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Abstract
Recommendations are prevalent in Web applications (e.g., search ranking, item recommen-
dation, advertisement placement). Learning from bandit feedback is challenging due to the 
sparsity of feedback limited to system-provided actions. In this work, we focus on batch 
learning from logs of recommender systems involving both bandit and organic feedbacks. 
We develop a probabilistic framework with a likelihood function for estimating not only 
explicit positive observations but also implicit negative observations inferred from the data. 
Moreover, we introduce a latent variable model for organic-bandit feedbacks to robustly 
capture user preference distributions. Next, we analyze the behavior of the new likelihood 
under two scenarios, i.e., with and without counterfactual re-weighting. For speedier item 
ranking, we further investigate the possibility of using Maximum-a-Posteriori (MAP) esti-
mate instead of Monte Carlo (MC)-based approximation for prediction. Experiments on 
both real datasets as well as data from a simulation environment show substantial perfor-
mance improvements over comparable baselines.

Keywords  Variational learning · Bandit feedback · Recommender systems · Computational 
advertising

1  Introduction

Recommender systems rely primarily on user-item interactions as feedback in model learn-
ing. We are interested in learning from bandit feedback (Jeunen et al. 2019), where users 
register feedback only for items recommended by the system. For instance, in compu-
tational advertising (ad) (Rohde et  al. 2018), a user could respond only to the ad being 
shown, but not to other ads not shown. Contrast this to organic feedback, assumed to have 
arisen naturally from user-driven interactions with the system. In rating prediction (Koren 
et al. 2009), users presumably select items to rate. In Web browsing (Hidasi et al. 2016), 
we learn from which browsed products end up in a purchase. These forms of users’ organic 
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feedback and bandit feedback are effectively collected by the websites for behavioral 
advertising 1.

The traditional approach to dealing with bandit feedback, which is not the focus of this 
work, is a class of reinforcement learning techniques (Sutton et al. 1998) known as multi-
armed bandit. As the system gathers data sparsely, only from the system’s own actions, the 
key concern is to manage the trade-off between exploration (to gather more data for a bet-
ter estimation of the reward function) and exploitation (to realize utmost rewards based on 
the data gathered so far) (Krause and Ong 2011). The bandit algorithms may also benefit 
from contextual information of the actions or the target users (Langford and Zhang 2007; 
Li et al. 2010; Joachims et al. 2018). In many cases, this trade-off is managed in an online 
fashion, necessitating experimental control over the system (Kawale et al. 2015).

This work focuses on a conceptually distinct problem, i.e., learning from logged bandit 
feedback (Swaminathan and Joachims 2015b). In this case, batch learning is based on the 
existing logs of bandit feedback, instead of managing the explore-exploit trade-off online. 
For one advantage, it does not require experimental control over the system, making such 
studies more accessible. For another, it enables reuse of existing data, benefitting from 
cross-validation and offline model selection.

Problem In particular, we are interested in learning from logged bandit feedback where 
there is also relevant organic feedback (Rohde et al. 2018). Take a scenario where a user 
interacts with products on an e-commerce site and in so doing generates organic feedback. 
Occasionally, the user may visit another “target” site (e.g., news), where she may be shown 
an ad featuring a product from the aforementioned e-commerce site. Her responses to the 
ads on the target site make up the bandit feedback. Our objective is to predict how the user 
would respond to an ad, in order to predict which ad to show to her the next time she visits 
the target site, based on the logs of both organic and bandit feedbacks.

Existing approaches (Swaminathan and Joachims 2015a, b) tend to rely on explicit ban-
dit feedback alone. In practice, relative to the numerous possible items to recommend, the 
observed data is sparse as we see user responses to recommended ads only. Moreover, it 
uses organic feedback merely as generic features, without recognizing its potential to learn 
an informative representation of user preferences.

Contributions In this paper, we make several contributions. The first is our proposed 
model VLIB, which encodes two principles. For one, we observe that beyond a user’s 
explicit response to an ad (click/no-click), we could potentially infer further implicit prefer-
ence signals relating a clicked ad and previously unclicked ads. Therefore, we propose a 
probabilistic framework for learning user preferences from bandit feedback, which includes 
an adequate likelihood function for such implicit bandit feedback. For another, we intro-
duce a latent variable model to robustly capture user preference distributions from both 
organic-cum-bandit feedbacks.

Secondly, we conduct rich analyses to investigate issues that affect learning and pre-
diction, such as the effect of re-weighting likelihood using inverse propensity score as 
well as MAP estimate vs. Monte Carlo based approximation to speed up the predictions. 
Thirdly, we conduct experiments covering both simulated as well as real datasets to address 
research questions concerning the above contributions.

1  https://​www.​lotame.​com/​what-​is-​behav​ioral-​targe​ting/

https://www.lotame.com/what-is-behavioral-targeting/
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2 � Related work

In contrast to online learning with contextual bandit feedback (Langford and Zhang 2007; 
Li et  al. 2010; Joachims et  al. 2018), our work is along the line of batch learning from 
bandit feedback (Swaminathan and Joachims 2015a, b), based on log data recorded from 
search engines, recommender systems, etc. However, such data tend to be proprietary, pos-
ing some barriers to open research. Fortunately, recently there emerge simulation systems 
for recommender systems (Rohde et al. 2018; Ie et al. 2019) which presents a platform for 
organic-bandit recommendation problem with A/B testing evaluation. We experiment with 
one such platform RecoGym (Rohde et al. 2018), as well as real datasets from Taobao.com.

In estimating the click-through probability of a recommendation, our problem is related 
to click-through-rate prediction (Richardson et al. 2007; Guo et al. 2017; Zhou et al. 2018; 
Lian et  al. 2018). Such works are typically formulated as supervised learning, predomi-
nately relying on user, item, or context features, rather than organic-bandit feedback as in 
our case. They also focus on offline evaluation on popular benchmark datasets2  3. It has 
been documented that offline evaluation and online performance are not always congruent 
(Beel et al. 2013; Garcin et al. 2014; Rossetti et al. 2016).

Our problem is different from session-based recommendation for next-item prediction 
(Hidasi and Tikk 2016; Hidasi et al. 2016; Zhou et al. 2018), which is closer to the notion 
of organic feedback. Along the same line, latent variable models (Blei and Lafferty 2006; 
Kingma and Welling 2014; Rezende et al. 2014) have been successfully applied for collab-
orative filtering (Liang et al. 2018) in the context of organic feedback. In contrast, our tar-
get is prediction in the bandit setting, with the benefit of organic feedback. Also, organic-
bandit recommendation might seem to be related to the notion of human-recommender 
system feedback loop (Bottou et al. 2013; Sun et al. 2019), which is generally relevant to 
recommendation. However, our work focuses on the problem of computational advertising 
where users leave publisher sites upon clicking on recommended advertisement.

The notion of implicit feedback has been explored under the context of recommenda-
tion  (Hu et  al. 2008; Rendle et  al. 2009). The main idea is making an assumption that 
observed user events indicate stronger preferences than unobserved ones. Such assumption 
has shown to be effective in mitigating sparsity issue in learning from preference data. Our 
work is relevant in that the modeling assumption shares similar characteristic to deal with 
insufficient observations.

Fig. 1   State transitions of user 
sessions

2  https://​www.​kaggle.​com/c/​avazu-​ctr-​predi​ction
3  https://​labs.​criteo.​com/​2013/​12/​downl​oad-​terab​yte-​click-​logs/

https://www.kaggle.com/c/avazu-ctr-prediction
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
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3 � Problem formulation

Figure 1 shows two end-points of the Web that we care about. One is an e-commerce site 
(e.g., Amazon, Taobao), whereby users are operating in the organic state (O). The other 
is a publisher site (e.g., The New York Times, Facebook), whereby users are browsing 
in the bandit state (B). Figure 1 illustrates the transition between states of user sessions. 
A session begins at the state (S). At first, she is in the organic state. She can then transi-
tion between organic and bandit states, eventually terminating at the end state (E).

We are interested in a recommender system for the publisher site, which provides 
recommendation (e.g., displays advertisement) to users. Suppose the publisher site has 
a logging policy � to collect user feedback. While in bandit state, at time index i, sup-
pose that based on organic feedback �i (from the publisher site), the system recommends 
an action �i , to which a user provides click feedback �i (on the target site). This forms a 
triplet (�i, �i, �i) for each time point. The collection of such triplets T = {(�i, �i, �i)} con-
stitute the logged bandit feedback. In the scope of this work, we focus on the setting of 
�i being product browsing history of users while they are in the organic state (browsing 
e-commerce websites).

Problem  1  (Organic-Bandit Recommendation). Given logged bandit feedback T  , we 
seek to estimate, for some time i, the probability p(�i|�i, �i) that a user associated with 
organic feedback �i will respond positively to an action �i.

4 � Proposed framework: VLIB

We now describe our proposed model that is called Variational Learning from Implicit 
Bandit feedback or VLIB. We first outline the likelihood function resulting from the 
proposed implicit bandit feedback. Thereafter, we discuss the variational learning model 

Table 1   Summary of main notations

Notation Explanation

� User events in the organic state
� Action or recommendation in the bandit state
� Binary response variable (e.g., click or no-click)
T Collection of triplets in logged bandit feedback
A Universal set of possible bandit actions
P Universal set of products on e-commerce sites
� Latent representation of user preferences
f� , g� Functions of generative model, parameterized by � and �
��, �� Functions of inference model, parameterized by � , that output 

the mean and covariance of the variational distribution of �
� Logging policy deployed when bandit feedback being collected
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that would optimize for that likelihood function. For ease of reference, we summarize 
the notations in Table 1.

4.1 � Likelihood function for implicit bandit feedback

Given an observed triplet from the logged bandit feedback (�i, �i, �i) , we would like to 
learn a statistical model based on an assumption on how the bandit feedback would have 
been generated. Assuming a Bernoulli process, we have:�i ∼ Bernoulli(�(g� (�i, �i)))

where �(.) is the sigmoid function and g� (., .) is some function, parameterized by � , 
capturing interactions between �i and �i . Learning � can be done via maximum like-
lihood principle. To avoid clutter in the notation, in the following we would derive 
the log-likelihood for one data point. In turn, the log-likelihood of the dataset can be 
obtained by averaging over all the observations:

From the log-likelihood function above, we need to model the probability p(�i|�i, �i) of 
an action �i being clicked, given user’s organic events �i . In real scenarios, we may only 
observe logged (�i, �i, �i) for one particular action �i determined by the logging policy � , 
and not for the other possible actions A ⧵ {�i} . Due to this nature of logged bandit feed-
back, it is especially challenging to estimate the clicked probability distribution because of 
insufficient observations. Important as they are, positive observations (�i, �i, �i = 1) (i.e., 
recommended actions being clicked) are relatively rare. Furthermore, they intensity the lat-
ter phenomenon that a positive observation usually means that we may not observe other 
occurrences of negative observations involving �i and other actions A ⧵ {�i}.

To rectify the latter in particular, we seek to leverage the concept of implicit feed-
back, which has found great success in mitigating the sparsity issue in collaborative fil-
tering (Rendle et al. 2009; Hu et al. 2008). Upon observing a positive feedback instance 
involving an action �i , we presume that all other actions in A are negative. This effec-
tively induces a set of pseudo-observations involving the same organic events �i , which 
we refer to as implicit negative feedback. Reasonably, such implicitly negative pseudo-
observations would be treated with a lower ‘confidence’ than the explicitly positive 
observations. We thus derive a new log-likelihood taking into account the implicit nega-
tive feedback:

(1)log p� (�i|�i, �i) = �i log �(g� (�i, �i)) + (1 − �i) log(1 − �(g� (�i, �i)))

z cx a
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Fig. 2   Graphical representation of VLIB generative model. N
O
 and N

B
 are the number of organic sessions 

and bandit events, respectively
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where A is the set of actions, and hyper-parameter � controls how confident we are about 
the implicit negative feedback. The value of � lies in range of [0, 1], in which � = 1 implies 
certainty, and with � = 0 we recover Eq. 1 that models only explicit observations. In other 
words, 𝜆 < 1 recognizes that a pseudo-observation instance would not be more important 
than an explicit observation instance.

4.2 � Variational learning for user preferences

Latent Gaussian model has shown success in learning meaningful representations from 
data (Kingma and Welling 2014; Rezende et al. 2014; Miao et al. 2016), especially for collab-
orative filtering (Liang et al. 2018). In our proposed model, we seek to learn a good D-dimen-
sional variational latent representation �i encoding user preference, that would result in better 
approximation of click probability p(�i|�i, �i) for recommendations. We consider the follow-
ing generative process (Fig. 2):

where the latent representation �i is sampled from a standard Gaussian prior. It is trans-
formed via function f�(�i) and g� (�i, �i) to produce probability distributions from which 
the organic events �i and the bandit event �i are drawn, respectively. The organic events �i , 
represented as a bag-of-words vector, are presumably sampled from a multinomial distribu-
tion, �(.) is the softmax function, and the total number of the organic events is Ni =

∑
k �ik . 

The bandit action �i , given by the logging policy � , is assumed to be sampled from a cat-
egorical distribution and represented as an one-hot vector. The bandit event �i is sampled 
from a Bernoulli distribution, where the function g� (., .) now receives (�i, �i) as input.

Given �i ⟂⟂ �i | �i , the joint log-likelihood of �i and �i can be decomposed as:

with the log-likelihood for organic events is:

and the log-likelihood for the bandit event follows Eq. 2:

(2)

log p� (�i|�i, �i) = �i log �(g� (�i, �i))

+ (1 − �i) log(1 − �(g� (�i, �i)))

+
∑

�j∈A⧵{�i}

��i log(1 − �(g� (�i, �j)))

�i ∼ N(0, �D)

�i ∼ Multinomial(Ni,�(f�(�i)))

�i ∼ Categorical(|A|, �)
�i ∼ Bernoulli(�(g� (�i, �i)))

(3)log p� ,�(�i, �i|�i, �i) = log p�(�i|�i) + log p� (�i|�i, �i)

(4)log p�(�i|�i) =
∑

k

�ik log�k(f�(�i))

(5)

log p� (�i|�i, �i) = �i log �(g� (�i, �i))

+ (1 − �i) log(1 − �(g� (�i, �i)))

+
∑

�j∈A⧵{�i}

��i log(1 − �(g� (�i, �j)))
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4.3 � Optimization

To learn the parameters {� , �} of the generative model, for each observation, we need to 
approximate the posterior distribution p(�i|�i, �i, �i) , which is intractable. Variational infer-
ence technique (Jordan et al. 1999) allows us to approximate the true intractable distribution 
with a simpler distribution q(�i) . Here we use Gaussian distribution with diagonal covariance 
matrices:q(�i) = N(�i, diag{�i})For system scalability, it is nigh impossible to learn free 
variational parameters {�i,�i} for each observation, especially in recommendation scenario 
which we are dealing with. Amortized inference (Kingma and Welling 2014) offers a solution 
by learning an inference model to produce data-dependent variational distributions:

 where ��(., .) and ��(., .) are functions, parameterized by � , that output the variational 
parameters. ⊙ denotes the element-wise multiplication.

Under variational inference framework, learning latent variable models boils down to max-
imizing the lower-bound of the marginal log-likelihood over observations (Blei et al. 2017). 
The parameters of the variational distributions are learned so that Kullback-Leibler divergence 
KL(q(�i)||p(�i|�i, �i, �i)) is minimized. For each bandit event, we optimize:

This objective function, or evidence lower bound (ELBO), is estimated by sampling �i ∼ q� 
and maximized using stochastic gradient ascent. One challenge during optimization is to 
take the gradients with respect to � . Using re-parameterization trick (Kingma and Welling 
2014; Rezende et al. 2014), we derive an unbiased Monte Carlo estimator of the ELBO, 
which yields:

where we re-parameterize �i = 𝜇𝜙(�i, �i, �i) + � ⊙ 𝜎𝜙(�i, �i, �i) with � is sampled from 
N(0, �K).

Algorithm  1 sketches the parameter learning procedure. Input data is a collection 
T = {(�i, �i, �i)}

N
i=1

 , where each instance (�i, �i, �i) consists of user’s organic events �i , bandit 
recommendation �i , and bandit feedback �i . Model parameters {�,� ,�} are updated to maxi-
mize the ELBO (Eq. 6) using gradient ascent. In practice, instead of online stochastic update 
as described, we employ mini-batch gradient ascent to speed up the learning with parallel 
computation. Each mini-batch B = {(�i, �i, �i)}

batch_size

i
 , uniformly sampled from the collec-

tion T  , is used to estimate the gradients instead of a single observation. Consequently, the 
optimization is more stable, and the time for the model to converge reduces drastically.

q𝜙(�i|�i, �i, �i) = N(𝜇𝜙(�i, �i ⊙ �i), diag{𝜎𝜙(�i, �i ⊙ �i)})

(6)

log p� ,�(�i, �i|�i) ≥ �q�(�i|�i,�i,�i)[log p� ,�(�i, �i|�i, �i)]

− KL(q�(�i|�i, �i, �i)||p(�i))
= L(� , �,�;�i, �i, �i)

(7)L̃(𝜓 , 𝜃,𝜙;�i, �i, �i) =
∑

�i,�i,�i

[log p𝜓 ,𝜃(�i, �i|�̃i, �i) − KL(q𝜙(�i|�i, �i, �i)||p(�i))]
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Algorithm 1: Parameter learning with stochastic gradient ascent
Data: T = {(xi,ai, ci)}Ni=1
Result: Learned parameters {θ, ψ, φ}
η ← learning rate;
θ, ψ, φ ← randomly initialized;
while not converged do

forall (xi,ai, ci) ∈ T do
µi = µφ(xi,ai � ci);
σi = σφ(xi,ai � ci);
Sample z̃i ∼ N (µi,diag{σi});
θ = θ + η · ∂

∂θ
[log pψ,θ(ci,xi|z̃i,ai)−KL(qφ(zi|µi,σi)||p(zi))];

ψ = ψ + η · ∂
∂ψ

[log pψ,θ(ci,xi|z̃i,ai)−KL(qφ(zi|µi,σi)||p(zi))];
φ = φ+ η · ∂

∂φ
[log pψ,θ(ci,xi|z̃i,ai)−KL(qφ(zi|µi,σi)||p(zi))];

end
end
return {θ, ψ, φ};

Perspectives on optimizing the ELBO. (Higgins et al. 2016) propose a modification of 
the optimization objective, reminiscent of Eq. 6, by introducing a hyper-parameter � con-
trolling the effect of Kullback–Leibler divergence as follows:

 When setting � ≠ 1.0 , we are no longer maximizing a lower bound of the log marginal 
likelihood. One perspective to look at the optimization, when 𝛽 > 1.0 , is learning disen-
tangled representations of the data. Increasing � will force the posterior to be close to the 
prior (isotropic Gaussian). In turn, the learnt representations will be more independent in 
each of their latent dimensions, which improves the degree of disentanglement. This is 
important when the objective is having more control and interpretation over newly gen-
erated samples. However, our goal is not sampling more user organic and bandit histo-
ries, but rather a good predictive accuracy on future observations. Another perspective is 
to view the KL term in Eq. 8 as regularization factor. With that, we are more interested in 
the scenario, when 𝛽 < 1.0 , in which the model is putting more of its capacity on maxi-
mizing the likelihood. In other words, the focus is on maximizing negative reconstruction 
error while having weaker constraint on the form of the posterior distribution. Under this 
perspective, determining a proper amount of regularization, by selecting a good setting of 
hyper-parameter � , would potentially lead to better predictive performance of our model 
given a specific dataset.

Despite potential benefit from choosing a good value for � , our main focus is on ana-
lysing the effectiveness of the proposed likelihood function with implicit bandit feed-
back. Therefore, if not explicitly mentioned, the value of � is set to 1.0 by default, which 
is equivalent to maximizing the original ELBO (Eq.  6). For completeness, we still con-
duct experiment with varying values of � ∈ [0, 1] in conjunction with our new likelihood, 
and provide in-depth analysis, later in RQ#3. One important aspect that we would like to 
emphasize is choosing value for � (Eq.  2), which determines our likelihood function, is 

(8)
L(� , �,�;�i, �i, �i) = �q�(�i|�i,�i,�i)[log p� ,�(�i, �i|�i, �i)]

− � × KL(q�(�i|�i, �i, �i)||p(�i))
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orthogonal to searching for a good value of � , which controls the model regularization. 
Alemi et al. (2018) provide a perspective on the effect of � in maximizing the ELBO under 
the information-theoretic framework. Obeying that interpretation, choosing � is defining a 
Rate-Distortion (RD-plane) for the model to operate on, while choosing � is searching for 
an optimal point in that RD-plane. Such optimal point is a good balance between the dis-
tortion (D) measuring the reconstruction error over the samples in the training set, and the 
rate (R) measuring the relative KL divergence between the encoding distribution and p(�) . 
Thus, ones should look for a suitable value of � given the problem at hand before optimiz-
ing the value of �.

4.4 � Prediction

Our goal is to provide recommendation to users while they are in the bandit state. In order 
to do so, we are interested in estimating the following:

We compute the expectation using Monte Carlo based approximation, first by drawing S 
samples:

and then compute:

Another solution is to apply MAP estimate for �i as follows:

 The latter will get rid of the sampling process and produce fast approximations (in 
exchange for the loss of information captured by the covariances).

To produce a recommendation, we rank all possible actions based on the probabilities

The best action can be chosen in greedy fashion.

4.5 � Complexity analysis

Assuming that f� , g� , �� , and �� are linear transformations, given a collection of logged 
bandit feedback T  , the computational complexity (i.e., the number of floating point opera-
tions) for one optimization epoch is O(|T| × (|A| + |P|) × 4D) . A computational burden 
in our approach is to approximate the multinomial distribution �(f�(�)) when the univer-
sal set of products P in the organic state is big. This is a common challenge in statistical 

p(�|�, �) = ∫ p(�|�, �)p(�|�)d� ≈ �q�(�|�)p� (�|�, �)

�(s) ∼ N(��(�, �), diag{��(�, �)})

p(�|�, �) = 1

S

S∑

s

p(�|�s, �)

p(�|�, �) = p(�|��(�, �), �)

p(�|�, �).

�⋆ = argmax
�

p(�|�, �)
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modeling (e.g., learning a language model when the size of vocabulary is huge). If this 
computation becomes a bottleneck, it can be mitigated by well-developed efficient sam-
pling method  (Botev et  al. 2017) or other approximation techniques  (Chen et  al. 2016; 
Morin and Bengio 2005).

For prediction, the reconstruction of organic events � is not required. Each recommenda-
tion takes O((2|A| + |P|) × D) if using MAP estimation, and O((2|A| + |P|) × 2D + S × D) 
if using MC approximation (S is the number of drawing samples).

5 � Experiments

Our objective is to evaluate the performance of the proposed model VLIB as compared to 
other learning approaches on the logged bandit feedback. In particular, we would organize 
the experimental analysis along several research questions on learning effective model as 
well as generating predictions efficiently for scalable online recommender systems.

5.1 � Datasets

Bandit data tend to be proprietary, posing some barriers to open research. Fortunately, 
recently there emerge simulation systems for recommender systems (Rohde et al. 2018; Ie 
et al. 2019) that provide a platform for organic-bandit recommendation problem with A/B 
testing evaluation.

–	 We first conduct our experiments on simulated data from RecoGym (Rohde et al. 2018) 
simulation enviroment of product recommendation in online advertising. Using Reco-
Gym, we evaluate all the agents with two settings of 100 and 1000 products, denoted as 
RG-100 and RG-1000, respectively.

–	 We also experiment on real data 4 of online advertising display on Taobao.com e-com-
merce website. The dataset comes with users’ organic behaviors (product browsing, 
adding to the shopping cart, favoring, buying) and ad bandit click events. We filter 
duplicate records and retain the logs of 2000 most frex quent brands, which yields 
294,191,912 organic events and 26,557,962 bandit events by 1,129,944 users in total. 
In the end, we create two datasets with the number of brands are 500 and 2000, TB-500 
and TB-2000, respectively. To simulate user sessions, organic and bandit events of each 
user are lined up based on their timestamps. This is a standard experimental procedure 
for session-based recommendation in which we seek to model users’ future adoption.

The evaluation scheme consists of offline training and online testing. In the training phase, 
the models receive logs of 1000 users as training data (approximately 80,000 bandit events 
for RG-100 and RG-1000, and 23,000 bandit events for TB-500 and TB-2000). In the test-
ing phase, the models are deployed and evaluated over another 1000 users with roughly the 
same numbers bandit events.

4  https://​tianc​hi.​aliyun.​com/​datas​et/​dataD​etail?​dataId=​56

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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5.2 � Evaluation metrics

As the main objective is for online advertising, we seek high Click-Through Rate (CTR) 
measured as:

In addition, we are interested in the ranking quality of the models in the context of top-
K recommendations. Thus, we employ two widely used ranking metrics for recommenda-
tion evaluation, Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). Let 
�
(t)

K
⊂ A be the K actions with the highest predicted probabilities {p(�t|�t, �t) | �t ∈ �

(t)

K
} at 

time t (right before user transits to the organic state), and v(t+1) the very first viewed product 
in the organic state. We compute HR@K and DCG@K as follows:

NDCG@K is the DCG@K normalized into [0, 1] after normalizing it with the best pos-
sible DCG@K, in which v(t+1) is ranked at the top. For all metrics, we compute the average 
results over all testing user sessions. The reported numbers are averaged results across 10 
independent runs for each experiment.

5.3 � Comparative methods

We compare the proposed VLIB with simple heuristic baselines in recommendation, statis-
tical and deep learning methods for click-through rate prediction, as well as state-of-the-art 
method for learning from bandit feedback:

–	 Random is the simplest baseline without learning from data. The actions are randomly 
selected with uniform probability p(�) = 1∕|A|.

–	 MostPop is a simple yet effective baseline in the context of recommendation, selecting 
action of the most popular item in the organic events.

–	 Cooccur selects the actions that have the highest co-occurrences with the latest organ-
ically-viewed item (i.e., it assumes first-order Markov dependency and takes into 
account the temporal information).

–	 MLR (Multinomial Logistic Regression) directly models the probability of an action 
given the organic events p(�|�) , its goal is to learn a policy that would maximize num-
ber of clicks if was being deployed instead of the logging policy � , thus, observations 
are re-weighted by the inverse propensity score of the logging policy wi = �i∕�(�i) . 
More details on this method can be found in (Jeunen et al. 2019).

–	 xDeepFM (eXtreme Deep Factorization Machines) (Lian et al. 2018) is a strong method 
for click-through rate prediction. It combines the power of factorization machines (FM) 
for recommendation, deep neural network (DNN) for capturing feature interactions 
with the proposed Compressed Interaction Network (CIN). xDeepFM is included as 
a representative baseline of the family of models, which try to estimate the probability 
of user-click p(�|�, �) , treating organic events as input features without further assump-

CTR =
number of clicks

number of bandit events
× 100(%)

HR@K =

{
1 if v(t+1) ∈ �

(t)

K

0 otherwise.

DCG@K =

K∑

i=1

2�[v
(t+1)∈�

(t)

K
] − 1

log(i + 1)
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tion. The model uses second-order FM with the searched-grid of hyper-parameters as 
follows: E ∈ [8, 16, 32] is the size of embeddings, T ∈ [1, 2, 3] is the number of hidden 
layers in DNN and CIN, H ∈ [64, 128, 256] is the number of neuron units per layer. 
Each neuron uses hyperbolic tangent as non-linear activation function.

–	 POEM (Policy Optimizer for Exponential Models) (Swaminathan and Joachims 2015b) 
tackles the counterfactual effect with Counterfactual Risk Minimization (CRM) learn-
ing principle. It is considered state-of-the-art for the problem of learning from logged 
bandit feedback (Jeunen et al. 2019). We follow the authors’ recommendation of clip-
ping constant M based on propensity score, and search for the best hyper-parameter 
c ∈ [10−6, ..., 1] in multiples of 10.

Table 2   Comparison between VLIB and comparative methods on various datasets

Bold values indicate the best performing results in each comparison
⋆ improvements over the second-best baseline are statistically significant with paired sample t-test 
( p-value < 0.01)

CTR(%) HR@10 NDCG@10

RG-100 Random 1.069 ± 0.050 0.071 ± 0.058 0.038 ± 0.026

MostPop 1.128 ± 0.332 0.796 ± 0.047 0.496 ± 0.053

Cooccur 1.400 ± 0.214 0.848 ± 0.030 0.594 ± 0.042

MLR 1.493 ± 0.258 0.796 ± 0.034 0.604 ± 0.044

xDeepFM 1.513 ± 0.253 0.763 ± 0.029 0.590 ± 0.046

POEM 1.542 ± 0.223 0.824 ± 0.036 0.624 ± 0.043

VLIB �.��� ± �.���⋆ �.��� ± �.���⋆ �.��� ± �.���⋆

RG-1000 Random 1.069 ± 0.043 0.010 ± 0.019 0.003 ± 0.006

MostPop 2.043 ± 0.752 0.591 ± 0.093 0.372 ± 0.077

Cooccur 2.316 ± 0.166 0.656 ± 0.079 0.451 ± 0.076

MLR 2.460 ± 0.167 0.626 ± 0.079 0.477 ± 0.077

xDeepFM 2.479 ± 0.174 0.612 ± 0.086 0.422 ± 0.073

POEM 2.501 ± 0.165 0.634 ± 0.079 0.481 ± 0.078

VLIB �.��� ± �.���⋆ �.��� ± �.���⋆ �.��� ± �.���⋆

TB-500 Random 1.073 ± 0.042 0.044 ± 0.081 0.035 ± 0.078

MostPop 1.823 ± 0.684 0.620 ± 0.117 0.394 ± 0.108

Cooccur 2.149 ± 0.204 0.685 ± 0.093 0.473 ± 0.100

MLR 2.297 ± 0.224 0.666 ± 0.083 0.503 ± 0.094

xDeepFM 2.302 ± 0.236 0.634 ± 0.081 0.465 ± 0.092

POEM 2.315 ± 0.225 0.674 ± 0.085 0.508 ± 0.095

VLIB �.��� ± �.���⋆ �.��� ± �.���⋆ �.��� ± �.���⋆

TB-2000 Random 1.071 ± 0.044 0.003 ± 0.004 0.001 ± 0.001

MostPop 2.220 ± 0.646 0.512 ± 0.081 0.318 ± 0.064

Cooccur 2.503 ± 0.088 0.573 ± 0.071 0.386 ± 0.068

MLR 2.610 ± 0.086 0.556 ± 0.061 0.417 ± 0.064

xDeepFM 2.613 ± 0.092 0.522 ± 0.075 0.352 ± 0.069

POEM 2.627 ± 0.101 0.550 ± 0.080 0.418 ± 0.076

VLIB �.��� ± �.���⋆ �.��� ± �.���⋆ �.��� ± �.���⋆
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VLIB could learn highly expressive functions f� and g� with deep neural networks if such 
modeling capacity is required to discover complex interactions between � and � (see the 
discussion on Proposed Framework: VLIB). Here, we prioritize efficiency and experiment 
with simpler linear functions for both f� and g� , as these already achieve competitive per-
formances. The number of dimensions for the latent variable � is D = 50 across all data-
sets, while hyper-parameter � is searched within [10−4,… , 1] in multiples of 10. The best 
obtained values for � are 0.01 on RG-100, RG-1000, TB-500 datasets, and 0.1 on TB-2000 
dataset.

(a) RG-100

(b) RG-1000

(c) TB-500

(d) TB-2000

Fig. 3   Click-through rate (CTR) breakdown with increasing levels of user’s organic activity (how many 
organic events by a user before she enters a bandit state). POEM (second-best baseline) is included as a 
reference for comparison with VLIB
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5.4 � Empirical results and discussion

We analyze the empirical results along five research questions (RQ#1 to RQ#5).
RQ#1: How Does VLIB Perform as Compared to the Baselines? 
The experimental results in Table  2 show that in many cases, the simple methods 

MostPop and Cooccur achieve competitive performance to the model-based approaches. 
Cooccur even surpasses learning methods MLR, xDeepFM, and POEM in terms of HR 
measurement, though the ranking quality is not as good, as reflected by lower NDCG 
scores. xDeepFM achieves competitive performance in terms of CTR as it is what the 
model is designed for. However, the model performs poorly for top-K ranking metrics 
(i.e., HR and NDCG). One explanation for that could be on the perspective of learning 
of the model family which tries to estimate p(�|�, �) . The model is lacking negative 
samples to contrast with the positive ones (i.e., clicked recommendations). This affirms 
our motivation to come up with the notion of implicit bandit feedback and the corre-
sponding likelihood function (Eq. 2). POEM consistently shows better performance than 
both xDeepFM and MLR, especially in CTR metric. The improvement can be credited 
to better learning algorithm derived from CRM.

Evidently, VLIB achieves the highest performance. The gaps are notable especially in 
terms of the top-K recommendation metrics. We attribute that to the contribution of learn-
ing better representation of preferences via generative modeling of observational events 
together with implicit bandit feedback. Thus, VLIB can better rank the actions as com-
pared to MLR and POEM, that directly optimize for determining only the best action. We 
statistically test the performance of VLIB against the second best method POEM using 
paired samples t-test, and find VLIB to be significantly better than POEM across all met-
rics. This suggests that VLIB is an effective approach for dealing with organic-bandit 
recommendation.

In Figure 3, we report the performance of VLIB in terms of click-through rate with dif-
ferent level of user’s organic activity (how many organic events by a user before she enters 
a bandit state). POEM which is the second-best baseline (Table 2) is also included as a ref-
erence compared to VLIB. Overall, a clear trend is that both models perform better when 
observing more organic events. In other words, users’ preferences are being captured from 
their organic feedback, which turns into more accurate recommendations during bandit 
state. Among the two methods, VLIB is consistently better than POEM, especially in the 
lower percentiles (lack of organic events). The gap is closer with higher percentiles (suf-
ficient organic events for modelling user preferences). This result emphasizes that VLIB 

Table 3   Effectiveness of 
including implicit bandit 
feedback

CTR(%) HR@10 NDCG@10

RG-100 Exp 1.177 ± 0.070 0.204 ± 0.043 0.095 ± 0.022

Imp 1.555 ± 0.216 0.802 ± 0.049 0.563 ± 0.056

RG-1000 Exp 1.764 ± 0.124 0.179 ± 0.026 0.094 ± 0.014

Imp 2.414 ± 0.127 0.571 ± 0.087 0.394 ± 0.072

TB-500 Exp 1.607 ± 0.103 0.195 ± 0.031 0.101 ± 0.017

Imp 2.248 ± 0.154 0.619 ± 0.105 0.427 ± 0.099

TB-2000 Exp 2.000 ± 0.110 0.182 ± 0.024 0.104 ± 0.017

Imp 2.568 ± 0.081 0.480 ± 0.088 0.337 ± 0.071
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Fig. 4   Effect of the implicit feedback on VLIB in terms of click-through rate (CTR). The y-axis displays 
CTR, and the x-axis shows varied values of the hyper-parameter � controlling the certainty of implicit nega-
tive feedback (Eq. 2)

Fig. 5   Convergence of VLIB in terms of click-through rate (CTR). The y-axis displays CTR, and the x-axis 
shows the number of epochs through training data
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is suitable for dealing with less organically active users (viewing less items on the organic 
states), and it also explains the improvements of VLIB over the compared baselines. Fur-
thermore, recommendations by VLIB are more accurate and reliable when observing more 
organic feedback (error bars shrinking). This is particularly prominent for RG-1000 (Fig-
ure 3b) and TB-2000 (Figure 3d).

RQ#2: Does Learning From Implicit Bandit Feedback Improve the Accuracy?
Table  3 reports an experiment comparing the two choices of likelihood functions for 

learning from logged bandit feedback. Exp (see Eq. 1) relies only on explicit feedback. Imp 
(see Eq. 2) is based on both explicit and implicit bandit feedback. We see that the improve-
ment of Imp over Exp is substantial and consistent. Imp generalizes Exp and has the advan-
tage of controlling the confidence using � . The effectiveness of the additional term in the 
Imp likelihood will be further analyzed later when answering a research question on re-
weighting samples.

We analyze the effect of implicit bandit feedback on the performance of VLIB. Figure 4 
shows the results in terms of CTR while varying the values of hyper-parameter � . Gener-
ally, we observe that the best click-through rate is achieved when 𝜆 > 0 , demonstrating the 
positive impact of implicit bandit feedback on our model. Intuitively, we might think that 
the optimal value of � is data-dependent and needs to be carefully selected. However, this 
experiment suggests that CTR is less sensitive to � when � reaches a certain threshold, 
� = 0.01 in this case. To avoid doing grid search, one heuristic approach to select good 
value for � is based on annealing. � can be set to 1.0 at first and decreasingly annealed dur-
ing training. While annealing, we perform validation and stop decreasing � when we notice 
the validation metric dropping.

Figure 5 illustrates the performance of VLIB in terms of CTR with different number of 
training epochs. The model achieves good performance after a few epochs, and its results 
keep improving and stabilizing when we increase the time for training. This shows that 
optimizing the proposed Eq.  2 would lead to improvements in CTR, the main objective 
when displaying online advertisements.

RQ#3: How Effective Is Learning Variational Representation of User Preferences? 
One contribution in the proposed framework is to learn a latent variable model that can 

explain both organic and bandit feedbacks. We examine the effect of representing user 
preferences in a low D-dimensional space as opposed to directly modeling the relation-
ship between � and � . We denote the former as Var (for variational), and the latter as Det 
(for deterministic). For parity, we only learn linear mapping functions f� , g� , as well as �� 
and �� for Var. In terms of model capacity, Var has fewer parameters than Det, thus has no 
advantage in memorization.

Table 4   Effectiveness of learning 
variational representation of user 
preferences

CTR(%) HR@10 NDCG@10

RG-100 Det 1.555 ± 0.216 0.802 ± 0.049 0.563 ± 0.056

Var 1.672 ± 0.263 0.879 ± 0.024 0.659 ± 0.039

RG-1000 Det 2.414 ± 0.127 0.571 ± 0.087 0.394 ± 0.072

Var 2.613 ± 0.134 0.719 ± 0.065 0.522 ± 0.073

TB-500 Det 2.248 ± 0.154 0.619 ± 0.105 0.427 ± 0.099

Var 2.453 ± 0.157 0.743 ± 0.077 0.544 ± 0.091

TB-2000 Det 2.568 ± 0.081 0.480 ± 0.088 0.337 ± 0.071

Var 2.678 ± 0.099 0.642 ± 0.064 0.462 ± 0.067
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In Table 4, we can see that Var’s outperformance over Det is especially remarkable in 
terms of ranking metrics (HR and NDCG). From one perspective, Var imposes stronger 
modeling assumptions than Det, the prior of latent space, and therefore could be more 
robust when the feedback is scarce. From another perspective, there is a regularization 
effect in forcing � to also explain � , which drives Var model away from putting all capacity 
in being discriminative of p(�|�, �) , as Det model does. That could be an explanation for 
improvements in the ranking measurements as Var can rank actions better than rather just 
determine the best action. This result proves the effectiveness of learning variational repre-
sentation of user preferences for better recommendation to the problem at hand.

Figure 6 illustrates the performance of our model in terms of CTR while varying the 
value of hyper-parameter � (in Eq. 8). As discussed earlier, ones should look for a suitable 
value of � (in Eq. 2) before optimizing the value of � . In this experiment, � = 0.001 for 
TB-2000 and � = 0.01 for the rest of the datasets as they show the best performance in the 
previous experiment (see Fig. 4), while the value of � is varied in the range of [0, 1]. We 
observe a clear improvement with � = 0.9 on TB-2000 dataset while it is negligible on the 

Fig. 6   Effect of the KL regularizer on VLIB in terms of click-through rate (CTR). The y-axis displays CTR, 
and the x-axis shows varied values of the hyper-parameter � controlling the regularization effect on our 
model (Eq. 8)

Table 5   Effect of re-weighting 
likelihood function

CTR(%) HR@10 NDCG@10

RG-100 NoIPS 1.672 ± 0.239 0.879 ± 0.024 0.659 ± 0.039

IPS 1.672 ± 0.263 0.867 ± 0.030 0.627 ± 0.048

RG-1000 NoIPS 2.613 ± 0.134 0.719 ± 0.065 0.522 ± 0.073

IPS 2.563 ± 0.159 0.679 ± 0.080 0.468 ± 0.084
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others. Nevertheless, with � = 1.0 , our model still achieves competitive performance sug-
gesting that optimizing the ELBO lies near the optimal point of the RD-plane if properly 
defined via a good selection of value for � . Our proposed framework is less sensitive to the 
value of � , although with a cost of searching it potentially yields an improvement. While � 
is decreasing towards 0.0, weakening the effect of KL term and approaching the determin-
istic learning, the CTR performance drastically declines. It vividly showcases the effective-
ness of learning variational representation (Var) as compared to deterministic representa-
tion (Det), which reinforces the same observation demonstrated in Table 3.

RQ#4: Does Re-weighting Likelihood Function Using IPS Help?
When using a simple model with the standard maximum likelihood approach, the model 

may underfit and only focus on minimizing error around the common observations (�i, �i) 
by the logging policy. The problem has been characterized and commonly known as covar-
iance shift  (Shimodaira 2000). One solution is to re-weight the likelihood to compensate 
for underrepresented samples. In the context of bandit feedback, we can practically achieve 
that by using inverse propensity score (IPS) of the logging policy wi = 1∕�(�i) . Table 5 
reports the comparison of VLIB using the proposed likelihood (Eq. 2) denoted as NoIPS 
and re-weighted version IPS. We conduct the experiment on two datasets RG-100 and RG-
1000, TB datasets are omitted because we do not have access to the logging policy.

Interestingly, the results favor NoIPS, i.e., the proposed likelihood without re-weighting 
tends to perform better. One explanation could be the contribution of the implicit feedback 
assumption. The additional term to the likelihood function also has re-weighting effect by 
emphasizing the importance of the positive feedback, which is usually scarce. Further-
more, it augments the data with more observations of organic feedback and negative action 
pairs (�i, �j) , �j ∈ A ⧵ {�i}.

RQ#5: Can We Use MAP Estimate Instead of MC Sampling for Prediction?
There are two ways to obtain predictions from VLIB due to the variational represen-

tation of user preferences. Using Monte Carlo sampling, we use the uncertainty cap-
tured by the covariance of the variational distributions. This comes at a cost as we need 
a reasonable number of samples for a stable prediction. It makes deployment of real-
time recommender systems challenging. For faster approximation, we apply MAP esti-
mate to only use the mean � of � and ignore the covariance �.

Table 6 provides the comparison between the two approaches across the four data-
sets. For the former approach, denoted as MC, we draw 200 samples for each approxi-
mation. The latter point estimate approach is denoted as MAP. As shown by the results, 
it is perhaps surprising that just using the posterior mean can perform similarly well 

Table 6   MC sampling vs. MAP 
for prediction

CTR(%) HR@10 NDCG@10

RG-100 MC 1.661 ± 0.245 0.881 ± 0.025 0.659 ± 0.039

MAP 1.672 ± 0.239 0.879 ± 0.024 0.659 ± 0.039

RG-1000 MC 2.606 ± 0.135 0.720 ± 0.063 0.523 ± 0.071

MAP 2.613 ± 0.134 0.719 ± 0.065 0.522 ± 0.073

TB-500 MC 2.460 ± 0.161 0.742 ± 0.076 0.544 ± 0.091

MAP 2.453 ± 0.157 0.743 ± 0.077 0.544 ± 0.091

TB-2000 MC 2.706 ± 0.094 0.646 ± 0.073 0.463 ± 0.075

MAP 2.678 ± 0.099 0.642 ± 0.064 0.462 ± 0.067
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to the Monte Carlo approach. The gain by MC is marginal in terms of HR and NDCG, 
where, there are noticeable differences in terms of CTR​ on TB datasets. This result sug-
gests that MAP estimate can be effectively used for deployment of real-time recom-
mender systems with a low cost of accuracy in return for a remarkable gain in efficiency.

6 � Conclusion

We address the problem of learning from logged bandit feedback, which is a different 
scenario from online reinforcement learning in that the former is batch learning from 
existing logs. The proposed method VLIB optimizes a more adequate likelihood func-
tion incorporating implicit negative feedback involving organic events associated with 
positive bandit feedback. Comprehensive experiments on simulated bandit scenario 
using RecoGym and real-life datasets from Taobao.com yield insightful results. VLIB 
outperforms comparable baselines comprehensively. We further validate the contribu-
tions of modeling components ablatively, such as the proposed implicit feedback (vs. 
modeling just the explicit user response) and variational learning of user preferences 
(vs. deterministic learning). In terms of likelihood estimation, we discover that re-
weighting using inverse propensity score does not make much difference, while using 
MAP in place of Monte Carlo sampling provides efficiency gains at minimal accuracy 
loss.

As future work, we would further investigate the impact of implicit bandit feedback. 
The objective is to gain more theoretical insights on how not only it improves click-
through rate prediction but also eases the need of using inverse propensity score re-
weighting, which is not trivial when the access to logging policy is limited.

Acknowledgements  This research is supported by the National Research Foundation, Prime Minister’s 
Office, Singapore under its NRF Fellowship Programme (Award No. NRF-NRFF2016-07).

References

Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A., & Murphy, K. (2018). Fixing a broken elbo. 
In ICML, pages 159–168. PMLR.

Beel, J., Genzmehr, M., Langer, S., Nürnberger, A., & Gipp, B. (2013). A comparative analysis of offline 
and online evaluations and discussion of research paper recommender system evaluation. In Pro-
ceedings of the international workshop on reproducibility and replication in recommender systems 
evaluation.

Blei, D., & Lafferty, J. (2006). Correlated topic models. In Advances in neural information processing 
systems (Vol. 18, p. 147).

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. 
Journal of the American Statistical Association, 112(518), 859–877.

Botev, A., Zheng, B., & Barber, D. (2017). Complementary sum sampling for likelihood approximation in 
large scale classification. In Proceedings of the 20th International Conference on Artificial Intelligence 
and Statistics, AISTATS 2017, volume 54. PMLR (Proceedings of Machine Learning Research).

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X., Chickering, D. M., Portugaly, E., et al. (2013). 
Counterfactual reasoning and learning systems: The example of computational advertising. The Jour-
nal of Machine Learning Research, 14(1), 3207–3260.

Chen, W., Grangier, D., & Auli, M. (2016). Strategies for training large vocabulary neural language models. 
In ACL.



	 Machine Learning

1 3

Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin, C., & Huber, A. (2014). Offline and online 
evaluation of news recommender systems at swissinfo. ch. In ACM conference on recommender 
systems.

Guo, H., Tang, R., Ye, Y., Li, Z., He, X. (2017). Deepfm: a factorization-machine based neural network for 
ctr prediction. In IJCAI.

Hidasi, B., & Tikk, D. (2016). General factorization framework for context-aware recommendations. Data 
Mining and Knowledge Discovery, 30(2), 342–371.

Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2016). Session-based recommendations with recur-
rent neural networks. In ICLR.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A. (2016). 
beta-vae: Learning basic visual concepts with a constrained variational framework.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In ICDM, 
pages 263–272. IEEE.

Ie, E., Hsu, C.-W., Mladenov, M., Jain, V., Narvekar, S., Wang, J., Wu, R., Boutilier, C. (2019). Recsim: A 
configurable simulation platform for recommender systems. arXiv preprint arXiv:1909.04847.

Jeunen, O., Mykhaylov, D., Rohde, D., Vasile, F., Gilotte, A., & Bompaire, M. (2019). Learning from bandit 
feedback: An overview of the state-of-the-art.

Joachims, T., Swaminathan, A., & de Rijke, M. (2018). Deep learning with logged bandit feedback. In Inter-
national Conference on Representation Learning.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods 
for graphical models. Machine learning, 37(2), 183–233.

Kawale, J., Bui, H. H., Kveton, B., Tran-Thanh, L., & Chawla, S. (2015). Efficient thompson sampling for 
online matrix-factorization recommendation. In Advances in neural information processing systems 
(pp. 1297–1305).

Kingma, D.P., & Welling, M. (2014). Auto-encoding variational bayes. In International Conference on 
Learning Representations.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Com-
puter, 42(8), 30–37.

Krause, A., & Ong, C. S. (2011, January). Contextual Gaussian Process Bandit Optimization. In Advances 
in neural information processing systems (pp. 2447–2455).

Langford, J., & Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-armed bandits. In 
Advances in neural information processing systems (Vol. 20, pp. 96–1).

Li, L., Chu, W., Langford, J., & Schapire, R.E. (2010). A contextual-bandit approach to personalized news 
article recommendation. In International World Wide Web Conference.

Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). xdeepfm: Combining explicit and implicit 
feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD International 
Conference on Knowledge Discovery & Data Mining, pages 1754–1763.

Liang, D., Krishnan, R.G., Hoffman, M. D., & Jebara, T. (2018). Variational autoencoders for collaborative 
filtering. In WWW.

Miao, Y., Yu, L., & Blunsom, P. (2016). Neural variational inference for text processing. In ICML.
Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In AISTATS.
Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). Bpr: Bayesian personalized rank-

ing from implicit feedback. In UAI.
Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate infer-

ence in deep generative models. In ICML.
Richardson, M., Dominowska, E., & Ragno, R. (2007). Predicting clicks: estimating the click-through rate 

for new ads. In WWW.
Rohde, D., Bonner, S., Dunlop, T., Vasile, F., & Karatzoglou, A. (2018). Recogym: A reinforcement learn-

ing environment for the problem of product recommendation in online advertising. arXiv preprint 
arXiv:1808.00720.

Rossetti, M., Stella, F., & Zanker, M. (2016). Contrasting offline and online results when evaluating recom-
mendation algorithms. In ACM Conference on Recommender Systems.

Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood 
function. Journal of Statistical Planning and Inference, 90(2), 227–244.

Sun, W., Khenissi, S., Nasraoui, O., & Shafto, P. (2019). Debiasing the human-recommender system feed-
back loop in collaborative filtering. In Companion Proceedings of The 2019 World Wide Web Confer-
ence, pages 645–651.

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135). Cambridge: MIT 
Press.



Machine Learning	

1 3

Swaminathan, A., & Joachims, T. (2015a). Batch learning from logged bandit feedback through counterfac-
tual risk minimization. Journal of Machine Learning Research, 16(1), 1731–1755.

Swaminathan, A. & Joachims, T (2015b). Counterfactual risk minimization: Learning from logged bandit 
feedback. In ICML.

Zhou, G.,  Zhu, X., Song, C., Fan, Y.,  Zhu, H., Ma, X., Yan, Y., Jin, J., Li, H. & Gai, K. (2018). Deep inter-
est network for click-through rate prediction. In ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Variational learning from implicit bandit feedback
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Proposed framework: VLIB
	4.1 Likelihood function for implicit bandit feedback
	4.2 Variational learning for user preferences
	4.3 Optimization
	4.4 Prediction
	4.5 Complexity analysis

	5 Experiments
	5.1 Datasets
	5.2 Evaluation metrics
	5.3 Comparative methods
	5.4 Empirical results and discussion

	6 Conclusion
	Acknowledgements 
	References




