

kL ¼ 0, and for Lasso we have kR ¼ 0 and kL ¼ 0:001.
We observe that Conf, i.e., the usage of our identification rule, together with envi-

ronment configuration, outperforms the other methods. This is more evident in the

expected KL-divergence plot (right), which is a more robust index compared to the norm

of the parameter difference (left). Ridge and Lasso regularizations display good behavior,

better than both the identification rule without configuration (No-Conf) and the plain

maximum likelihood without regularization (ML). This illustrates two important points.

Fig. 4 Discrete Grid World: Norm of the difference between the expert’s parameter hAg and the estimated

parameter bh (left) and expected KL-divergence between the expert’s policy phAg and the estimated policy pbh
(right) as a function of the number of collected episodes m. 25 runs, 95% c.i
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First, it confirms the benefits of configuring the environment for policy space identification.

Second, it shows that a proper selection of the parameters controlled by the agent allows

improving over standard ML, which tends to overfit.12 We tested additional values of the

regularization hyperparametrers kR and kL and other regularization techniques (Shannon

and Tsallis entropy). The complete results are reported in Appendix C.2.

It is worth noting that the specific IL setting we consider, i.e., the availability of an

initial dataset D of expert’s demonstrations with no further interaction allowed13 rules out

from the comparison a large body of the literature that requires the possibility to interact

with the expert or with the environment (e.g., Ho and Ermon, 2016; Lee et al., 2018).

Nevertheless, these IL algorithms could be, in principle, adapted to this challenging no-

interaction setting at the cost of restoring to off-policy estimation techniques (Owen,

2013), that, however, might inject further uncertainty in the learning process (see

Appendix C.2 for details).

6.3 Application to configurable MDPs

The knowledge of the agent’s policy space could be relevant when the learning process

involves the presence of an external supervisor, as in the case of Configurable Markov

Decision Process (Metelli et al., 2018a,, 2019). In a Conf-MDP, the supervisor is in charge

of selecting the best configuration for the agent, i.e., the one that allows the agent to

achieve the highest performance possible. As intuition suggests, the best environment

configuration is closely related to the agent’s capabilities. Agents with different perception

and actuation possibilities might benefit from different configurations. Thus, the external

supervisor should be aware of the agent’s policy space to select the most appropriate

configuration for the specific agent.

In the Minigolf environment (Lazaric et al., 2007), an agent hits a ball using a putter

with the goal of reaching the hole in the minimum number of attempts. Surpassing the hole

causes the termination of the episode and a large penalization. The agent selects the force

applied to the putter by playing a Gaussian policy linear in some polynomial features

(complying to Lemma 2) of the distance from the hole (x) and the friction of the green (f).
When an action is performed, a Gaussian noise is added whose magnitude depends on the

green friction and on the action itself.

The goal of this experiment is to highlight that knowing the policy space is beneficial

when learning in a Conf–MDP. We consider two agents with different perception capa-

bilities: A1 has access to both the x and f, whereas A2 knows only x. Thus, we expect that
A1 learns a policy that allows reaching the hole in a smaller number of hits, compared to

A2, as it can calibrate force according to friction, whereasA2 has to be more conservative,

being unaware of f. There is also a supervisor in charge of selecting, for the two agents, the

best putter length x, i.e., the configurable parameter of the environment.

Figure 5-left shows the performance of the optimal policy as a function of the putter

length x. We can see that for agent A1 the optimal putter length is xAgA1
¼ 5 while for

agent A2 is xAgA2
¼ 11:5. Figure 5-right compares the performance of the optimal policy

of agent A2 when the putter length x is chosen by the supervisor using four different

12 It is worth noting that the classical regularization techniques, like ridge and lasso, require choosing the

regularization hyperparameter kH with H 2 fR;Lg. In our experiments, we searched for the best parameter
in f0:0001; 0:001; 0:01; 0:1; 1g.
13 This setting was recently defined ‘‘truly batch model-free’’ (Ramponi et al., 2020).
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strategies. In (i) the configuration is sampled uniformly in the interval [1, 15]. In (ii) the

supervisor employs the optimal configuration for agent A1 (x ¼ 5), i.e., assuming the

agent is aware of the friction. (iii) is obtained by selecting the optimal configuration of the

policy space produced by using our identification rule 2. Finally, (iv) is derived by

employing an oracle that knows the true agent’s policy space (x ¼ 11:5). We can see that

the performance of the identification procedure (iii) is comparable with that of the oracle

(iv) and notably higher than the performance when employing an incorrect policy space

(ii). Hyperparameters and additional experiments are reported in Appendix C.3.

7 Conclusions

In this paper, we addressed the problem of identifying the policy space available to an agent in

a learning process by simply observing its behavior when playing the optimal policy within

such a space.We introduced two identification rules, both based on the GLR test, which can be

applied to select the parameters controlled by the agent. Additionally, we have shown how to

use the configurability property of the environment to improve the effectiveness of identifi-

cation rules. The experimental evaluation highlights some essential points. First, the identi-

fication of the policy space brings advantages to the learning process in a Conf–MDP, helping

to choose wisely the most suitable environment configuration. Second, we have shown that

configuring the environment is beneficial for speeding up the identification process. Addi-

tionally, we have verified that policy space identification can improve imitation learning.

Future research might investigate the usage of Bayesian statistical tests and the application of

policy space identification to multi-agent RL (Busoniu et al., 2008). We believe that an agent

in a multi-agent systemmight benefit from the knowledge of the policy space of its adversaries

to understand what their action possibilities are and make decisions accordingly.

Appendix

A Proofs and derivations

In this appendix, we report the proofs and derivations of the results presented in the main

paper.

Fig. 5 Mingolf: Performance of the optimal policy varying the putter length x for agents A1 and A2 (left)
and performance of the optimal policy for agentA2 with four different strategies for selecting x (right). 100
runs 95% c.i
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A.1 Gaussian and Boltzmann linear policies as exponential family distributions

In this appendix, we show how a multivariate Gaussian with fixed covariance and a

Boltzmann policy, both linear in the state features /ðsÞ can be cast into Assumption 3. We

are going to make use of the following identities regarding the Kronecker pro-

duct (Petersen et al., 2008):

vecðAXBÞ ¼ BT  A
� 

vecðXÞ ð12Þ

aTXBXTc ¼ vecðXÞT B caT
� 

vecðXÞ; ð13Þ

where vecðXÞ is the vectorization of matrix X obtained by stacking the columns of X into a

single column vector.

A.1.1 Multivariate linear Gaussian policy with fixed covariance

The typical representation of a multivariate linear Gaussian policy is given by the fol-

lowing probability density function:

pehðajsÞ ¼
1

ð2pÞ
k
2 detðRÞ

1
2

exp � 1

2
ða� eh/ðsÞÞT

R�1ða� eh/ðsÞÞ
� 	

;

where eh 2 Rk�q is a properly sized matrix. Recalling Assumption 3, we rephrase the

previous equation as:

pehðajsÞ ¼
1

ð2pÞ
k
2 detðRÞ

1
2

exp � 1

2
aTR�1a

� 	
exp /ðsÞTehTR�1a� 1

2
/ðsÞTehTR�1eh/ðsÞ

� 	
:

Recalling the identities at Eqs. (12) and (13) and observing that /ðsÞTehTR�1a and

/ðsÞTehTR�1eh/ðsÞ are scalar, we can rewrite:

/ðsÞTehTR�1a ¼ vec /ðsÞTehTR�1a
� �

¼ aTR�1  /ðsÞT� 
vec ehT
� �

¼ vec ehT
� �T

R�1a /ðsÞ
� 

/ðsÞTehTR�1eh/ðsÞ ¼ vec ehT
� �T

R�1  /ðsÞ/ðsÞT� 
vec ehT
� �

:

Now, by redefining the parameter of the exponential family distribution h ¼ vec ehT
� �

we

state the following definitions to comply with Assumption 3:

tðs; aÞ ¼ R�1a /ðsÞ

hðaÞ ¼ 1

ð2pÞ
k
2 detðRÞ

1
2

exp � 1

2
aTR�1a

� 	

Aðh; sÞ ¼ hT R�1  /ðsÞ/ðsÞT� 
h:
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A.1.2 Boltzmann linear policy

The Boltzmann policy on a finite set of actions fa1; :::; akþ1g is typically represented by

means of a matrix of parameters eh 2 Rk�q:14

pehðaijsÞ ¼

exp ehT
i /ðsÞ

n o

1þ
Pk

j¼1 exp
ehT

j /ðsÞ
n o if i	 k

1

1þ
Pk

j¼1 exp
ehT

j /ðsÞ
n o if i ¼ k þ 1

8
>>>>>><

>>>>>>:

;

where with ehi we denote the i-th row of matrix eh. In order to comply to Assumption 3, we

rewrite the density function in the following form:

pehðaijsÞ ¼
exp ehT

i /ðsÞ � log expf0g þ
Pk

j¼1 exp
ehT

j /ðsÞ
n o� �n o

if i	 k

exp 0� log expf0g þ
Pk

j¼1 exp
ehT

j /ðsÞ
n o� �n o

if i ¼ k þ 1

8
><

>:
:

By introducing the vector ei as the i–th vector of the canonical basis of Rk, i.e., the vector

having 1 in the i–th component and 0 elsewhere, and recalling the definition of Kronecker

product, we can derive the following identity for i	 k:

ehT
i /ðsÞ ¼ vec ehT

� �T

ei  /ðsÞð Þ:

In the case i ¼ k it is sufficient to replace the previous term with the zero vector 0.

Therefore, by renaming h ¼ vec ehT
� �

we can make the following assignments in order to

get the relevant quantities in Assumption 3:

tðs; aiÞ ¼
ei  /ðsÞ if i	 k

0 if i ¼ k þ 1

�

hðaiÞ ¼ 1

Aðh; sÞ ¼ log 1þ
Xk

j¼1

exp hT ej  /ðsÞ
� � �

 !
:

14 Notice that we are considering a set made of k þ 1 actions but the matrix eh has only k rows. This allows
enforcing the identifiability property, otherwise if we had a row for each of the k þ 1 actions we would have
multiple representation for the same policy (rescaling the rows by the same amount).
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A.2 Results on exponential family

In this appendix, we derive several results that are used in Section 4, concerning policies

belonging to the exponential family, as in Assumption 3.

A.2.1 Fisher information matrix

We start by providing an expression of the Fisher Information matrix (FIM) for the specific

case of the exponential family, that we are going to use extensively in the derivation. We

first define the FIM for a fixed state and then we provide its expectation under the state

distribution m. For any state s 2 S, we define the FIM induced by phð�jsÞ as:

Fðh; sÞ ¼ E
a�phð�jsÞ

rh logphðajsÞrh log phðajsÞT� �
: ð14Þ

We can derive the following immediate result.

Lemma 3 For a policy ph belonging to the exponential family, as in Assumption 3, the FIM for state s 2 S is
given by the covariance matrix of the sufficient statistic:

Fðh; sÞ ¼ E
a� phð�jsÞ

tðs; a; hÞtðs; a; hÞT� �
¼ Cov

a� phð�jsÞ
tðs; aÞ½ �:

Proof Let us first compute the gradient log-policy for the exponential family:

rh log phðajsÞ ¼ tðs; aÞ � rhAðh; sÞ

¼ tðs; aÞ �
R
A tðs; aÞhðaÞ exp hT tðs; aÞ

� �
da

R
A hðaÞ exp hT tðs; aÞ

� �
da

¼ tðs; aÞ � E a� phð�jsÞ tðs; aÞ½ � ¼ tðs; a; hÞ:

ðP:4Þ

Now, we just need to apply the definition given in Eq. (14) and to recall the definition of

covariance matrix:

Fðh; sÞ ¼ E
a� phð�jsÞ

tðs; a; hÞtðs; a; hÞT� �

¼ E
a� phð�jsÞ

tðs; aÞ � E
a� phð�jsÞ

tðs; aÞ½ �
� �

tðs; aÞ � E
a� phð�jsÞ

tðs; aÞ½ �
� �T

" #

¼ Cov
a� phð�jsÞ

tðs; aÞ½ �:

h

We now define the expected FIM FðhÞ and its corresponding estimator bF ðhÞ under the c–
discounted stationary distribution induced by the agent’s policy pAg:
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FðhÞ ¼ E
s� m

E
a�phð�jsÞ

tðs; aÞtðs; aÞT� �� �
; bF ðhÞ ¼ 1

n

Xn

i¼1

E
a�phð�jsÞ

tðsi; aÞtðsi; aÞT� �
: ð15Þ

Finally, we provide a sufficient condition to ensure that the FIM FðhÞ is non singular in the
case of Gaussian and Boltzmann linear policies.

Proposition 1 If the second moment matrix of the feature vector E
s� m

/ðsÞ/ðsÞT� �
is non–singular, the

identifiability condition of Lemma 2 is fulfilled by the Gaussian and Boltzmann linear policies for all h 2 H,
provided that each action is played with non–zero probability for the Boltzmann policy.

Proof Let us start with the Boltzmann policy and consider the expression of tðs; aiÞ with i 2 f1; :::; kg:

tðs; ai; hÞ ¼ tðs; aiÞ � E
a�phð�jsÞ

tðs; aÞ½ �

¼ ei  /ðsÞ �
Xk

j¼1

phðaijsÞei  /ðsÞ

¼ ei � pð Þ  /ðsÞ;

where p is a vector defined as p ¼ phða1jsÞ; :::; phðakjsÞð ÞT
and we exploited the dis-

tributivity of the Kronecker product. While for i ¼ k þ 1, we have 0� pð Þ  /ðsÞ. For the
sake of the proof, let us define eei ¼ ei if i	 k and eekþ1 ¼ 0. Let us compute the FIM:

FðhÞ ¼ E
a� phð�jsÞ

tðs; a; hÞtðs; a; hÞT� �

¼ E
a� phð�jsÞ

eei � pð Þ  /ðsÞð Þ eei � pð Þ  /ðsÞð ÞT� �

¼ E
a� phð�jsÞ

eei � pð Þ eei � pð ÞT/ðsÞ/ðsÞT� �

¼ E
a� phð�jsÞ

eei � pð Þ eei � pð ÞT� �
 /ðsÞ/ðsÞT

¼ E
a� phð�jsÞ

eei eei
T

� �
� ppT

� �
 /ðsÞ/ðsÞT

diagðpÞ � ppT
� 

 /ðsÞ/ðsÞT ;

where we exploited the distributivity of the Kroneker product, observed that E
a�phð�jsÞ

eei½ � ¼

p and E
a�phð�jsÞ

eei eei
T½ � ¼ diagðpÞ. Let us now consider the matrix:

diagðpÞ � ppT ¼

phða1jsÞ � phða1jsÞ2 � phða1jsÞphða2jsÞ . . . � phða1jsÞphðakjsÞ
�phða1jsÞphða2jsÞ phða2jsÞ � phða2jsÞ2 . . . � phða2jsÞphðakjsÞ

..

. ..
. . .

. ..
.

�phða1jsÞphðakjsÞ � phða2jsÞphðakjsÞ . . . phðakjsÞ � phðakjsÞ2

0
BBBBB@

1
CCCCCA
:

Consider a generic row i 2 f1; :::; kg. The element on the diagonal is

phðaijsÞ � phðaijsÞ2 ¼ phðaijsÞ 1� phðaijsÞð Þ, while the absolute sum of the elements out of
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the diagonal is:

phðaijsÞ
X

j2f1;:::kg^j 6¼i

phðajjsÞ ¼ phðaijsÞ 1� phðaijsÞ � phðakþ1jsÞð Þ:

Therefore, if all actions are played with non–zero probability, i.e., phðaijsÞ[ 0 for all

i 2 f1; :::; k þ 1g it follows that the matrix is strictly diagonally dominant by rows and thus

it is positive definite. If also E
s� m

/ðsÞ/ðsÞT� �
is positive definite, for the properties of the

Kroneker product, the FIM is positive definite.
Let us now focus on the Gaussian policy. Let a 2 Rd and denote lðsÞ ¼ E a �phð�jsÞ a½ �:

tðs; a; hÞ ¼ tðs; aÞ � E
a�phð�jsÞ

tðs; aÞ½ � ¼ R�1 a� lðsÞð Þ  /ðsÞ:

Let us compute the FIM:

FðhÞ ¼ E
a� phð�jsÞ

tðs; a; hÞtðs; a; hÞT� �

¼ E
a� phð�jsÞ

R�1 a� lðsÞð Þ  /ðsÞ
� 

R�1 a� lðsÞð Þ  /ðsÞ
� T

h i

¼ E
a� phð�jsÞ

R�1 a� lðsÞð Þ a� lðsÞð ÞT
R�1  /ðsÞ/ðsÞT� �

¼ R�1 E
a� phð�jsÞ

a� lðsÞð Þ a� lðsÞð ÞT� �
R�1  /ðsÞ/ðsÞT

¼ R�1RR�1  /ðsÞ/ðsÞT ¼ R�1  /ðsÞ/ðsÞT :

If R has finite values, then R�1 will be positive definite and additionally, considering that

E
s� m

/ðsÞ/ðsÞT� �
is positive definite, we have that the FIM is positive definite. h

A.2.2 Subgaussianity assumption

From Assumption 4, we can prove the following result that upper bounds the maximum

eigenvalue kmax of the Fisher information matrix with the subgaussianity parameter r.

Lemma 4 Under Assumption 4, for any h 2 H and for any s 2 S the maximum eigenvalue of the Fisher

Information matrix Fðh; sÞ is upper bounded by dr2.

Proof Recall that the maximum eigenvalue of a matrix A can be computed as supx: xk k2 	 1 x
TAx and the norm

of a vector y can be computed as supx: xk k2 	 1 x
Ty. Consider now the derivation for a generic x 2 Rd such that

xk k2 	 1:
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xTFðh; sÞx ¼ xT E
a� phð�jsÞ

tðs; a; hÞtðs; a; hÞT� �
x

¼ E
a� phð�jsÞ

xT tðs; a; hÞtðs; a; hÞTx
� �

¼ E
a� phð�jsÞ

xT tðs; a; hÞ
� 2h i

	 E
a�phð�jsÞ

sup
x: xk k2 	 1

xT tðs; a; hÞ
 !2
2
4

3
5 ¼ E

a�phð�jsÞ
tðs; a; hÞk k22

h i
;

where we employed Lemma 3 and upper bounded the right hand side. By taking the

supremum over x 2 Rd such that xk k2 	 1 we get:

kmax Fðh; sÞð Þ ¼ sup
x: xk k2 	 1

xTFðh; sÞx	 E
a�phð�jsÞ

tðs; a; hÞk k22
h i

: ðP:5Þ

By applying the first inequality in Remark 2.2 of Hsu et al., (2012) and setting A ¼ I we

get that E
a� phð�jsÞ

tðs; a; hÞk k22
h i

	 dr2. h

We now show that the subgaussianity assumption is satisfied by the Boltzmann and

Gaussian policies, as defined in Table 1, under the following assumption.

Assumption 6 (Boundedness of Features) For any s 2 S the feature function is bounded in L2-norm, i.e.,
there exists Umax\1 such that /ðsÞk k2 	Umax.

Proposition 2 Under Assumption 6, then Assumption 4 is fulfilled by the Boltzmann linear policy with

parameter r ¼ 2Umax and Gaussian linear policy with parameter r ¼ Umaxffiffiffiffiffiffiffiffiffiffiffi
kmin Rð Þ

p .

Proof Let us start with the Boltzmann policy. From the definition of subgaussianity given in Assumption 4,

requiring that the random vector tðs; ai; hÞ is subgaussian with parameter r is equivalent to require that the

random (scalar) variable 1
kak2

aT tðs; ai; hÞ is subgaussian with parameter r for any a 2 Rd . Thus, we now

bound the term:

aT tðs; a; hÞ
�� �� ¼ aT eei � pð Þ  /ðsÞð Þ

�� ��

¼ ak k2 eei � pð Þ  /ðsÞk k2
¼ ak k2 eei � pk k2 /ðsÞk k2
	 2 ak k2Umax;

where we used Cauchy–Swartz inequality, the identity x yk k22¼ x yð ÞT x yð Þ ¼
xTxð Þ  yTyð Þ ¼ xk k22 yk k22 and the inequality eei � pk k22 	 2. Therefore, we have that the

random variable 1
kak2

aT tðs; ai; hÞ	 2Umax is bounded. Thanks to Hoeffding’s lemma we

have that the subgaussianity parameter is r ¼ 2Umax.
Let us now consider the Gaussian policy. Let a 2 Rd and denote with lðsÞ ¼ E

a�phð�jsÞ
a½ � :
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tðs; a; hÞ ¼ tðs; aÞ � E
a�phð�jsÞ

tðs; aÞ½ � ¼ R�1 a� lðsÞð Þ  /ðsÞ:

Let us first observe that we can rewrite:

aT R�1 a� lðsÞð Þ  /ðsÞ
� 

¼
Xk

i¼1

Xq

j¼1

aij R�1 a� lðsÞð Þ
� 

i
/ðsÞj

¼
Xk

i¼1

Xq

j¼1

aij/ðsÞj R�1 a� lðsÞð Þ
� 

i

¼ bTR�1 a� lðsÞð Þ;

where bi ¼
P

j aij/ðsÞj for i 2 f1; :::; kg. We now proceed with explicit computations:

E
a� phð�jsÞ

exp aT tðs; a; hÞ
� �� �

¼ E
a� phð�jsÞ

exp aT R�1 a� lðsÞð Þ  /ðsÞ
� � �� �

¼ E
a� phð�jsÞ

exp bTR�1 a� lðsÞð Þ
� �� �

¼
Z

Rd

exp � 1
2
ða� lðsÞÞT

R�1ða� lðsÞÞ
� �

ð2pÞ
k
2 detðRÞ

1
2

exp bTR�1 a� lðsÞð Þ
� �

da:

Now we complete the square:

� 1

2
ða� lðsÞÞT

R�1ða� lðsÞÞ þ bTR�1ða� lðsÞÞ

¼ � 1

2
ða� lðsÞ � bÞT

R�1ða� lðsÞ � bÞ þ 1

2
bTR�1b:

Thus, we have:

E
a� phð�jsÞ

exp aT tðs; a; hÞ
� �� �

¼ exp
1

2
bTR�1b

� 	Z

Rd

exp � 1
2
ða� lðsÞ � bÞT

R�1ða� lðsÞ � bÞ
� �

ð2pÞ
k
2 detðRÞ

1
2

da

¼ exp
1

2
bTR�1b

� 	
:

Now, we observe that:

bTR�1b	kbk22 R�1


 



2
	kak22k/ðsÞk

2
2 R�1


 



2
;

having derived from Cauchy–Swartz inequality:
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kbk22 ¼
Xk

i¼1

Xq

j¼1

aij/ðsÞj

 !2

	
Xk

i¼1

Xq

j¼1

a2ij
Xq

l¼1

/ðsÞ2l

¼
Xk

i¼1

Xq

j¼1

a2ij

 !
Xq

l¼1

/ðsÞ2l

¼ kak22k/ðsÞk
2
2:

We get the result by setting r ¼ Umax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1


 



2

q
¼ Umaxffiffiffiffiffiffiffiffiffiffiffi

kmin Rð Þ
p . h

Furthermore, we report for completeness the standard Hoeffding concentration inequality

for subgaussian random vectors.

Proposition 3 Let X1;X2; :::;Xn be n i.i.d. zero–mean subgaussian d–dimensional random vectors with

parameter r� 0, then for any a 2 Rd and �[ 0 it holds that:

Pr aT 1

n

Xn

i¼1

Xi

 !
� �

 !
	 exp � �2n

2 ak k22r2

( )
:

Proof The proof is analogous to that of the Hoeffding inequality for bounded random variables. Let s� 0:

Pr aT 1

n

Xn

i¼1

Xi

 !
� �

 !
¼ Pr exp saT 1

n

Xn

i¼1

Xi

 !( )
� es�

 !

	 e�s� E exp saT 1

n

Xn

i¼1

Xi

 !( )" #
¼ e�s�

Yn

i¼1

E exp
s

n
aTXi

n oh i
	 e�s� exp

s2

2n
ak k22r2

� 	

¼ exp �s�þ s2

2n
ak k22r2

� 	
;

where we employed Markov inequality, exploited the subgaussianity assumption and the

independence. We minimize the last expression over s, getting the optimal s ¼ �n
ak k22r2

, from

which we get the result:

Pr aT 1

n

Xn

i¼1

Xi

 !
� �

 !
	 exp � �2n

2 ak k22r2

( )
:

h

Under the Assumption 4, we provide the following concentration inequality for the min-

imum eigenvalue of the empirical FIM.
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Proposition 4 Let FðhÞ and bF ðhÞ be the FIM and its estimate obtained with n[ 0 independent samples.
Then, under Assumption 4, for any �[ 0 it holds that:

Pr kmin
bF ðhÞ

� �
� kmin FðhÞð Þ

���
���[ �

� �
	 2 exp � �2n

wrd2r4

� 	
;

where wr [ 0 is a constant depending only on the subgaussianity parameter r. In
particular, under the following condition on n we have that, for any d 2 ½0; 1� and a 2
½0; 1Þ it holds that kminð bF ðhÞÞ[ akminðFðhÞÞ with probability at least 1� d:

n[
d2r4wr log

2
d

ð1� aÞ2kminðFðhÞÞ2
:

Proof Let us recall that bF ðhÞ and FðhÞ are both symmetric positive semidefinite matrices, thus their
eigenvalues kj correspond to their singular values rj. Let us consider the following sequence of inequalities:

kmin
bF ðhÞ

� �
� kmin FðhÞð Þ

���
��� ¼ rmin

bF ðhÞ
� �

� rmin FðhÞð Þ
���

���

	 max
j2f1;:::;dg

rj
bF ðhÞ

� �
� rj FðhÞð Þ

���
���

	 bF ðhÞ � FðhÞ









2
;

where last inequality follows from Ben-Israel and Greville, (2003). Therefore, all it takes is

to bound the norm of the difference. For this purpose, we employ Corollary 5.50 and

Remark 5.51 of Vershynin, (2012), having observed that the FIM is indeed a covariance

matrix and its estimate is a sample covariance matrix. We obtain that with probability at

least 1� d:

bF ðhÞ � FðhÞ









2
	 FðhÞk k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr log

2
d

n

s

; ðP:6Þ

where wr � 0 is a constant depending on the subgaussianity parameter r. Recalling, from
Lemma 4, that FðhÞk k ¼ kmax FðhÞð Þ	 dr2, we can rewrite the previous inequality as:

bF ðhÞ � FðhÞ









2
	 dr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr log

2
d

n

s

: ðP:7Þ

By setting the right hand side equal to � and solving for d, we get the first result. The value
of n can be obtained by setting the right hand side equal to ð1� aÞkminðFðhÞÞ. h

A.2.3 Concentration result

We are now ready to provide the main result of this section, that consists in a concentration

result on the negative log–likelihood. Our final goal is to provide a probabilistic bound to

the differences ‘ðbhÞ � ‘ðhAgÞ and b‘ðhAgÞ � b‘ðbhÞ. To this purpose, we start with a
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technical lemma (Lemma 5) which provides a concentration result involving a quantity

that will be used later, under Assumption 4. Then, we use this result to obtain the con-

centration of the parameters, i.e., bounding the distance bh � hAg









2
(Theorem 6), under

suitable well–conditioning properties of the involved quantities. Finally, we employ the

latter result to prove the concentration of the negative log–likelihood (Corollary 1). Some

parts of the derivation are inspired to Li et al., (2017).

Lemma 5 Under Assumption 2 and Assumption 4, let D ¼ fðsi; aiÞgn
i¼1 be a dataset of n[ 0 independent

samples, where si � d
phAg
l and ai � phAgð�jsiÞ. For any h 2 H, let gðhÞ be defined as:

gðhÞ ¼ 1

n

Xn

i¼1

E
a�phð�jsÞ

tðsi; aÞ½ � � E
a�phAgð�jsÞ

tðsi; aÞ½ �
� �

: ð16Þ

Let bh ¼ argmin
h2H

b‘ðhÞ ¼ 1
n

Pn
i¼1 logphðaijsiÞ. Then, under Assumption 4, for any d 2 ½0; 1�,

with probability at least 1� d, it holds that:

gðbhÞ









2
	r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d

n
log

2d

d

r
: ð17Þ

Proof The negative log–likelihood of a policy complying with Assumption 3 is C2ðRdÞ. Thus, since bh is a

minimizer of the negative log–likelihood function b‘ðhÞ, it must fulfill the following first–order condition:

rh
b‘ðbhÞ ¼ 1

n

Xn

i¼1

rh log pbhðaijsiÞ ¼
1

n

Xn

i¼1

tðsi; aiÞ � E
a�pbh ð�jsÞ

tðsi; aÞ½ �

0
@

1
A ¼ 0: ðP:8Þ

As a consequence, we can rewrite the expression of gðbhÞ exploiting this condition:

gðbhÞ ¼ 1

n

Xn

i¼1

E
a� pbh ð�jsÞ

tðsi; aÞ½ � � E
a�phAgð�jsÞ

tðsi; aÞ½ �

0
@

1
A

¼ 1

n

Xn

i¼1

tðsi; aiÞ � E
a� phAgð�jsÞ

tðsi; aÞ½ �
� �

¼ 1

n

Xn

i¼1

tðsi; ai; h
AgÞ:

By recalling that ai �phAgð�jsiÞ it immediately follows that gðbhÞ is a zero-mean random

vector, i.e., E
si � m

ai �phAgð�jsiÞ

gðbhÞ
h i

¼ 0. Moreover, under Assumption 4, gðbhÞ is the sample

mean of subgaussian random vectors. Our goal is to bound the probability

Pr gðbhÞ









2
[ �

� �
; to this purpose we consider the following derivation:
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Pr gðbhÞ









2
[ �

� �
¼ Pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

j¼1

gjðbhÞ2
vuut [ �

0
@

1
A

	 Pr
_d

j¼1

gjðbhÞ
���

���[
�ffiffiffi
d

p
 ! ðP:9Þ

	
Xd

j¼1

Pr gjðbhÞ
���

���[
�ffiffiffi
d

p
� �

; ðP:10Þ

where we exploited in line (P.9) the fact that for a d-dimensional vector x if xk k2 [ � it

must be that at least one component j ¼ 1; :::; d satisfy x2j [
�2

d and we used a union bound

over the d dimensions to get line (P.10). Since for each j ¼ 1; :::; d we have that gjðbhÞ is a
zero-mean subgaussian random variable we can bound the deviation using standard

results (Boucheron et al., 2013):

Pr gjðbhÞ
���

���[
�ffiffiffi
d

p
� �

	 2 exp � �2n

2dr2

� 	
: ðP:11Þ

Putting all together we get:

Pr gðbhÞ









2
[ �

� �
	 2d exp � �2n

2dr2

� 	
: ðP:12Þ

By setting d ¼ 2d exp � �2n
2dr2

n o
and solving for � we get the result. h

We can now use the previous result to derive the concentration of the parameters, i.e.,

bounding the deviation bh � hAg









2
.

Theorem 6 (Parameter concentration) Under Assumption 2 and Assumption 4, let D ¼ fðsi; aiÞgn
i¼1 be a

dataset of n[ 0 independent samples, where si � m and ai � phAgð�jsiÞ. Let bh ¼ argmin
h2H

b‘ðhÞ. If the

empirical FIM bF ðhÞ has a positive minimum eigenvalue bkmin [ 0 for all h 2 H, for any d 2 ½0; 1�, with
probability at least 1� d, it holds that:

bh � hAg









2
	 r
bkmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d

n
log

2d

d

r
: ð18Þ

Proof Recalling that gðhAgÞ ¼ 0, we employ the mean value theorem to rewrite gðbhÞ centered in hAg:

gðbhÞ ¼ gðbhÞ � gðhAgÞ ¼ bF ðhÞ bh � hAg
� �

; ðP:13Þ

123

Machine Learning (2022) 111:2093–2145 2125



where h ¼ tbh þ ð1� tÞhAg for some t 2 ½0; 1� and bF ðhÞ is defined as:

bF ðhÞ ¼ rhgðhÞ ¼
1

n

Xn

i¼1

E
a� phð�jsÞ

rh log phðajsÞtðsi; aÞ½ �

¼ 1

n

Xn

i¼1

E
a�phð�jsÞ

tðsi; aÞ � E
a�phð�jsÞ

tðsi; aÞ½ �
� �

tðsi; aÞ
� �

¼ bF ðhÞ;

where we exploited the expression of rh log phðajsÞ and the definition of Fisher infor-

mation matrix given in Eq. (14). Under the hypothesis of the statement, we can derive the

following lower bound:

gðbhÞ









2

2
¼ bh � hAg
� �T bF ðhÞT bF ðhÞ bh � hAg

� �
� bk

2

min
bh � hAg









2

2
: ðP:14Þ

By solving for bh � hAg









2
and applying Lemma 5 we get the result. h

Finally, we can get the concentration result for the negative log–likelihood.

Corollary 1 (Negative log–likelihood concentration) Under Assumption 2 and Assumption 4, let D ¼
fðsi; aiÞgn

i¼1 be a dataset of n[ 0 independent samples, where si � m and ai � phAgð�jsiÞ. Let
bh ¼ argmin

h2H
b‘ðhÞ. If kminð bF ðhÞÞ ¼ bkmin [ 0 for all h 2 H, for any d 2 ½0; 1�, with probability at least

1� d, it holds that:

‘ðbhÞ � ‘ðhAgÞ	 d2r4

bk
2

minn
log

2d

d
; ð19Þ

and also:

b‘ðhAgÞ � b‘ðbhÞ	 d2r4

bk
2

minn
log

2d

d
: ð20Þ

Proof Let us start with ‘ðbhÞ � ‘ðhAgÞ. We consider the first order Taylor expansion of the negative log–

likelihood centered in hAg:

‘ðbhÞ � ‘ðhAgÞ

¼ rh‘ðhAgÞT bh � hAg
� �

þ 1

2
bh � hAg
� �T

Hh‘ðhÞ bh � hAg
� �

;
ðP:15Þ

where h ¼ tbh þ ð1� tÞhAg for some t 2 ½0; 1�. We first observe that rh‘ðhAgÞ ¼ 0 being

hAg the true parameter and we develop Hh‘ðhÞ:
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Hh‘ðhÞ ¼ E
s� m

a�phAgð�jsÞ

Hh log phðajsÞ
� �

¼ E
s� m

a�phAgð�jsÞ

rh tðs; aÞ � E
a� p

h
ð�jsÞ

tðs; aÞ½ �
 !" #

¼ E
s� m

rh E
a�p

h
ð�jsÞ

tðs; aÞ½ �
" #

¼ E
s� m

E
a�p

h
ð�jsÞ

tðs; aÞ � E
ea �p

h
ð�jsÞ

tðs; eaÞ½ �
 !

tðs; aÞT

" #" #
¼ E

s� m
Fðh; sÞ
� �

:

By using Lemma 4 to bound the maximum eigenvalue of Fðh; sÞ, we can state the

inequality:

1

2
bh � hAg
� �T

Hh‘ðhÞ bh � hAg
� �

	 dr2

2
bh � hAg









2

2
: ðP:16Þ

Using the concentration result of Theorem 6, we get the result. Concerning

b‘ðhAgÞ � b‘ðbhÞ, the derivation is analogous with the only difference that the Taylor

expansion has to be centered in bh instead of hAg. h

To conclude this appendix, we present the following technical lemma.

Theorem 7 Under Assumption 2 and Assumption 4, let D ¼ fðsi; aiÞgn
i¼1 be a dataset of n[ 0 independent

samples, where si � m and ai �phAgð�jsiÞ. Let h; h0 2 H, then for any �[ 0, it holds that:

Pr ‘ðhÞ � b‘ðhÞ
h i

� ‘ðh0Þ � b‘ðh0Þ
h i

[ �
� �

	 exp � �2n

2 h� h0k k22r2

( )
:

Proof We write explicitly the involved expression, using Assumption 3 and perform some algebraic
manipulations:
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‘ðhÞ � b‘ðhÞ
h i

� ‘ðh0Þ � b‘ðh0Þ
h i

¼ E
s� m

a� phAgð�jsÞ

hT tðs; aÞ � Aðh; sÞ
� �

� 1

n

Xn

i¼1

hT tðsi; aiÞ � Aðh; siÞ
� 

� E
s� m

a�phAgð�jsÞ

h0ð ÞT
tðs; aÞ � Aðh0; sÞ

h i
þ 1

n

Xn

i¼1

h0ð ÞT
tðsi; aiÞ � Aðh0; siÞ

� �

¼ E
s� m

a� phAgð�jsÞ

h� h0ð ÞT
tðs; aÞ � Aðh; sÞ � Aðh0; sÞð Þ

h i

� 1

n

Xn

i¼1

h� h0ð ÞT
tðsi; aiÞ � Aðh; siÞ � Aðh0; siÞð Þ

� �
:

Essentially, we are comparing the mean and the sample mean of the random variable

h� h0ð ÞT
tðs; aÞ � Aðh; sÞ � Aðh0; sÞð Þ. Let us now focus on Aðh; sÞ � Aðh0; sÞ. From the

mean value theorem we know that, for some t 2 ½0; 1� and h ¼ thþ ð1� tÞh0, we have:

Aðh; sÞ � Aðh0; sÞ ¼ rhAðh; sÞT
h� h0ð Þ: ðP:17Þ

From Eq. (P.4), we know that rhAðh; sÞ ¼ E
a�p

h
ð�jsÞ

tðs; aÞ½ �. The random variable

tðs; a; hÞ ¼ tðs; aÞ � E
a� p

h
ð�jsÞ

tðs; aÞ½ � is a subgaussian random variable for any h 2 H. Thus,

under Assumption 4 we have:

‘ðhÞ � b‘ðhÞ
h i

� ‘ðh0Þ � b‘ðh0Þ
h i

¼ h� h0ð ÞT
E

s� m

a�phAgð�jsÞ

tðs; a; hÞ
� �

� 1

n

Xn

i¼1

tðsi; ai; hÞ

0
BBBB@

1
CCCCA
:

If we apply Proposition 3, we get the result. h

A.3 Results on significance and power of the tests

Theorem 3 Let bI c be the set of parameter indexes selected by the Identification Rule 2

obtained using n[ 0 i.i.d. samples collected with phAg , with hAg 2 H. Then, under

Assumptions 1, 2, 3, 4, and 5, let h
Ag
i ¼ argmin

h2Hi

‘ðhÞ for all i 2 f1; :::; dg and

n ¼ min 1; kmin

r2
� �

. If bkmin � kmin

2
ffiffi
2

p and ‘ðhAgi Þ � lðhAgÞ� c1, it holds that:
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a	 2d exp � c1k
2
minn

16d2r4

� 	

b	ð2d � 1Þ
X

i2IAg

exp �
lðhAgi Þ � lðhAgÞ � c1

� �
kminnn

16ðd � 1Þ2r2

8
<

:

9
=

;:

Proof We start considering a ¼ Pr 9i 62 IAg : i 2 bI c

� �
. We employ an argument analogous to that

of (Garivier and Kaufmann, 2019):

Pr 9i 62 IAg : i 2 bI c

� �
¼ Pr 9i 62 IAg : ki [ c1

� 

¼ Pr 9i 62 IAg : b‘ðbhiÞ � b‘ðbhÞ[
c1
2

� �

	 Pr 9i 62 IAg : b‘ðhAgÞ � b‘ðbhÞ[ c1
2

� �

¼ Pr b‘ðhAgÞ � b‘ðbhÞ[ c1
2

� �
	 2d exp � c1k

2
minn

16d2r4

� 	
;

where we observed that b‘ðhAgÞ� b‘ðbhiÞ as hAg 2 Hi underH0 and we applied Corollary 1

in the last line, recalling that bkmin � kmin

2
ffiffi
2

p . For the second inequality, the derivation is a little

more articulated. Concerning b ¼ Pr i 2 IAg : i 62 bI
� �

, we first perform a union bound:

Pr 9i 2 IAg : i 62 bI c

� �
¼ Pr

_

i2IAg

i 62 bI c

 !
	
X

i2IAg

Pr i 62 bI c

� �
:

Let us now focus on the single terms Pr i 62 bI c

� �
. We now perform the following

manipulations:

Pr i 62 bI c

� �
¼ Pr b‘ðbhiÞ � b‘ðbhÞ	

c1
2

� �

¼ Pr b‘ðbhiÞ � b‘ðhAgi Þ
h i

þ b‘ðhAgÞ � b‘ðbhÞ
h i

þ b‘ðhAgi Þ � b‘ðhAgÞ
h i

	 c1
2

� �

ðP:18Þ

	 Pr b‘ðbhiÞ � b‘ðhAgi Þ
h i

þ b‘ðhi
AgÞ � b‘ðhAgÞ

h i
	 c1

2

� �

¼ Pr
�
b‘ðbhiÞ � b‘ðhAgi Þ
h i

þ b‘ðhAgi Þ � ‘ðhAgi Þ
h i

þ ‘ðhAgÞ � b‘ðhAgÞ
h i

	 c1
2
þ ‘ðhAgÞ � ‘ðhAgi Þ
h i�

¼ Pr
�
b‘ðhAgi Þ � b‘ðbhiÞ
h i

þ ‘ðhAgi Þ � b‘ðhAgi Þ
h i

þ b‘ðhAgÞ � ‘ðhAgÞ
h i

� ‘ðhAgi Þ � ‘ðhAgÞ
h i

� c1
2

�
:

ðP:19Þ
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where line (P.18) is obtained by observing that b‘ðhAgÞ � b‘ðbhÞ� 0. Thus, we have:

Pr i 62 bI c

� �
	 Pr b‘ðhi

AgÞ � b‘ðbhiÞ�
1

2
‘ðhi

AgÞ � ‘ðhAgÞ
h i

� c1
2

� �

þ Pr

 
‘ðhi

AgÞ � b‘ðhi
AgÞ

h i
þ b‘ðhAgÞ � ‘ðhAgÞ
h i

�

1

2
‘ðhi

AgÞ � ‘ðhAgÞ
h i!

ðP:20Þ

	 Pr b‘ðhi
AgÞ � b‘ðbhiÞ�

1

2
‘ðhi

AgÞ � ‘ðhAgÞ
h i

� c1
2

� �

þ Pr

 
‘ðhi

AgÞ � b‘ðhi
AgÞ

h i
þ b‘ðhAgÞ � ‘ðhAgÞ
h i

�

1

2

1

2
kmin ‘ðhi

AgÞ � ‘ðhAgÞ
� �

h
Ag
i � hAg









2

2

� �1
2

!
ðP:21Þ

	 2ðd � 1Þ exp �
‘ðhAgi Þ � ‘ðhAgÞ � c1

� �
k2minn

16ðd � 1Þ2r4

8
<

:

9
=

;

þ exp �
‘ðhi

AgÞ � ‘ðhAgÞ
� �

kminn

16r2

8
<

:

9
=

;

ðP:22Þ

	 2ðd � 1Þ exp �
‘ðhi

AgÞ � ‘ðhAgÞ � c1

� �
kminnn

16ðd � 1Þ2r2

8
<

:

9
=

;

þ exp �
‘ðhi

AgÞ � ‘ðhAgÞ � c1

� �
kminnn

16ðd � 1Þ2r2

8
<

:

9
=

;

	ð2d � 1Þ exp �
‘ðhi

AgÞ � ‘ðhAgÞ � c1

� �
kminnn

16ðd � 1Þ2r2

8
<

:

9
=

;:

ðP:23Þ

where line (P.20) derives from the inequality PrðX þ Y � cÞ	 PrðX � aÞ þ PrðY � bÞ with
c ¼ a þ b, line (P.21) is obtained by the following second order Taylor expansion,

recalling that rh‘ðhAgÞ ¼ 0:

‘ðhi
AgÞ � ‘ðhAgÞ ¼ rh‘ðhAgÞT

hi
Ag � hAg

� �
þ 1

2
hi
Ag � hAg

� �T

Hh‘ðhÞ hi
Ag � hAg

� �

� kmin

2
hi
Ag � hAg









2

2
;
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where h ¼ thAg þ ð1� tÞhAgi for some t 2 ½0; 1�. Line (P.22) is obtained by applying

Corollary 1, recalling that bkmin � kmin

2
ffiffi
2

p and Theorem 7. Finally, line (P.23) derives by

introducing the term n ¼ min 1; kmin

r2
� �

and observing that:

‘ðhi
AgÞ � ‘ðhAgÞ � c1

� �
n

ðd � 1Þ2
	

‘ðhi
AgÞ � ‘ðhAgÞ

� �
n

16
:

Clearly, this result is meaningful as long as ‘ðhi
AgÞ � ‘ðhAgÞ � c1 � 0. h

B Detail on identification rules with configurable environment

In the following, we report the pseudocode for the environment configuration procedure in

the case of application of Identification Rule 1 (Algorithm 4) which was omitted in the

main text.

C Experimental details

In this appendix, we report the full experimental results, along with the hyperparameters

employed.

C.1 Experimental details for section 6.1

C.1.1 Discrete grid world

Hyperparameters In the following, we report the hyperparameters used for the experiments

on the discrete grid world:
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• Horizon (T): 50
• Discount factor (c): 0.98
• Learning steps with G(PO)MDP: 200

• Batch size: 250

• Max-likelihood maximum update steps: 1000

• Max-likelihood learning rate (using Adam): 0.03

• Number of configuration attempts per feature (Nconf): 3

• Environment configuration update steps: 150

• Regularization parameter of the Rényi divergence (f): 0.125
• Significance of the likelihood-ratio tests (d): 0.01

Example of configuration and identification in the discrete grid world In Fig. 6, we show a

graphical representation of a single experiment with the grid world environment using its

configurability to better identify the policy space. The colors inside the squares indicate the

probability mass function associated to the initial state distribution, consisting of the

Fig. 6 Example of configuration and identification in the discrete grid world
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agent’s position (blue) and the goal position (red), where sharper colors mean higher

probabilities. The colored lines represent the features the agent has access to, they are

binary features indicating if the agent is on a certain row or column (blue lines) and if the

goal is on a certain row or column (red lines). Note that, to avoid redundancy of repre-

sentation (and so enforcing the identifiability), the last row and column are not explicitly

encoded, but they can be represented by the absence of the other rows and columns. When

a line is not shown anymore, it means that it has been rejected, i.e., we think the agent has

access to that feature. The agent has access to every feature except for the goal columns,

i.e., only to its own position and to the goal row are known.

The configuration of the environment is updated in the images at even position, the

identification step is performed at even positions. The environment is configured in order to

maximize the influence on the gradient of the first – not rejected – feature, considering the

blue features first and then the red ones. After the model was configured three times for a

feature, and the feature has not been rejected, the model was configured for the next one.

We can see that the general trend of this configuration is to change the parameters in

order to spread the initial value of the mass probability functions across a greater number

of grid cells. This is an expected behavior since with the initial model configuration, very

often an episode starts with the agent in the bottom-left of the grid and the goal in the

bottom-right, causing the policy to depend mostly on the position of the agent. In fact, only

blue column features are rejected at the first iteration, as we can see in the third image.

Instead, distributing the probabilities across the whole grid let an episode starts with the

two positions extracted almost uniformly. Eventually, the correct policy space is identified.

It is interesting to observe that such is can hardly be obtained without the configuration of

the environment, given the initial state distribution shown in the first image.

C.1.2 Continuous grid world

In this appendix, we report the experiments performed on the continuous version of the

grid world. In this environment, the agent has to reach a goal region, delimited by a circle,

starting from an initial position. Both initial position and center of the goal are sampled at

the beginning of the episode from a Gaussian distribution with fixed covariance lx. The
supervisor is allowed to change, via the parameters x, the mean of this distribution. The

agent specifies, at each time step, the speed in the vertical and horizontal direction, by

means of a bivariate Gaussian policy with fixed covariance, linear in a set of radial basis

functions (RBF) for representing both the current position of the agent and the position of

Fig. 7 ba and bb error for conf and
no-conf cases in the continuous
grid world varying the number of
episodes m. 25 runs 95% c.i
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the goal (5�5 both for the agent position and the goal). The feature, and consequently the

parameters, that the agent can control are randomly selected at the beginning. In Fig. 7, we

show the results of an experiment analogous to that of the discrete grid world, by com-

paring ba and bb for the case in which we do not perform environment configuration (no-

conf) and the case in which the configuration is performed (conf). Once again, we confirm

our findings that configuring the environment allows speeding up the identification process

by inducing the agent chaining its policy and, as a consequence, revealing which param-

eters it can actually control.

Hyperparameters In the following, we report the hyperparameters used for the exper-

iments on the continuous grid world:

• Horizon (T): 50
• Discount factor (c): 0.98
• Policy covariance (R): 0:022I
• Learning steps with G(PO)MDP: 100

• Batch size: 100

• Max-likelihood maximum update steps: closed form

• Number of configuration attempts per feature (Nconf): 3

• Environment configuration update steps: 100

• Regularization parameter of the Rényi divergence (f): 1e � 6

• Significance of the likelihood-ratio tests (d): 0.01

Example of configuration and identification in the continuous grid world In Fig. 8, we

show an example of model configuration in the continuous grid world environment. The

two filled circles are a graphical representation of the normal distributions from which the

initial position of the agent (light blue) and the position of the goal (pink) are sampled at

the beginning of each episode. The circumferences correspond to the set of features (RBF)

to which the agent has access, among which we want to discover the ones accessible by the

agent. Since the policy space is composed by Gaussian policies with mean specified by a

linear combination of these features, each one is associated to a parameter. If a circum-

ference is not shown anymore at an iteration step, it means that the hypothesis associated to

that feature was rejected, i.e., we believe that the agent has access to that feature.

The group of images is an alternated sequence of new environment configurations and

parameter identifications. In the first image we can see the initial model with no rejected

features. The identification with the initial model yields to the rejection of a certain set of

features, which can be seen in the second image. The third image shows the new con-

figuration of the model, in which the mean of the two initial state distributions are moved

in order to investigate the remaining features. Then a new test is performed and the result is

shown in the fourth image, and so on. In this experiment, the environment was configured

in order to maximize the influence of one feature at a time, starting from the blue ones from

bottom-left to top-right in row order, and then with the red ones in the same order. Each

feature is used to configure the model for a maximum of three times, after that point the

next feature is considered.

The only features that were not actually in the agent’s set are the red ones on the two top

rows. We can see that the mean of the initial position of the agent (a configurable

parameter of the environment) always tracked the first available feature yet to be tested, as

expected from this experiment. In fact, when the initial position is close enough to those

features, the agent often moves around those blue circumferences to reach the goal, making

them more important in the definition of the optimal policy. Eventually, the tests reject all
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the features that are actually accessible by the agent, and only them, yielding to a correct

identification of the policy space. The rest of the configurations are not shown, since no

Fig. 8 Example of configuration and identification in the continuous grid world
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more features were rejected. In this experiment, similarly to the discrete grid world case,

the use of Conf–MDPs was crucial to obtain this result.

C.1.3 Simulated car driving

In this environment, an agent has to drive a car to reach the end of the track without

running off the road. The control directives are the acceleration and the steering, and are

expressed through a two dimensional bounded action space. The car has four sensors

oriented in different directions: � p
4
, � p

6
, p
6
, p
4
w.r.t. the axis pointing toward the front of the

car. The values of these sensors are the normalized distances from the car to the nearest

road margin along the direction of the sensor, or the maximum value if the margin is

outside the range of the sensor. The complete set of state features is made up by the

normalized car speed and the values of the four sensors. In the experiments, the agent has

access to the speed and the sensor at angles p
6
and p

4
. The track consists in a single road

segment with a fixed curvature. The rewards are given proportionally to the speed of the

car, i.e., greater speeds yield higher rewards. The episode finishes when the car goes

outside the road, and a negative reward is given in this case, when the track is completed,

or when a maximum number of time steps is elapsed.

Hyperparameters In the following, we report the hyperparameters used for the exper-

iments on the simulated car driving:

• Horizon (T): 250
• Discount factor (c): 0.996
• Policy covariance (R): 0:1I
• Learning steps with G(PO)MDP: 100

• Batch size: 50

• Max-likelihood maximum update steps: 200

• Max-likelihood learning rate (using Adam): 0.1

• Significance of the likelihood-ratio tests (d): 0.1 rescaled by 0.1/5 for the simplified

identification rule and 0.1/32 for the combinatorial identification rule

C.2 Experimental details of section 6.2

Hyperparameters In the following, we report the hyperparameters used for the experiments

on the discrete grid world:

• Horizon (T): 50
• Discount factor (c): 0.98
• Learning steps with G(PO)MDP: 200

• Batch size: 250

• Max-likelihood maximum update steps: 1000

• Max-likelihood learning rate (using Adam): 0.03

• Number of configuration attempts per feature (Nconf): 3

• Environment configuration update steps: 150

• Regularization parameter of the Rényi divergence (f): 0.125
• Significance of the likelihood-ratio tests (d): 0.01
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Additional Results In the following, we report the complete results about the imitation

learning experiments. These results extend the ones presented in the main paper providing

additional algorithms and additional metrics for comparison.

Concerning the additional algorithms, we include other two regularization techniques

for the maximum likelihood estimation: Shannon and Tsallis entropy. Given a policy p, the
Shannon HðpÞ and Tsallis WðpÞ entropies are defined as follows (Ho and Ermon, 2016;

Lee et al., 2018):

HðpÞ ¼ E
s� dp

l

Hðpð�jsÞÞ½ � ¼ E
s� dp

l

a� pð�jsÞ

� logpðajsÞ½ �;

WðpÞ ¼ E
s� dp

l

Wðpð�jsÞÞ½ � ¼ 1

2
E

s� dp
l

a�pð�jsÞ

1� pðajsÞ½ �:

It is worth noting that, differently from the other regularizers (like ridge and lasso),

Shannon and Tsallis entropies require to compute an expectation w.r.t. to the policy p we

are optimizing. Since samples are collected with a policy that is, in general, different and

unknown (the expert’s policy) those expectations are approximated, in our experiments,

with self-normalized importance weighting (Owen, 2013). Thus, the complete loss func-

tion that is optimized, ignoring the ridge and lasso regularizers for brevity, is the following:

where exiðhÞ ¼ nphðaijsiÞPn

j¼1
phðajjsjÞ

is the self-normalized importance weight.

Furthermore, we have tested other IL methods that require natively the interaction with

the environment. In our truly batch model-free setting, we replaced again the interaction

with the environment with off-policy estimation. These algorithms are based on the notion

of feature expectation, i.e., the expectation of a feature function /ðs; aÞ under the c-
discounted stationary distribution induced by a policy p:

/ðpÞ ¼ E
s� dp

l

a� pð�jsÞ

/ðs; aÞ½ �:

The goal consists in finding a policy pbh that matches the feature expectations induced by

the expert’s policy phAg , i.e., /ðpbhÞ ’ /ðphAgÞ and applying a regularization on pbh . If the
regularization is the Shannon entropy we have the Maximum Causal Entropy Inverse
Reinforcement Learning (MCE, Ziebart et al., 2010):

max
h2H

aSHðphÞ

s.t. /ðphÞ ¼ /ðphAgÞ;

where aS is a scale parameter. Instead, if we employ Tsallis entropy we obtain the Max-
imum Tsallis Entropy Imitation Learning (MTE, Lee et al., 2018):
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max
h2H

aWWðphÞ

s.t. /ðphÞ ¼ /ðphAgÞ;

where aW is a scale parameter.

In both cases, similarly to the regularizers presented above, the computation of the

objective requires to perform an off-policy estimation via importance sampling. In these

cases, we have the additional complexity that also the constraint, i.e., matching the feature

expectation, requires off-policy estimation for the left hand side.

The tables reported in the following pages present the complete results. As comparison

metrics, we employed the norm of the parameter difference (Table 2), the estimated

expected KL-divergence (Table 3), as defined in Section 6.2, and the norm of the esti-

mated difference in the feature expectations (Table 4). In each table we report, as an oracle
baseline, the results of ML assuming to have the knowledge of the parameters actually

controlled by the agent (True). FE is a feature matching baseline, obtained by looking for

(a)

(b)

Fig. 9 Experiment with randomly chosen features on the minigolf domain for different number of episodes
m. 100 runs, 95% c.i
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the policy that better explains the feature expectations induced by the expert’s data:

min
h2H

1

n

Xn

i¼1

exiðhÞ/ðsi; aiÞ �
1

n

Xn

i¼1

/ðsi; aiÞ














2

2

;

where exiðhÞ is the self-normalized importance weight, as defined before. Finally, MCE

and MCT are Maximum Causal Entropy and Maximum Tsallis Entropy, adapted with

importance sampling. As a general trend, we can see that all algorithms that employ

importance weighting do not perform well. This can be explained by the fact that expert’s

policy, which is likely (near) optimal, does not provide good information across the state-

action space. As a consequence, the importance weighting procedure injects a large

uncertainty (Owen, 2013; Metelli et al., 2018b). This also highlights how this no-inter-

action setting makes the IL problem challenging.

C.3 Experimental details of section 6.3

In the minigolf experiment, the polynomial features obtained from the distance from the

goal x and the friction f are the following:

/ðx; f Þ ¼ 1; x; f ;
ffiffiffi
x

p
;

ffiffiffi
f

p
;

ffiffiffiffiffi
xf

p� �T

:

While agent A1 perceives all the features, agent A2 has access to 1; x;
ffiffiffi
x

p
ð ÞT

only.

Hyperparameters In the following, we report the hyperparameters used for the exper-

iments on the minigolf:

• Horizon (T): 20
• Discount factor (c): 0.99
• Policy covariance (R): 0.01

• Learning steps with G(PO)MDP: 100

• Batch size: 100

• Max-likelihood maximum update steps: closed form

• Number of configuration attempts per feature (Nconf): 10

• Environment configuration update steps: 100

• Regularization parameter of the Rényi divergence (f): 0.25
• Significance of the likelihood-ratio tests (d): 0.01

C.3.1 Experiment with randomly chosen features

In the following, we report an additional experiment in the minigolf domain in which the

features that the agent can perceive are randomly selected at the beginning, comparing the

case in which we do not configure the environment and the case in which environment

configuration is performed, and for different number of episodes collected. Although, less

visible w.r.t. to the grid world case, we can see that for some features (e.g.,
ffiffiffi
x

p
and

ffiffiffiffiffi
xf

p
)

the environment configurability is beneficial.
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