
Vol.:(0123456789)

Machine Learning (2021) 110:3059–3093
https://doi.org/10.1007/s10994-021-06012-8

1 3

RB‑CCR: Radial‑Based Combined Cleaning and Resampling
algorithm for imbalanced data classification

Michał Koziarski1 · Colin Bellinger2 · Michał Woźniak3

Received: 30 September 2020 / Revised: 3 February 2021 / Accepted: 27 May 2021 /
Published online: 14 October 2021
© Crown 2021

Abstract
Real-world classification domains, such as medicine, health and safety, and finance, often
exhibit imbalanced class priors and have asynchronous misclassification costs. In such
cases, the classification model must achieve a high recall without significantly impacting
precision. Resampling the training data is the standard approach to improving classification
performance on imbalanced binary data. However, the state-of-the-art methods ignore the
local joint distribution of the data or correct it as a post-processing step. This can causes
sub-optimal shifts in the training distribution, particularly when the target data distribution
is complex. In this paper, we propose Radial-Based Combined Cleaning and Resampling
(RB-CCR). RB-CCR utilizes the concept of class potential to refine the energy-based resa-
mpling approach of CCR. In particular, RB-CCR exploits the class potential to accurately
locate sub-regions of the data-space for synthetic oversampling. The category sub-region
for oversampling can be specified as an input parameter to meet domain-specific needs
or be automatically selected via cross-validation. Our 5 × 2 cross-validated results on 57
benchmark binary datasets with 9 classifiers show that RB-CCR achieves a better preci-
sion-recall trade-off than CCR and generally out-performs the state-of-the-art resampling
methods in terms of AUC and G-mean.

Keywords Machine learning · Classification · Imbalanced data · Oversampling · Radial
basis functions

Editors: João Gama, Alípio Jorge, Salvador García.

 * Michał Koziarski
 michal.koziarski@agh.edu.pl

 Colin Bellinger
 colin.bellinger@nrc-cnrc.gc.ca

 Michał Woźniak
 michal.wozniak@pwr.edu.pl

1 Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30,
30-059 Kraków, Poland

2 Digital Technologies, National Research Council of Canada, Ottawa, Canada
3 Department of Systems and Computer Networks, Wrocław University of Science and Technology,

Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06012-8&domain=pdf

3060 Machine Learning (2021) 110:3059–3093

1 3

1 Introduction

Machine learning classifiers are quickly becoming a tool of choice in application areas
ranging from finance to robotics and medicine. This is largely owing to the growth in the
availability of labeled training data and declining computing costs. When applied correctly,
machine learning classifiers have the potential to improve safety and efficiency and reduce
costs. However, many of the most important domains, such as those related to health and
safety, are limited by the problem of class imbalance. In binary classification, the class
imbalance is defined as occurring when the prior probability of one class (referred to as the
minority class) is significantly lower than the prior probability of the other class (majority
class).

The induction of binary classifiers on imbalanced training data results in a predictive
bias toward the majority class and has been associated with poor performance during
application (Branco et al., 2016). Detailed empirical studies have demonstrated that class
imbalance exacerbates the difficulty of learning accurate predictive models from complex
data involving class overlap, sub-concepts, non-parametric distributions, etc. (He & Garcia,
2009; Stefanowski, 2016).

Traditional methods of improving the predictive performance of classification mod-
els trained on imbalanced data involve resampling (random undersampling the majority
class, random oversampling the minority class and generating additional synthetic minority
samples) or cost-adjustment (Branco et al., 2016). Synthetic minority sampling methods,
such as SMOTE and its derivatives (Chawla et al., 2002; Han et al., 2005; He et al., 2008;
Barua et al., 2012; Bellinger et al., 2016), generate synthetic minority samples to balance
the training set. Generation-based methods of this nature are widely applied because they
are classifier independent and can reduce the risk of overfitting.

In addition to elevating the learning challenge, in many cases, imbalanced training data
results from sensitive application domains that exhibit asymmetric misclassification cost
(Wallace & Dahabreh, 2012). For example, in medicine, misclassifying benign cases as
cancerous (false positive) can have negative consequences in terms of mental anguish and
additional tests. Whilst false positives should be kept to a minimum, misclassifying a can-
cerous case as benign (false negative) can significantly increase cost in terms of delayed
treatment and premature death. In domains of this nature, additional effort must be made to
induce a classifier with good predictive performance on the minority class.

To achieve satisfactory performance on sensitive imbalanced domains with asymmetric
misclassification costs, the resampling strategy ought to prioritizing high recall whilst hav-
ing minimal impact on precision. In this work, we propose a refinement to the CCR algo-
rithm (Koziarski & Wożniak, 2017) that utilizes the radial-based (RB) approach to calcu-
late the class potential to satisfy this objective. Specifically, CCR is a resampling algorithm
that cleanses majority class training samples and randomly generates synthetic minority
samples in the regions around the minority class. Whilst this technique has been shown
to improve the recall of the induced classifier, the specific resampling strategy employed
may limit the improvement in recall and risks harming the precision. To improve upon this,
we propose the RB-CCR resampling algorithm. It focuses the generation processes in sub-
regions of the data-space that satisfy the user-specified class potential targets. The ability
to do this gives the user better control over the precision-recall trade-off. This, for example,
enables higher recall on domain for which this is critical.

We empirically compare RB-CCR to CCR and the state-of-the-art resampling methods
on 57 benchmark datasets with 9 classifiers. Our empirical results show that resampling

3061Machine Learning (2021) 110:3059–3093

1 3

with RB-CCR can be exploited to control the precision-recall trade-off in a domain-appro-
priate way. On average, RB-CCR outperforms the state-of-the-art alternatives in terms of
AUC and G-mean.

The main contributions of this paper can be summarized as follows:

• Proposition of the RB-CCR resampling algorithm, which employs the radial-based
approach to calculate the class potential, so that a classifier trained on modified data
improves recall and has less impact on precision.

• Analysis of the impact of sampling region on algorithms behavior and performance.
• Showing that the proposed method can outperform the quality of the CCR algorithm.
• Experimental evaluation of the proposed approach based on diverse benchmark datasets

and a detailed comparison with the state-of-the-art approaches.

The paper is organized as follows. The next section discusses the related work and situates
RB-CCR concerning the state-of-the-art in imbalanced binary classification. Section 3,
provides the details of CCR and RB-CCR, demonstrates resampling with RB-CCR and
contrasts its run-time complexity with that of CCR. In Sect. 4, we describe the experimen-
tal setup, report the results along with our analysis, and finally, Sect. 5 includes our con-
cluding remarks and a discussion of future work.

2 Related work

Imbalance ratio (IR) (García et al., 2012) is defined as the ratio between the number of
majority and minority class observations. A moderate to high IR (typically greater than
10 : 1) can pose a significant challenge to learning a sufficiently accurate classifier across
all classes. This is particularly the case when it is combined with other adverse data prop-
erties, such as class overlap, sparsity, complex clustering, and noise (He & Garcia, 2009;
Napierala & Stefanowski, 2012). In such cases, the classifier is at great risk of becoming
biased towards the majority class (He & Garcia, 2009), and/or overfitting the training data
(Chen et al., 2008). Problems of this nature are a focus of intense research (Chawla et al.,
2002; Bunkhumpornpat et al., 2009; Kubat & Matwin, 1997).

Measuring the quality of a model on imbalanced data requires some attention. It is well-
known that using classic metrics, such as accuracy and error rate, on imbalanced datasets
can cause misleading interpretations of the efficacy of the model (Jeni et al., 2013). As a
result, the imbalanced learning community has shifted to use metrics, such as precision,
recall (sensitivity), specificity, G-mean, F�score , and AUC (Kubat et al., 1997; Krawczyk,
2016). More recently, however, it has been noted that the widely used metrics F�score ,
and AUC can be sub-optimal for evaluating performance on imbalanced data. Brzezinski
et al. (2019) demonstrated that F�score is usually more biased towards the majority class
than AUC and G-mean. The flaws of F�score are also discussed in a study by Hand and
Christen (2018), in which authors suggest that to make a fair comparison, precision and
recall have to be weighed separately for each problem, depending on the imbalance ratio.
Alternatively, the authors in Davis and Goadrich (2006) argue that ROC curves, and AUC
by extension, can present an overly optimistic view of an algorithm’s performance if there
is a large skew.

Classification strategies to deal with imbalanced data can be divided into three main
groups (López et al., 2012): inbuilt mechanism, data-level methods, and hybrid methods.

3062 Machine Learning (2021) 110:3059–3093

1 3

2.1 Inbuilt mechanisms

In this approach, existing classification algorithms are adapted to imbalanced problems by
ensuring balanced accuracy for instances from both classes. Two of the most popular areas
of research of these methods are: using one-class classification (Japkowicz et al., 1995),
where the goal is to learn the minority class decision boundaries, and because of the fre-
quently assumed regular, closed shape of the decision borders it is adequate for the clus-
ters created by minority classes (Krawczyk et al., 2014). Secondly, algorithms employing
kernel functions (Mathew et al., 2018), splitting criteria in decision trees (Li et al., 2018),
to make them cost-sensitive methods employing different forms of the loss function (Khan
et al., 2018), where the algorithm assigns a higher misclassification cost for instances from
the minority class (Krawczyk et al., 2014; López et al., 2012; He & Garcia, 2009; Zhou
& Liu, 2006). Unfortunately, such methods can cause a reverse bias towards the minority
class. Worth noting are methods based on ensemble classification (Woźniak et al., 2014),
like smote Boost (Chawla et al., 2003) and AdaBoost.NC (Wang et al., 2010), or Multi-
objective Genetic Programming-Based Ensemble (Bhowan et al., 2012).

2.2 Data‑level methods

This work focuses on data preprocessing to reduce imbalance ratio by decreasing the num-
ber of majority observations (undersampling) or increasing minority observations (over-
sampling). After applying such preprocessing, the data can be classified using traditional
learning algorithms. The most straightforward approaches to dealing with the imbalanced
data are Random Oversampling (ROS) and Random Undersampling (RUS). When apply-
ing ROS, new minority class instances are generated by duplicating randomly chosen
minority instances. This procedure can create small, dense clusters of replicated minor-
ity objects leading to overfitting. The most recognized data-level method is the SMOTE
(Chawla et al., 2002) algorithm. It reduces the risk of overfitting by generating synthetic
minority instances via random interpolation in-between existing minority objects.

The well-studied limitations of SMOTE have inspired many new synthetic oversampling
techniques, such as (Pérez-Ortiz et al., 2016; Bellinger et al., 2018). The most significant
shortcomings of SMOTE are that it assumes a homogeneous minority class cluster, and
it does not consider the majority objects in the neighborhood when generating synthetic
objects. In cases where the minority class forms many small disjointed clusters, SMOTE
may cause an increase the class overlapping, and thus, the complexity of the classification
problem (Krawczyk et al., 2019). Numerous methods have been proposed to address these
weaknesses by considering both classes during generation, or as a post-hoc cleaning step.

Safe-level SMOTE (Bunkhumpornpat et al., 2009) and LN-SMOTE (Maciejewski &
Stefanowski, 2011) are specifically designed to reduce the risk of introducing noisy syn-
thetic observations inside the majority class region. Other SMOTE alternatives aim to
focus the generation process on challenging regions of the dataspace. Borderline-SMOTE
(Han et al., 2005), for example, focuses the process of synthetic observation generation
on the instances close to the class boundary, and ADASYN (He et al., 2008) prioritizes
the difficult instances. The SWIM (Sharma et al., 2018) method uses the Mahalanobis dis-
tance to determine the best position for synthetic samples, taking into account the existing
samples from both classes. Radial-Based Oversampling (RBO) (Koziarski et al., 2019) is
a method that employs potential estimation to generate new minority objects using radial

3063Machine Learning (2021) 110:3059–3093

1 3

basis functions. The Combined Cleaning and Resampling (CCR) (Koziarski & Wożniak,
2017) method combines two techniques—cleaning the decision border around minority
objects and guided synthetic oversampling.

RUS preprocesses the data by randomly removing majority class samples. It is concep-
tually simple and risks removing important objects from the majority class. This can cause
the induced classifier to underfit less dense majority class clusters. Guided undersampling
approaches aim to avoid this by analyzing the minority and majority class instances in
the local neighborhood. Edited Nearest Neighbor, for example, removes majority exam-
ples if their set of three nearest neighbors does not include at least one other majority
object. Radial-Based Undersampling, on the other hand, employs the concept of mutual
class potential to direct undersampling (Koziarski, 2020b). Koziarski introduced Synthetic
Minority Undersampling Technique (SMUTE), which leverages the concept of interpo-
lation of nearby instances, previously introduced in the oversampling setting in SMOTE
(Koziarski, 2020a).

2.3 Hybrid methods

Data preprocessing methods can be combined with in-built classification methods for
imbalanced learning. Galar et al. proposed to hybridize under- and oversampling with an
ensemble of classifiers (Galar et al., 2011). This approach allows the data to be indepen-
dently processed for each of the base models. It is worth also mentioning SMOTEBoost,
which is based on a combination of the SMOTE algorithm and the boosting procedure
(Chawla et al., 2003). In addition, the Combined Synthetic Oversampling and Undersam-
pling Technique (CSMOUTE) integrates SMOTE oversampling with SMUTE undersam-
pling (Koziarski, 2020a).

3 Radial‑based combined cleaning and resampling

In this paper, we propose an extension to the original CCR (Koziarski & Wożniak, 2017)
algorithm that refines its sampling procedure. In short, CCR is an energy-based oversam-
pling algorithm that relies on spherical regions, centered around the minority class obser-
vations, to designate areas in which synthetic minority observations should be generated.
These spherical regions expand iteratively, with the rate of expansion inversely propor-
tional to the number of neighboring observations belonging to the majority class, while
computationally efficient and conceptually simple, using spherical regions to model the
areas designed for oversampling has two limitations. First of all, it enforces a constant rate
of expansion of the sphere in every direction, regardless of the majority neighbors’ exact
position. Secondly, it does not utilize the information about the neighboring minority class
observations. We propose a novel sampling procedure to address these issues, which is
refining the original spherical regions. In the remainder of this section, we describe the
proposed sampling procedure and its integration with the CCR algorithm.

3.1 Guided sampling procedure

We base the proposed sampling procedure on the notion of class potential, previously used
in the imbalanced data setting by Krawczyk et al. (2019). The potential function is a real-
valued function that, in a given point in space x, measures the cumulative closeness to a given

3064 Machine Learning (2021) 110:3059–3093

1 3

collection of observations X . More formally, using a Gaussian radial basis function with a
spread � , a potential function can be defined as

Of particular interest in the imbalanced data oversampling task will be the potential com-
puted concerning either the collection of majority class observations Xmaj (majority class
potential), or minority class observations Xmin (minority class potential). Such class poten-
tial can be regarded as a measure reflecting the degree of certainty we assign to x being
a member of either the majority or the minority class. It can also be used to model the
regions of interest in which oversampling is to be conducted, which was previously demon-
strated in Radial-Based Oversampling (RBO) (Krawczyk et al., 2019) and Sampling With
the Majority (SWIM) (Bellinger et al., 2020) algorithms. SMOTE and its derivatives define
the regions of interest as the lines connecting nearby minority observations. Also, the prob-
ability of sampling within any given region of interest is typically uniform. Alternatively,
using class potential, as proposed here, offers an informationally richer framework. First of
all, by using the majority class potential, we can leverage the information about the posi-
tion of majority observations, which is not used by SMOTE. Secondly, when using poten-
tial, we are not constrained to sampling from within a set a lines. Rather, we can sample
smoothly from the space around the minority observations. Moreover, the sampling region
is non-linear, which enables it to better adapt to the underlying data distribution.

To reiterate, the drawbacks of the original CCR algorithm are that the sphere expansion
procedure progresses at a constant rate in every direction, regardless of the exact position of
the majority neighbors, and it does not utilize the information about the position of neighbor-
ing minority class observations. Intuitively, neither of these is the desired behavior since it
can lead to a lower than expected expansion in the direction of minority observation clusters
and higher than expected expansion in the direction of majority observation clusters. While
in theory, an obvious modification that could address these issues would be to exchange the
spheres used by CCR to more robust shapes, such as ellipsoids, and adjust the expansion step
accordingly, in practice, it is not clear how the latter could be achieved. Alternatively, we pro-
pose to exploit the efficiency of first defining the sphere around the minority observation and
then partitioning it into sub-regions based on the class potential to more effectively guide sam-
ple generation.

The proposed strategy partitions a given sphere into three target regions, low (L), equal (E),
and high (H), based on the class potential. Synthetic samples are generated in a user-specific-
ity target region by randomly generating candidates with uniform probability throughout the
sphere. A random subset of these is selected from the target region and added to the training
set. The target region and number of samples are specified as parameters of the algorithm. A
more detailed formulation of the proposed strategy is presented in Algorithm 1, and an illus-
tration of the sphere partitioning procedure is presented in Fig. 1.

(1)Φ(x,X, �) =

∣X∣�

i=1

e
−

�
‖Xi−x‖2

�

�2

.

3065Machine Learning (2021) 110:3059–3093

1 3

The CCR algorithm generates samples with uniform probability from within entire
sphere. Alternatively, Fig. 1 illustrates that RB-CCR divides the original sphere into three
regions (L, E, H). The regions are defined according to the shape of the globally calculated
minority class potential. Subsequent to the partitioning, sample generation can be restricted

Fig. 1 An example of a sphere
generated around a specific
minority observation, partitioned
into three regions: high potential
(H), indicated with a green color,
equal potential (E), indicated
with a yellow color, and low
potential (L), indicated with a
red color. Note that the shape of
the regions aligns with that of
the produced potential field, indi-
cated with a contour plot (Color
figure online)

3066 Machine Learning (2021) 110:3059–3093

1 3

to a specific region. Intuitively, samples in the high potential regions can be regarded as
having a higher probability of coming from the underlying minority class distribution than
samples in the low potential regions. This, to some extents, parallels different variants of
SMOTE, such as Borderline-SMOTE (Han et al., 2005) or Safe-Level-SMOTE (Bunkhum-
pornpat et al., 2009), which focus on different types of observations to guide the sampling
process. However, contrary to SMOTE variants, RB-CCR provides a flexibility to chose an
appropriate sampling region for the target data within a single framework.

3.2 Integrating guided sampling with the CCR algorithm

We begin with a brief description of the original CCR algorithm, as described in Koziarski
et al. (2020), where more in-depth discussion of the design choices can be found. The algo-
rithm itself consists of two main steps: cleaning the neighborhood of the minority observa-
tions, and second of all, selectively oversampling in the produced, cleaned regions. After
describing the original algorithm, we discuss how it can be integrated with the proposed
guided sampling procedure.

3.2.1 Cleaning the minority neighborhoods

First step of the proposed approach is cleaning the minority class neighborhoods from the
majority observations. This is achieved via an energy-based approach, in which spheri-
cal regions are being designated for cleaning. The size of the regions is constrained by
the presence of majority neighbors and is determined in an iterative procedure, dur-
ing which spheres expand up to the point of depleting the allocated energy budget. More
formally, for a given minority observation denoted by xi , current radius of an associated

Fig. 2 An illustration of the sphere creation for an individual minority observation (in the center) sur-
rounded by majority observations (in red). Sphere expends at a normal cost until it reaches a majority
observation, at which point the further expansion cost increases (depicted by blue orbits with an increas-
ingly darker color). Finally, after the expansions, the majority observations within the sphere are being
pushed outside (in green). Source: Koziarski et al. (2020) (Color figure online)

3067Machine Learning (2021) 110:3059–3093

1 3

sphere denoted by ri , a function returning the number of majority observations inside a
sphere centered around xi with radius r denoted by fn(r) , a target radius denoted by r′

i
 , and

fn(r
�

i
) = fn(ri) + 1 , we define the energy change caused by the expansion from ri to r′

i
 as

During the sphere expansion procedure, the radius of a given sphere increases up to the
point of completely depleting the energy, with the cost increasing after each encountered
majority observation. Finally, the majority observations inside the sphere are being pushed
out to its outskirts. The whole process was illustrated in Fig. 2.

3.2.2 Selectively oversampling the minority class

After the cleaning stage is completed, new synthetic minority observations are being gen-
erated in the produced spherical regions. The ratio of the synthetic observations generated
around a given minority observation is proportional to the sphere’s radius, calculated in the
previous step. More formally, for a given minority observation denoted by xi , the radius of
an associated sphere denoted by ri , the vector of all calculated radii denoted by r, collection
of majority observations denoted by Xmaj , collection of minority observations denoted by
Xmin , and assuming that the oversampling is performed up to the point of achieving bal-
anced class distribution, we define the number of synthetic observations to be generated
around xi as

This procedure can be interpreted as weighing the difficult observations more heavily, sim-
ilar to the technique used in ADASYN (He et al., 2008). The difficulty of observation is
determined based on the proximity of nearest majority observations: minority observations
with nearby majority neighbors will have a constrained sphere radius, which will result in a
higher allocation of produced synthetic observations.

3.2.3 Combining guided sampling with CCR

The proposed sampling strategy can easily be integrated into the original CCR algorithm.
Instead of the original sampling within the whole sphere, RB-CCR uses the guided sam-
pling strategy described in the previous section. In initial steps of RB-CCR are the same as
CCR. Specifically, they are sphere radius calculation, translation of majority observations,
and calculation of the number of synthetic observations generated for each minority obser-
vations. We present pseudocode of the proposed RB-CCR algorithm in Algorithm 2. It
should be noted that, except for the addition of a guided sampling procedure, the algorithm
is presented as it was previously proposed in Koziarski et al. (2020).

(2)Δe = −(r�
i
− ri) ⋅ fn(r

�

i
).

(3)gi = ⌊
r−1
i

∑�Xmin�
k=1

r−1
k

⋅ (�Xmaj� − �Xmin�)⌋.

3068 Machine Learning (2021) 110:3059–3093

1 3

The behavior of the proposed algorithm changes depending on the choice of its three
major hyperparameters: RBF spread � , energy used for sphere expansion, and sampling
region. The impact of � was illustrated in Fig. 3. As can be seen, � regulates the smoothness
of the potential shape, with low values of � producing a less regular contour, conditioned
mainly on the position of minority neighbors located in close proximity. On the contrary,
higher � values produce a smoother, less prone to overfitting potential, with a smaller num-
ber of distinguishable clusters. Secondly, the value of energy affects the radius of the pro-
duced spheres, which controls the size of sampling regions and the range of translations,
as illustrated in Fig. 4. It is worth noting that as the energy approaches zero, the algorithm
degenerates to random oversampling. The choice of the energy is also highly dependent on
the dimensionality of the data. It has to be scaled to the number of features a given data-
set contains, with higher dimensional datasets requiring higher energy to achieve a similar
sphere expansion. Finally, the choice of the sampling region determines how the generated
samples align with the minority class potential. This is demonstrated in Fig. 5. Sampling in
all of the available regions (LEH) is equivalent to the original CCR algorithm. This com-
pletely ignores the potential and uses whole spheres as a region of interest. Sampling in

3069Machine Learning (2021) 110:3059–3093

1 3

region E constrains samples to areas with class potential that is approximately equal class
potential of real minority observation. Sampling in region H pushes the generated observa-
tions towards areas of the data space estimated to have a higher minority class potential.
This can be interpreted as focusing the sampling process on generating samples that are
safer, and better resemble the original minority observations. The opposite is true for sam-
pling in the region L. This was further illustrated on a simplified dataset in Fig. 6.

Finally, it is worth discussing how RB-CCR compares to the other oversampling
algorithms. An illustration of differences between several popular methods was pre-
sented in Fig. 7, with a highly imbalanced dataset characterized by a disjoint minority
class distribution used as a benchmark. As can be seen, when compared to the SMOTE-
based approaches, RB-CCR tends to introduce lower class overlap, which can occur for
SMOTE when dealing with disjoint distributions, the presence of noise or outliers. RBO
avoids sampling in the majority class regions. However, it produces very conservative
and highly clustered samples. These can cause the classifier to overfit in a manner simi-
lar to random oversampling. RB-CCR avoids the risk of overfitting with larger regions
of interest. Moreover, the larger regions enable a greater reduction in the classifier’s bias
towards the majority class. The energy parameter facilitates the control of this behavior,
with higher values of energy leading to less conservative sampling. Information pro-
vided by the class potential is used to fine-tune the shape of regions of interest within
the sphere. It enables better control of the sampling.

(a) (b) (c) (d)

Fig. 3 Visualization of the impact of � parameter on the shape of minority class potential

(a) (b) (c) (d)

Fig. 4 Visualization of the impact of energy parameter on the sphere radius and corresponding region in
which synthetic minority observations (indicated by dark outline) are being generated. Note that the major-
ity observations within the sphere are being pushed outside during the cleaning step

3070 Machine Learning (2021) 110:3059–3093

1 3

3.3 Computational complexity analysis

Let us define the total number of observations by n, the number of majority and minority
observations by, respectively, nmaj and nmin , the number of features by m, and the number
of candidate samples used in a single sampling step of Algorithm 1 by c. As previously
described in Koziarski et al. (2020), the original CCR algorithm can be divided into three
steps: calculating the sphere radii, cleaning the majority observations inside the spheres,
and synthesizing new observations, with each of the steps done iteratively for every minor-
ity observation. The same applies to the RB-CCR, for which only the complexity of the
third step will differ from that of CCR.

• As described in Koziarski et al. (2020), the first step consists of a) calculating a dis-
tance vector, b) sorting said vector, and c) calculating the resulting radius. Combined,
these operations have complexity equal to O((m + log n)n2).

• As described in Koziarski et al. (2020), the second step, cleaning the majority observa-
tions inside the spheres, has complexity equal to O(mn).

• Finally, the third step, synthesizing new observations, consists of (a) calculating the
proportion of samples generated for a given observation gi , with the complexity equal
to O(nmin) (Koziarski et al., 2020), and (b) sampling the synthetic observations. In the
case of the original CCR algorithm, as discussed in Koziarski et al. (2020), this sub-
step consists of nmaj − nmin operations of sampling a random observation inside the
sphere, each with complexity equal to O(m) , leading to a total complexity of the third
step of CCR that can be simplified to O(mn) . On the other hand, the sampling used by
RB-CCR has a higher complexity due to the chosen guided strategy. In particular, when

(a) (b) (c) (d)

Fig. 5 An example of the choice of sampling region on the distribution of generated minority observations.
Baseline case, equivalent to sampling in all of the possible regions (LEH), was compared with sampling in
the high (H), equal (E) and low (L) potential regions. Note that the distribution of generated observations
aligns with the shape of the potential field

Fig. 6 Comparison of CCR and RB-CCR with different sampling regions on a simplified dataset

3071Machine Learning (2021) 110:3059–3093

1 3

considering the procedure described in Algorithm 1, its complexity is dominated by the
potential calculation for all of the candidate samples. Potential calculation, defined in
Eq. (1), when computed with respect to the collection of minority class observations
Xmin , consists of nmin summations and nmin RBF function computations, with the later
having complexity equal to O(m) . As a result, a single computation of the minority
class potential has a complexity that can be simplified to O(mn) . Whole sampling step,
which requires c potential function computations per minority observations, has there-
fore a total complexity equal to O(cmnnmin) , which can be simplified to O(cmn2).

As can be seen, for the original CCR algorithm, the complexity is dominated by the first
step and is equal to O((m + log n)n2) . On the other hand, in the case of RB-CCR, both the
first and the third step influence the total complexity of the algorithm, which is equal to
O((cm + log n)n2).

4 Experimental study

To empirically evaluate the usefulness of the proposed RB-CCR algorithm, we conducted
a series of experiment, the aim of which was to answer the following research questions:

Fig. 7 A comparison of data distribution after oversampling with different algorithms on a highly imbal-
anced dataset with disjoint minority class distributions. SMOTE introduces a high degree of class overlap;
Borderline-SMOTE (Bord) solves the problem only partially, still introducing some overlap, at the same
time completely omitting to oversample around selected observations. RBO does not produce artificial
overlap, but at the same time, it is very conservative during sampling, in particular within originally over-
lapping regions. CCR and RB-CCR produce a distribution that leads to a higher bias towards the minority
class, both due to synthesizing observations around all of the instances and the conducted translation of
majority observations while minimizing class overlap. Compared to CCR, RB-CCR produces more con-
strained samples based on the underlying potential

3072 Machine Learning (2021) 110:3059–3093

1 3

RQ1 Is it possible to improve the original CCR algorithm’s performance by focusing
resampling in the specific regions?

RQ2 Are the trends displayed by the RB-CCR consistent across different classification
algorithms and performance metrics? Is it possible to control the behavior of the algo-
rithm by a proper choice of parameters?

RQ3 How does RB-CCR compare with state-of-the-art reference methods, and how
does the choice of classification algorithm affect that comparison?

4.1 Set‑up

4.1.1 Datasets

We based our experiments on 57 binary datasets taken from the KEEL repository (Alcalá-
Fdez et al., 2011), the details of which, namely their names, imbalance ratios (IR), number
of contained samples and features, were presented in Table 1. We employed a dataset selec-
tion procedure previously used in Koziarski (2020b), that is we excluded datasets for which
AUC greater than 0.85 was achieved with a linear SVM without any resampling. Prior to
the resampling and classification, all datasets were preprocessed: categorical features were
converted to integers first, and afterward, all of the features were normalized to zero mean
and unit variance.

4.1.2 Classification algorithms

During the conducted experiments, we considered classification with a total of 9 differ-
ent algorithms: CART decision tree, k-nearest neighbors classifier (KNN), support vector
machine with linear (L-SVM), RBF (R-SVM) and polynomial (P-SVM) kernels, logistic
regression (LR), Naive Bayes (NB), and multi-layer perceptron with ReLU (R-MLP) and
linear (L-MLP) activation functions in the hidden layer. We considered a relatively high
number of classification algorithms to examine how the choice of base learner affects the
usefulness of RB-CCR. Implementations of all of the classification algorithms were taken
from the scikit-learn library (Pedregosa et al., 2011), and their default parameters were
used.

4.1.3 Reference methods

In addition to the original CCR algorithm, we compared the performance of RB-CCR
with several over- and undersampling strategies, namely: SMOTE (Chawla et al., 2002),
Borderline-SMOTE (Bord) (Han et al., 2005), Neighborhood Cleaning Rule (NCL)
(Laurikkala, 2001), SMOTE combined with Tomek links (SMOTE+TL) (Tomek, 1976)
and Edited Nearest Neighbor rule (SMOTE+EN) (Wilson, 1972). The hyperparameters
for each resampling method were tuned individually for each dataset. The SMOTE vari-
ants considered the values of k neighborhood in {1, 3, 5, 7, 9}. In addition to K, the
Bord method considered the values of m neighborhood in {5, 10, 15}. For NCL, we
considered the value k of its neighborhood in {1, 3, 5, 7}. Finally, for all methods in
which the resampling ratio was an inherent parameter, resampling was performed up to
the point of achieving a balanced class distributions. Implementation of all of the refer-
ence methods was taken from the imbalanced-learn library (Lemaitre et al., 2017).

3073Machine Learning (2021) 110:3059–3093

1 3

4.1.4 Performance metrics

We utilize 6 performance metrics for classifier evaluation. This includes precision,
recall, and specificity of the predictions, and the combined metrics AUC, F-measure,
and G-mean. This set of metrics is standard in the imbalanced classification literature
and provides a diverse perspective on model performance. Precision, recall, and speci-
ficity provide insight into the class specific errors that are to be expected from each
algorithm. The combine metrics, AUC, F-measure, and G-mean, provide a more whole-
some perspective on performance by taking into account the trade-off between the per-
formance on majority and minority class. As mentioned in the related work, AUC and

Table 1 Summary of the characteristics of datasets used throughout the experimental study

Name IR Samples Features Name IR Samples Features

glass1 1.82 214 9 glass016vs5 19.44 184 9
pima 1.87 768 8 yeast1458vs7 22.10 693 8
glass0 2.06 214 9 glass5 22.78 214 9
yeast1 2.46 1484 8 yeast2vs8 23.10 482 8
haberman 2.78 306 3 flareF 23.79 1066 11
vehicle1 2.90 846 18 yeast4 28.10 1484 8
vehicle3 2.99 846 18 winequalityred4 29.17 1599 11
ecoli1 3.36 336 7 poker9vs7 29.50 244 10
ecoli2 5.46 336 7 yeast1289vs7 30.57 947 8
yeast3 8.10 1484 8 winequalitywhite9vs4 32.60 168 11
ecoli3 8.60 336 7 yeast5 32.73 1484 8
pageblocks0 8.79 5472 10 winequalityred8vs6 35.44 656 11
yeast2vs4 9.08 514 8 ecoli0137vs26 39.14 281 7
ecoli067vs35 9.09 222 7 abalone17vs78910 39.31 2338 8
yeast0359vs78 9.12 506 8 abalone21vs8 40.50 581 8
glass015vs2 9.12 172 9 yeast6 41.40 1484 8
yeast0256vs3789 9.14 1004 8 winequalitywhite3vs7 44.00 900 11
ecoli01vs235 9.17 244 7 winequalityred8vs67 46.50 855 11
ecoli0267vs35 9.18 224 7 abalone19vs10111213 49.69 1622 8
yeast05679vs4 9.35 528 8 krvskzerovseight 53.07 1460 6
glass016vs2 10.29 192 9 winequalitywhite39vs5 58.28 1482 11
ecoli0147vs2356 10.59 336 7 poker89vs6 58.40 1485 10
glass0146vs2 11.06 205 9 winequalityred3vs5 68.10 691 11
glass2 11.59 214 9 abalone20vs8910 72.69 1916 8
cleveland0vs4 12.31 173 13 poker89vs5 82.00 2075 10
yeast1vs7 14.30 459 7 poker8vs6 85.88 1477 10
glass4 15.46 214 9 abalone19 129.44 4174 8
pageblocks13vs4 15.86 472 10
abalone918 16.40 731 8
zoo3 19.20 101 16

3074 Machine Learning (2021) 110:3059–3093

1 3

F-measure have previously been criticized in the context of imbalance learning. None-
theless, we include them as they remain standard benchmarks in the literature and pro-
vide orthogonal perspective on performance.

4.1.5 Evaluation procedure

To ensure the stability of the results, we used 5 × 2 cross-validation (Alpaydin, 1999)
during all of the experiments. Furthermore, during the parameter selection for resam-
pling algorithms we used additional 3-fold cross-validation on the training partition of
the data, with AUC used as the optimization criterion.

4.1.6 Statistical analysis

To assess the statistical significance of the results, we used two types of statistical tests.
We used a one-sided Wilcoxon signed-rank test in a direct comparison between the
original CCR algorithm and the proposed RB-CCR algorithm. Secondly, when simul-
taneously comparing multiple methods, we used the Friedman test combined with Shaf-
fer’s posthoc. In all cases, unless p-values were specified, the results were reported at
the significance level � = 0.10.

4.1.7 Implementation and reproducibility

To ensure the reproducibility of the results, we made publicly available the following: the
implementation of the algorithm, code sufficient to reproduce all of the described experi-
ments, statistical tests, and all of the figures presented in this paper, as well as the partition-
ing of the data into folds and raw results. All of the above can be accessed at.1

4.2 Evaluation of the choice of sampling region on the algorithms performance

In the first stage of the conducted experimental analysis, we examined the suitability of
sampling in specific regions. We compared the performance of four variants of RB-CCR
algorithm, in which sampling was performed only in the low potential region (L), only in
the approximately equal potential region (E), and only in the high potential region (H), as
well as the variant in which sampling was performed in all of the regions (LEH), which
is equivalent to the original CCR algorithm. In all of the cases, we selected the energy
parameter from {0.5, 1.0, 2.5, 5.0, ..., 100.0}. Furthermore, except LEH sampling we also
selected the value of � from {0.5, 1.0, 2.5, 5.0, 10.0}. We present a summary of regions
achieving the highest average rank for every classifier and metric combination in Table 2.
Detailed p-values for the conducted experiments can also be found in Appendix 1.

Several observations can be made based on the presented results. First of all, the
observed performance was consistent across the classification algorithms concerning the

1 https:// github. com/ micha lkozi arski/ RB- CCR.

https://github.com/michalkoziarski/RB-CCR

3075Machine Learning (2021) 110:3059–3093

1 3

precision, recall, and specificity, at least when comparing sampling in H region with the
remaining variants: in the case of precision sampling exclusively in the H region produced,
on average, the best performance when combined with 7 out of 9 considered classifiers,
with the remaining two being NB and P-SVM. Furthermore, in the case of specificity, this
behavior was observed for 8 out of 9 classifiers, once again except P-SVM. Finally, the
reverse was true in the case of recall, were sampling in the H region gave the worst average
rank for 8 out of 9 considered classifiers. All of the trends mentioned above were also sta-
tistically significant in the majority of cases. This indicates that using the guided sampling
approach has a non-random influence on the algorithm’s performance and its bias towards
the majority class, particularly when comparing sampling in the H region with the other
variants, which is desirable behavior. Furthermore, from a general resampling perspective,
this suggests that if the problem domain requires high precision or specificity, it is benefi-
cial to focus sampling in the H region. On the other hand, if a high recall is required, sam-
pling in L or E region is usually preferred.

However, the sampling region’s impact on the combined metrics is less clear in the gen-
eral case. Although the baseline variant of CCR that is LEH sampling, achieved the best
average rank only in 1 out of 27 cases (for the combination of P-SVM and F-measure),
there was usually either a complete lack of significance, meaning that there were no sta-
tistically significant differences between any of the sampling strategies, or partial signifi-
cance, meaning that only some of the variants displayed statistically significant differences.
Importantly, when comparing with the LEH sampling, there was a statistically significant
improvement concerning all of the combined metrics for a single classifier, LR; and for a
single metric for the combination of L-MLP and F-measure, as well as the combination of
G-mean and P-SVM. In all of the above cases, the best performance strategy was sampling
in the H region. Nevertheless, for the remaining combinations of classification algorithms
and performance metrics there was no clearly dominant strategy, even when at least partial
significance was observed. All of the above leads to the conclusion that while sampling
in the specific regions has a non-random impact that is consistent across the classification
algorithms with respect to direction (focusing sampling in the H region leading to a statisti-
cally significantly better precision and specificity, and worse recall), the trade-off between

Table 2 A summary of sampling
strategies that achieved highest
average rank for a given classifier
and metric combination

Cases in which the best strategy achieved a statistically significantly
better results than at least one of the other strategies were denoted
with a + sign, and cases in which the best strategy achieved statisti-
cally significantly better results than sampling in all of the regions
(LEH) were denoted with a ++ sign

Precision Recall Specificity AUC F-measure G-mean

CART H ++ L + H ++ L + H L
KNN H + L H ++ H H H
L-SVM H + E + H ++ E + H + E +
R-SVM H ++ L + H ++ L + H L +
P-SVM LEH H + LEH H LEH H ++

LR H ++ E H ++ H ++ H ++ H ++

NB L ++ E + H ++ L + L + L
R-MLP H L + H ++ L + L L
L-MLP H ++ LEH + H ++ E H ++ E

3076 Machine Learning (2021) 110:3059–3093

1 3

them, which can be observed using the combined metrics, varies depending on both the
classifier and the dataset.

4.3 Comparison of CCR and RB‑CCR

We have empirically demonstrated that no single sample region is optimal for all datasets,
classification algorithms, and performance metrics. It is consistent with a current state of
knowledge, particularly the "no free lunch" theorem, according to which the choice of sam-
pling strategy strongly depends on the dataset characteristics. Instead, we considered the
approach in which we treat the sampling region as a parameter of the algorithm and adjust
it on a per-dataset and per-classifier basis. To this end, we conducted two comparisons.

First of all, considered an idealized variant of RB-CCR. The region is giving the best
performance, chosen only from {L, E, }, was selected individually for each dataset based
on the test set results. Importantly, sampling in the LEH region was not included in the
selection of available regions. This approach can be treated as an upper bound of perfor-
mance that could be achieved by restricting sampling to a specific region. Once again, this
variant of RB-CCR was compared with the original CCR algorithm, with the results pre-
sented in Table 3. As can be seen, by constraining sampling to a specific region, we were
able to achieve improved performance for almost every considered dataset, regardless of
the choice of classifier or performance metric.

Secondly, we conducted a comparison between the original CCR algorithm and RB-
CCR with the sampling region chosen from {L, E, H, LEH} using cross-validation. The
results of this comparison were presented in Table 4. As can be seen, when adjusting the
sampling region individually for each dataset we were able to achieve a statistically sig-
nificant improvement in performance for at least one of the combined metrics for 7 out of
9 classifiers. This improvement was observed more often in the case of G-mean and AUC,
and only in two cases for F-measure, which can be explained by the fact that AUC was
used as the optimization criterion during cross-validation, and AUC and G-mean tend to
be more correlated than F-measure. We hypothesize that the flexibility in RB-CCR offered
by class potential regions enables the samples to be generated in areas that have the great-
est positive impact on the metric being optimized. The results presented in Table 2, where
focusing on the high potential regions produces a significant improvement in precision
and specificity, seem to support this hypothesis. Thus, using F-measure as an optimization
criterion for models trained with RB-CCR would have the opposite effect as AUC (i.e. it
would produce better precision, specificity and F-measure, since these are related, at the
expanse of recall, AUC and G-mean.)

Results of both of the above experiments indicate that, in principle, constraining sam-
pling to a specific region can yield a clear performance improvement compared to the
baseline approach. Using cross-validation to choose the optimal region for every case is
a suitable strategy for picking region, resulting in a statistically significant performance
improvement in most cases. Still, it falls short of the performance of the idealized variant.
It indicates that either a better parameter selection strategy, more suited for the imbalanced
datasets, or a specific heuristic for choosing the sampling region, could improve the pro-
posed method’s overall performance.

3077Machine Learning (2021) 110:3059–3093

1 3

4.4 Comparison of RB‑CCR with the reference methods

We compared RB-CCR with several over- and undersampling reference methods in the
next stage of the conducted experiments. We presented average ranks achieved by all of
the methods, as well as the statistical significance of the comparison, in Table 5. Further-
more, we presented a visualization of the average ranks achieved by the specific methods
concerning different performance metrics in Fig. 8. First of all, as can be seen, the general
trend was that RB-CCR achieved the best recall at the expense of precision and specific-
ity, which held true for all of the classification algorithms. As in the previous experiments,
this had a varying impact on the combined metrics depending on their exact choice when
F-measure was considered, which led to statistically significantly worse performance than
the reference methods. However, at the same time, it improved the performance concerning

Table 3 Comparison of the original CCR algorithm with an idealized variant of RB-CCR, for which the
sampling region giving the best performance was chosen individually for each dataset

The number of datasets for which either CCR or RB-CCR achieved better average performance, as well as p
value, were presented. Statistically significant p values denoted in bold

AUC F-measure G-mean

Clf. CCR RB-CCR p value CCR RB-CCR p-value CCR RB-CCR p value

CART 3 54 0.0000 0 57 0.0000 3 54 0.0000
KNN 3 54 0.0000 1 56 0.0000 3 54 0.0000
L-SVM 2 55 0.0000 0 57 0.0000 2 55 0.0000
R-SVM 2 55 0.0000 1 56 0.0000 2 55 0.0000
P-SVM 1 56 0.0000 3 54 0.0000 1 56 0.0000
LR 0 57 0.0000 2 55 0.0000 0 57 0.0000
NB 3 54 0.0000 0 57 0.0000 3 54 0.0000
R-MLP 1 56 0.0000 3 54 0.0000 1 56 0.0000
L-MLP 3 54 0.0000 3 54 0.0000 4 53 0.0000

Table 4 Comparison of the original CCR algorithm with RB-CCR using cross-validation to select resam-
pling regions

The number of datasets for which either CCR or RB-CCR achieved better average performance, as well as p
value, were presented. Statistically significant p values denoted in bold

AUC F-measure G-mean

Clf. CCR RB-CCR p value CCR RB-CCR p value CCR RB-CCR p value

CART 22 35 0.2010 24 33 0.2664 21 36 0.0189
KNN 25 32 0.0547 18 39 0.0021 21 36 0.0168
L-SVM 25 32 0.0651 30 27 0.4478 27 30 0.0956
R-SVM 23 34 0.1672 23 34 0.1288 25 32 0.1857
P-SVM 21 36 0.0149 24 33 0.2986 17 40 0.0011
LR 26 31 0.1288 27 30 0.3829 25 32 0.0641
NB 23 34 0.0224 19 38 0.0006 25 32 0.0192
R-MLP 22 35 0.1391 24 33 0.1159 23 34 0.2193
L-MLP 23 34 0.0530 27 30 0.3859 23 34 0.0260

3078 Machine Learning (2021) 110:3059–3093

1 3

Table 5 A comparison of RB-CCR with the reference methods, with average ranks presented, and the
methods for which RB-CCR achieved a statistically significantly better performance indicated with a +
sign, and statistically significantly worse performance with a – sign

Clf. Metric None SMOTE Bord NCL SMOTE+TL SMOTE+EN RB-CCR

CART Precision 2.61 – 3.33 – 3.36 – 4.19 – 3.16 – 5.19 6.16
Recall 6.04 + 4.57 + 5.37 + 3.40 + 4.39 + 2.82 + 1.40
Specificity 1.56 – 3.45 – 2.53 – 4.62 – 3.54 – 5.56 – 6.74
AUC 5.46 + 4.46 + 5.15 + 3.47 + 4.14 + 2.96 2.35
F-measure 4.15 3.68 – 4.24 3.40 – 3.54 – 3.91 – 5.07
G-mean 5.78 + 4.38 + 5.39 + 3.46 + 4.13 + 2.81 2.05

KNN Precision 2.77 – 3.80 – 3.42 – 2.95 – 3.54 – 5.65 5.88
Recall 6.90 + 3.67 + 4.48 + 5.69 + 3.55 + 2.07 1.63
Specificity 1.10 – 4.37 – 3.45 – 2.25 – 4.12 – 6.19 6.53
AUC 6.74 + 3.04 4.16 + 5.32 + 3.17 2.82 2.76
F-measure 5.57 3.20 – 2.98 – 3.99 2.89 – 4.53 4.84
G-mean 6.73 + 3.15 4.33 + 5.46 + 3.11 2.72 2.49

L-SVM Precision 2.48 – 3.67 – 3.39 – 3.64 – 3.67 – 5.26 5.89
Recall 6.86 + 3.69 + 4.54 + 5.54 + 3.78 + 2.11 1.48
Specificity 1.08 – 4.25 – 3.54 – 2.61 – 4.06 – 5.84 6.63
AUC 6.55 + 3.21 3.95 + 5.11 + 3.34 2.96 2.88
F-measure 5.06 3.40 – 3.00 – 3.50 – 3.46 – 4.32 5.26
G-mean 6.76 + 3.12 4.16 + 5.45 + 3.09 2.77 2.65

R-SVM Precision 3.69 – 3.34 – 3.12 – 3.87 – 3.29 – 4.89 5.79
Recall 6.87 + 3.79 + 4.52 + 5.66 + 3.77 + 2.03 1.37
Specificity 1.13 – 4.25 – 3.55 – 2.37 – 4.01 – 5.97 6.72
AUC 6.82 + 3.46 + 4.21 + 5.53 + 3.39 + 2.63 1.96
F-measure 5.97 + 2.87 – 3.04 – 4.29 2.97 – 3.98 4.88
G-mean 6.87 + 3.38 + 4.42 + 5.66 + 3.39 + 2.46 1.82

P-SVM Precision 2.80 – 3.64 – 3.68 – 3.41 – 3.46 – 5.18 5.82
Recall 6.82 + 3.72 + 4.15 + 5.65 + 3.84 + 2.19 1.62
Specificity 1.13 – 4.24 – 3.74 – 2.33 – 4.04 – 5.97 6.54
AUC 6.71 + 3.53 + 3.98 + 5.38 + 3.67 + 2.47 2.26
F-measure 5.97 + 3.04 – 3.39 – 4.20 2.98 – 3.88 4.53
G-mean 6.80 + 3.61 + 3.99 + 5.54 + 3.60 + 2.33 2.14

LR Precision 2.63 – 3.72 – 3.54 – 3.25 – 3.58 – 5.30 5.98
Recall 6.85 + 3.79 + 4.50 + 5.69 + 3.65 + 2.07 1.45
Specificity 1.04 – 4.18 – 3.54 – 2.37 – 4.20 – 6.04 6.63
AUC 6.53 + 3.18 4.10 + 5.39 + 2.93 2.98 2.89
F-measure 5.16 3.47 – 3.04 – 3.68 – 3.21 – 4.32 5.12
G-mean 6.79 + 3.14 4.25 + 5.61 + 2.84 2.89 2.47

NB Precision 3.68 4.52 3.77 3.63 4.39 4.11 3.89
Recall 4.44 + 3.62 5.12 + 4.44 + 3.66 3.77 2.95
Specificity 3.55 – 4.30 2.92 – 3.78 4.39 4.34 4.72
AUC 4.88 + 4.02 + 4.71 + 4.40 + 3.86 + 3.82 + 2.32
F-measure 4.11 4.38 4.11 3.60 4.13 4.39 3.28
G-mean 5.22 + 3.87 + 4.72 + 4.68 + 3.83 + 3.52 + 2.16

3079Machine Learning (2021) 110:3059–3093

1 3

AUC and G-mean: RB-CCR achieved the highest average rank in 17 out of 18 cases, with
the only exception of AUC observed for L-MLP classifier, for which it achieved the second-
best rank. The results of this comparison were also statistically significant in the majority
of cases: for all of the classifiers when compared to the baseline case with no resampling,
Bord and NCL; for 5 out of 9 classifiers when compared to SMOTE and SMOTE+TL; and
in a single case of NB when compared to SMOTE+EN, which was the second-best per-
former. The differences between the results measured using F-measure, AUC and G-mean
can be attributed to the previously discussed bias of F-measure towards the majority class
performance: since RB-CCR is heavily skewed towards the recall at the cost of precision,
it is natural that using metric weighted more heavily towards precision produces worse
performance. Still, the observed results indicate high usefulness of the proposed RB-CCR
algorithm when compared to the reference methods if a higher cost of misclassification of
minority observations is assigned, as is the case with AUC and G-mean.

Finally, in the last stage of the conducted experiments, we compared different combinations
of classification and resampling algorithms to establish their relative usefulness. We presented
the average ranks observed for different combined metrics in Tables 6, 7 and 8, separately for
the individual metrics. As can be seen, when F-measure was considered, RB-CCR was out-
performed by the reference methods, who achieved the best performance when combined with
either R-MLP or R-SVM, which was also the case for RB-CCR. However, when AUC and
G-mean were considered, the combination of algorithms that achieved the highest average rank
was RB-CCR and L-MLP, for both of those metrics. Besides L-MLP, the top-performing clas-
sifiers were R-MLP, R-SVM, and LR, in that order, all achieving the best performance when
combined with RB-CCR. Overall, presented rankings indicate the importance of improving per-
formance due to the resampling method for any given classification algorithm. From that point
of view, out of the statistically significant improvements presented previously in Table 5, of
most importance were those achieved for R-MLP and R-SVM, for which RB-CCR achieved a
statistically significantly better performance than all of the resamplers except SMOTE+EN. On
the other hand, it is worth noting that linear methods, that is L-MLP, LR and L-SVM, achieved
relatively high performance, populating 3 out of 5 spots for highest performing classification

Best average ranks denoted in bold

Table 5 (continued)

Clf. Metric None SMOTE Bord NCL SMOTE+TL SMOTE+EN RB-CCR

R-MLP Precision 2.39 – 3.33 – 3.36 – 3.45 – 3.45 – 5.68 6.33

Recall 6.90 + 3.84 + 4.75 + 5.07 + 4.04 + 2.04 1.35

Specificity 1.04 – 4.04 – 3.27 – 2.82 – 3.96 – 6.15 6.73

AUC 6.75 + 3.62 + 4.45 + 4.70 + 3.61 + 2.49 2.37

F-measure 5.29 2.79 – 3.11 – 3.64 – 3.03 – 4.68 5.46

G-mean 6.83 + 3.58 + 4.61 + 4.78 + 3.55 + 2.51 2.14
L-MLP Precision 2.33 – 3.70 – 3.53 – 3.46 – 3.65 – 5.40 5.93

Recall 6.89 + 3.79 + 4.55 + 5.57 + 3.75 + 1.97 1.47
Specificity 1.03 – 4.11 – 3.56 – 2.56 – 4.08 – 6.12 6.54
AUC 6.60 + 3.32 3.92 5.10 + 3.30 2.81 2.96
F-measure 4.65 3.44 – 3.28 – 3.25 – 3.54 – 4.47 5.37
G-mean 6.84 + 3.23 4.16 + 5.30 + 3.14 2.75 2.58

3080 Machine Learning (2021) 110:3059–3093

1 3

algorithms, at the same time achieving less statistically significant improvement due to using
RB-CCR when compared to the reference methods. This may suggest the importance of further
work aimed particularly at improving the performance of RB-CCR for linear methods, which
seem to be particularly predisposed to the classification of imbalanced datasets.

4.5 Lessons learned

Based on the described results of the conducted experiments, we will now attempt to
answer the research questions raised at the beginning of this section.

Fig. 8 A visualization of the average ranks achieved by the individual methods with respect to different
performance metrics

3081Machine Learning (2021) 110:3059–3093

1 3

RQ1: Is it possible to improve the original CCR algorithm’s performance by focusing
resampling in the specific regions?

We demonstrated that using RB-CCR leads to a statistically significantly better per-
formance than CCR for most considered classification algorithms when the sampling
region is determined using cross-validation. However, selecting the sampling region
individually for each dataset and treating it as another hyperparameter was crucial in
achieving that performance improvement in most cases. Finally, we also demonstrated
that in almost every case sampling in a specific region leads to a better performance
than unguided sampling within the whole sphere, indicating that choosing the optimal
sampling region remains a major challenge that cross-validation solves only partially.

RQ2: Are the trends displayed by the RB-CCR consistent across different classifica-
tion algorithms and performance metrics? Is it possible to control the behavior of the
algorithm by a proper choice of parameters?

The behavior of RB-CCR was consistent concerning precision, specificity and recall,
with sampling solely within the H region improving precision and specificity at the
expense of recall, and sampling within either L or E region having the opposite effect. As a
result, it is possible to control the algorithm’s bias towards the specific classes by properly
choosing the sampling region. However, the performance concerning AUC, F-measure,
and G-mean was less consistent, indicating that the choice of sampling region yielding the
optimal trade-off between precision and recall is both dataset- and classifier-specific.

RQ3: How does RB-CCR compare with state-of-the-art reference methods, and how
does the choice of classification algorithm affect that comparison?

Table 6 Average ranks achieved by the specific combinations of classification and resampling algorithms,
with AUC used as the performance metric

Method Rank Method Rank Method Rank

(RB-CCR, L-MLP) 16.30 (SMOTE+TL, KNN) 24.46 (NCL, KNN) 37.93
(SMOTE+TL, L-MLP) 18.79 (Bord, R-MLP) 24.52 (NCL, R-SVM) 39.84
(RB-CCR, R-MLP) 18.80 (Bord, L-SVM) 24.59 (SMOTE+TL, CART) 40.09
(SMOTE+EN, R-MLP) 19.20 (Bord, KNN) 25.14 (SMOTE+TL, NB) 40.43
(SMOTE+EN, L-MLP) 19.79 (SMOTE, LR) 25.26 (SMOTE+EN, NB) 40.73
(SMOTE, L-MLP) 20.08 (SMOTE, R-SVM) 25.50 (SMOTE, NB) 41.17
(Bord, L-MLP) 20.75 (SMOTE+TL, R-SVM) 25.83 (Bord, CART) 41.18
(RB-CCR, R-SVM) 21.00 (RB-CCR, CART) 26.66 (NCL, LR) 41.59
(RB-CCR, LR) 21.36 (Bord, LR) 27.54 (SMOTE, CART) 41.82
(SMOTE+EN, LR) 21.98 (RB-CCR, P-SVM) 27.54 (Bord, NB) 42.33
(SMOTE+TL, L-SVM) 22.05 (Bord, R-SVM) 27.69 (None, R-MLP) 42.66
(SMOTE+EN, KNN) 22.81 (SMOTE+EN, P-SVM) 31.93 (NCL, NB) 43.02
(SMOTE, L-SVM) 22.99 (NCL, R-MLP) 31.99 (None, NB) 43.14
(SMOTE+EN, L-SVM) 23.05 (RB-CCR, NB) 34.52 (None, CART) 43.92
(RB-CCR, L-SVM) 23.32 (SMOTE+EN, CART) 35.17 (NCL, P-SVM) 46.54
(SMOTE+TL, LR) 23.55 (SMOTE+TL, P-SVM) 35.32 (None, L-SVM) 46.61
(SMOTE, R-MLP) 24.06 (NCL, L-MLP) 35.46 (None, KNN) 48.35
(RB-CCR, KNN) 24.11 (NCL, L-SVM) 35.54 (None, L-MLP) 49.09
(SMOTE+TL, R-MLP) 24.16 (SMOTE, P-SVM) 36.28 (None, LR) 50.47
(SMOTE+EN, R-SVM) 24.28 (NCL, CART) 36.96 (None, R-SVM) 51.25
(SMOTE, KNN) 24.33 (Bord, P-SVM) 37.43 (None, P-SVM) 51.75

3082 Machine Learning (2021) 110:3059–3093

1 3

RB-CCR, on average, outperforms all of the considered reference methods concern-
ing recall, AUC, and G-mean, and underperforms concerning precision, specificity and
F-measure, with statistically significant differences between the majority of methods. It
indicates that RB-CCR is a suitable choice whenever the performance of the minority
class is the main consideration, which is usually the case in the imbalanced data classi-
fication task. Finally, a more significant improvement in performance due to using RB-
CCR was observed for non-linear classification algorithms. Compared with the fact that
linear methods, in general, achieved a favorable performance on the considered imbal-
anced datasets, this might indicate the need for further work focused specifically on
improving the results for this type of classifiers.

5 Conclusions

In this work, we proposed the Radial-Based Combined Cleaning and Resampling algo-
rithm (RB-CCR). We hypothesized that the refining resampling procedure employed
by CCR could garner additional performance gains. RB-CCR uses the concept of class
potential to divide the dataspace around each minority instance into sampling regions
characterized by high, equal, or low class potential. Resampling is then restricted to
the sub-regions with the specified characteristics, determined by cross-validation or user

Table 7 Average ranks achieved by the specific combinations of classification and resampling algorithms,
with F-measure used as the performance metric

Method Rank Method Rank Method Rank

(Bord, R-MLP) 15.98 (SMOTE+TL, P-SVM) 29.84 (NCL, R-SVM) 34.18
(SMOTE+TL, R-MLP) 16.25 (NCL, CART) 29.97 (RB-CCR, KNN) 34.60
(SMOTE, R-MLP) 16.87 (SMOTE+EN, P-SVM) 30.28 (SMOTE, CART) 34.94
(SMOTE+EN, R-MLP) 20.08 (NCL, KNN) 30.32 (RB-CCR, L-SVM) 35.37
(Bord, R-SVM) 21.23 (SMOTE, P-SVM) 30.39 (RB-CCR, CART) 36.17
(SMOTE, R-SVM) 21.39 (RB-CCR, R-SVM) 30.46 (RB-CCR, LR) 36.39
(SMOTE+TL, R-SVM) 21.41 (NCL, L-SVM) 30.65 (None, CART) 36.49
(Bord, KNN) 22.68 (RB-CCR, R-MLP) 30.81 (NCL, P-SVM) 38.03
(NCL, R-MLP) 22.84 (SMOTE, LR) 31.04 (None, L-MLP) 38.72
(Bord, L-SVM) 24.08 (Bord, P-SVM) 31.09 (None, KNN) 40.38
(Bord, L-MLP) 24.19 (RB-CCR, P-SVM) 31.35 (None, L-SVM) 40.45
(SMOTE+EN, R-SVM) 25.18 (None, R-MLP) 31.37 (RB-CCR, NB) 42.10
(SMOTE+TL, L-MLP) 26.24 (SMOTE+EN, L-MLP) 31.89 (NCL, NB) 43.42
(SMOTE+TL, KNN) 27.02 (SMOTE+EN, KNN) 32.25 (None, LR) 43.77
(SMOTE, KNN) 27.10 (SMOTE+EN, LR) 32.38 (None, P-SVM) 43.99
(SMOTE+TL, L-SVM) 27.40 (RB-CCR, L-MLP) 32.39 (None, NB) 44.05
(SMOTE, L-SVM) 27.52 (SMOTE+EN, L-SVM) 33.07 (SMOTE+TL, NB) 44.80
(SMOTE, L-MLP) 27.66 (SMOTE+TL, CART) 33.25 (SMOTE+EN, NB) 45.11
(Bord, LR) 28.31 (SMOTE+EN, CART) 33.33 (Bord, NB) 45.24
(SMOTE+TL, LR) 29.09 (Bord, CART) 33.44 (SMOTE, NB) 45.90
(NCL, L-MLP) 29.28 (NCL, LR) 34.11 (None, R-SVM) 46.46

3083Machine Learning (2021) 110:3059–3093

1 3

specification. Our results show that this is superior in the precision-recall trade-off to
uniformly resampling around the minority class instances.

Our empirical assessment utilized 57 benchmark binary datasets, 9 classification algo-
rithms and 5 state-of-the-art sampling techniques. The results measured as over 5-times 2-fold
cross-validation show that sampling the high potential region with RB-CCR generally pro-
duces significantly better precision and specificity, with less impact on recall than CCR. Thus,
RB-CCR achieves a better balance in the precision-recall trade-off. Moreover, on average RB-
CCR outperforms the considered reference methods concerning recall, AUC and G-mean.

Future work may focus on designing a better region selection method than cross-vali-
dation, including a strategy for picking regions individually for each observation, which
could not be done using cross-validation. Another potential direction is adjusting the RB-
CCR algorithm to linear classifiers, which generally achieve good performance but are
least affected by resampler choice and likely require a more drastic shift in the synthetic
observation distribution to display a significant change classifier behavior.

Appendix A: Detailed p‑values observed during sampling region
comparison

See Tables 9, 10, 11, 12, 13 and 14.

Table 8 Average ranks achieved by the specific combinations of classification and resampling algorithms,
with G-mean used as the performance metric

Method Rank Method Rank Method Rank

(RB-CCR, L-MLP) 14.68 (SMOTE+TL, KNN) 24.19 (SMOTE+TL, NB) 39.21
(SMOTE+TL, L-MLP) 17.57 (SMOTE+TL, R-MLP) 24.79 (SMOTE+EN, NB) 39.42
(RB-CCR, R-MLP) 18.41 (SMOTE, R-MLP) 24.81 (NCL, KNN) 39.72
(SMOTE+EN, L-MLP) 18.97 (SMOTE, R-SVM) 25.08 (SMOTE, NB) 39.87
(SMOTE, L-MLP) 19.21 (RB-CCR, CART) 25.14 (SMOTE+TL, CART) 40.89
(SMOTE+EN, R-MLP) 19.30 (Bord, KNN) 25.32 (Bord, NB) 41.23
(RB-CCR, R-SVM) 19.50 (Bord, R-MLP) 25.55 (NCL, R-SVM) 41.97
(RB-CCR, LR) 19.84 (SMOTE+TL, R-SVM) 25.57 (Bord, CART) 42.04
(Bord, L-MLP) 20.25 (Bord, LR) 26.69 (SMOTE, CART) 42.08
(SMOTE+EN, LR) 20.34 (RB-CCR, P-SVM) 27.06 (NCL, LR) 42.50
(SMOTE+TL, L-SVM) 20.75 (Bord, R-SVM) 28.39 (NCL, NB) 43.79
(RB-CCR, L-SVM) 20.76 (RB-CCR, NB) 30.68 (None, CART) 44.56
(SMOTE, L-SVM) 21.32 (SMOTE+EN, P-SVM) 32.00 (None, NB) 44.57
(SMOTE+EN, L-SVM) 21.42 (NCL, R-MLP) 33.48 (None, R-MLP) 45.43
(SMOTE+TL, LR) 21.96 (SMOTE+EN, CART) 35.16 (NCL, P-SVM) 47.93
(SMOTE+EN, KNN) 22.39 (SMOTE+TL, P-SVM) 35.94 (None, L-SVM) 48.61
(RB-CCR, KNN) 22.47 (SMOTE, P-SVM) 36.75 (None, KNN) 50.18
(SMOTE+EN, R-SVM) 23.58 (NCL, L-MLP) 37.03 (None, L-MLP) 51.12
(SMOTE, LR) 23.59 (NCL, L-SVM) 37.14 (None, LR) 52.29
(SMOTE, KNN) 24.04 (NCL, CART) 37.60 (None, P-SVM) 53.54
(Bord, L-SVM) 24.10 (Bord, P-SVM) 38.59 (None, R-SVM) 53.61

3084 Machine Learning (2021) 110:3059–3093

1 3

Ta
bl

e
9

 A
 c

om
pa

ris
on

 o
f s

am
pl

in
g

in
 a

 sp
ec

ifi
c

re
gi

on
s,

w
ith

 p
re

ci
sio

n
us

ed
 a

s t
he

 p
er

fo
rm

an
ce

 m
et

ric

B
es

t a
ve

ra
ge

 ra
nk

s d
en

ot
ed

 in
 b

ol
d

(a
) C

A
RT

(b

) K
N

N
(c

) L
-S

V
M

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

58
2.

79
1.

91
2.

72
R

an
k

2.
79

2.
61

2.
16

2.
44

R
an

k
2.

89
2.

51
2.

05
2.

54

L
–

1.
00

0
0.

01
8

1.
00

0
L

–
0.

93
6

0.
05

4
0.

44
0

L
–

0.
33

1
0.

00
3

0.
33

1
E

1.
00

0
–

0.
00

2
1.

00
0

E
0.

93
6

–
0.

17
8

0.
93

6
E

0.
33

1
–

0.
17

8
0.

88
5

H
0.

01
8

0.
00

2
–

0.
00

3
H

0.
05

4
0.

17
8

–
0.

73
7

H
0.

00
3

0.
17

8
–

0.
12

7
LE

H
1.

00
0

1.
00

0
0.

00
3

–
LE

H
0.

44
0

0.
93

6
0.

73
7

–
LE

H
0.

33
1

0.
88

5
0.

12
7

–

(d
) R

-S
V

M
(e

) P
-S

V
M

(f
) L

R

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

70
2.

53
2.

02
2.

75
R

an
k

2.
37

2.
74

2.
53

2.
37

R
an

k
3.

11
2.

72
1.

67
2.

51

L
–

1.
00

0
0.

01
4

1.
00

0
L

–
0.

76
6

1.
00

0
1.

00
0

L
–

0.
22

1
0.

00
0

0.
04

1
E

1.
00

0
–

0.
10

6
1.

00
0

E
0.

76
6

–
1.

00
0

0.
76

6
E

0.
22

1
–

0.
00

0
0.

38
4

H
0.

01
4

0.
10

6
–

0.
01

4
H

1.
00

0
1.

00
0

–
1.

00
0

H
0.

00
0

0.
00

0
–

0.
00

1
LE

H
1.

00
0

1.
00

0
0.

01
4

–
LE

H
1.

00
0

0.
76

6
1.

00
0

–
LE

H
0.

04
1

0.
38

4
0.

00
1

–

(g
) N

B
(h

) R
-M

LP
(i)

 L
-M

LP

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
1.

98
3.

04
2.

46
2.

53
R

an
k

2.
44

2.
54

2.
28

2.
74

R
an

k
3.

09
2.

50
1.

85
2.

56

L
–

0.
00

0
0.

10
6

0.
07

4
L

–
1.

00
0

1.
00

0
0.

65
2

L
–

0.
04

5
0.

00
0

0.
05

9
E

0.
00

0
–

0.
05

0
0.

10
6

E
1.

00
0

–
0.

83
0

1.
00

0
E

0.
04

5
–

0.
02

2
0.

80
0

H
0.

10
6

0.
05

0
–

0.
77

2
H

1.
00

0
0.

83
0

–
0.

35
6

H
0.

00
0

0.
02

2
–

0.
01

0
LE

H
0.

07
4

0.
10

6
0.

77
2

–
LE

H
0.

65
2

1.
00

0
0.

35
6

–
LE

H
0.

05
9

0.
80

0
0.

01
0

–

3085Machine Learning (2021) 110:3059–3093

1 3

Ta
bl

e
10

A

 c
om

pa
ris

on
 o

f s
am

pl
in

g
in

 a
 sp

ec
ifi

c
re

gi
on

s,
w

ith
 r

ec
al

l u
se

d
as

 th
e

pe
rfo

rm
an

ce
 m

et
ric

B
es

t a
ve

ra
ge

 ra
nk

s d
en

ot
ed

 in
 b

ol
d

(a
) C

A
RT

(b

) K
N

N
(c

) L
-S

V
M

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

06
2.

65
3.

12
2.

17
R

an
k

2.
35

2.
50

2.
73

2.
42

R
an

k
2.

51
2.

17
3.

03
2.

30

L
–

0.
04

5
0.

00
0

0.
66

3
L

–
1.

00
0

0.
71

3
1.

00
0

L
–

0.
47

1
0.

09
7

0.
76

8
E

0.
04

5
–

0.
13

8
0.

13
8

E
1.

00
0

–
1.

00
0

1.
00

0
E

0.
47

1
–

0.
00

2
0.

76
8

H
0.

00
0

0.
13

8
–

0.
00

0
H

0.
71

3
1.

00
0

–
0.

71
3

H
0.

09
7

0.
00

2
–

0.
00

8
LE

H
0.

66
3

0.
13

8
0.

00
0

–
LE

H
1.

00
0

1.
00

0
0.

71
3

–
LE

H
0.

76
8

0.
76

8
0.

00
8

–

(d
) R

-S
V

M
(e

) P
-S

V
M

(f
) L

R

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
1.

86
2.

61
3.

63
1.

90
R

an
k

2.
90

2.
30

2.
18

2.
61

R
an

k
2.

51
2.

32
2.

65
2.

52

L
–

0.
00

6
0.

00
0

0.
85

6
L

–
0.

03
7

0.
01

8
0.

57
5

L
–

1.
00

0
1.

00
0

1.
00

0
E

0.
00

6
–

0.
00

0
0.

00
7

E
0.

03
7

–
0.

63
7

0.
57

5
E

1.
00

0
–

1.
00

0
1.

00
0

H
0.

00
0

0.
00

0
–

0.
00

0
H

0.
01

8
0.

63
7

–
0.

22
6

H
1.

00
0

1.
00

0
–

1.
00

0
LE

H
0.

85
6

0.
00

7
0.

00
0

–
LE

H
0.

57
5

0.
57

5
0.

22
6

–
LE

H
1.

00
0

1.
00

0
1.

00
0

–

(g
) N

B
(h

) R
-M

LP
(i)

 L
-M

LP

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

52
2.

14
3.

11
2.

24
R

an
k

2.
11

2.
40

3.
12

2.
36

R
an

k
2.

46
2.

32
2.

93
2.

29

L
–

0.
35

6
0.

04
5

0.
49

1
L

–
0.

69
4

0.
00

0
0.

69
4

L
–

1.
00

0
0.

15
0

1.
00

0
E

0.
35

6
–

0.
00

0
0.

69
0

E
0.

69
4

–
0.

00
9

0.
85

6
E

1.
00

0
–

0.
04

9
1.

00
0

H
0.

04
5

0.
00

0
–

0.
00

1
H

0.
00

0
0.

00
9

–
0.

00
5

H
0.

15
0

0.
04

9
–

0.
04

9
LE

H
0.

49
1

0.
69

0
0.

00
1

–
LE

H
0.

69
4

0.
85

6
0.

00
5

–
LE

H
1.

00
0

1.
00

0
0.

04
9

–

3086 Machine Learning (2021) 110:3059–3093

1 3

Ta
bl

e
11

A

 c
om

pa
ris

on
 o

f s
am

pl
in

g
in

 a
 sp

ec
ifi

c
re

gi
on

s,
w

ith
 sp

ec
ifi

ci
ty

 u
se

d
as

 th
e

pe
rfo

rm
an

ce
 m

et
ric

B
es

t a
ve

ra
ge

 ra
nk

s d
en

ot
ed

 in
 b

ol
d

(a
) C

A
RT

(b

) K
N

N
(c

) L
-S

V
M

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

64
2.

52
2.

00
2.

84
R

an
k

2.
70

2.
66

1.
99

2.
65

R
an

k
2.

82
2.

65
1.

96
2.

57

L
–

0.
80

8
0.

02
4

0.
80

8
L

–
1.

00
0

0.
02

0
1.

00
0

L
–

0.
98

1
0.

00
3

0.
92

9
E

0.
80

8
–

0.
09

7
0.

53
9

E
1.

00
0

–
0.

02
0

1.
00

0
E

0.
98

1
–

0.
01

4
0.

98
1

H
0.

02
4

0.
09

7
–

0.
00

3
H

0.
02

0
0.

02
0

–
0.

02
0

H
0.

00
3

0.
01

4
–

0.
03

7
LE

H
0.

80
8

0.
53

9
0.

00
3

–
LE

H
1.

00
0

1.
00

0
0.

02
0

–
LE

H
0.

92
9

0.
98

1
0.

03
7

–

(d
) R

-S
V

M
(e

) P
-S

V
M

(f
) L

R

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

77
2.

56
1.

75
2.

92
R

an
k

2.
30

2.
72

2.
77

2.
21

R
an

k
2.

89
2.

75
1.

80
2.

56

L
–

0.
76

8
0.

00
0

0.
76

8
L

–
0.

24
5

0.
15

0
1.

00
0

L
–

0.
85

0
0.

00
0

0.
53

9
E

0.
76

8
–

0.
00

2
0.

41
1

E
0.

24
5

–
1.

00
0

0.
12

2
E

0.
85

0
–

0.
00

0
0.

85
0

H
0.

00
0

0.
00

2
–

0.
00

0
H

0.
15

0
1.

00
0

–
0.

12
2

H
0.

00
0

0.
00

0
–

0.
00

5
LE

H
0.

76
8

0.
41

1
0.

00
0

–
LE

H
1.

00
0

0.
12

2
0.

12
2

–
LE

H
0.

53
9

0.
85

0
0.

00
5

–

(g
) N

B
(h

) R
-M

LP
(i)

 L
-M

LP

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

18
3.

18
2.

02
2.

62
R

an
k

2.
48

2.
48

2.
16

2.
88

R
an

k
2.

99
2.

52
1.

80
2.

69

L
–

0.
00

0
0.

49
1

0.
13

9
L

–
1.

00
0

0.
53

9
0.

30
8

L
–

0.
15

0
0.

00
0

0.
43

5
E

0.
00

0
–

0.
00

0
0.

06
7

E
1.

00
0

–
0.

53
9

0.
30

8
E

0.
15

0
–

0.
00

9
0.

46
8

H
0.

49
1

0.
00

0
–

0.
03

7
H

0.
53

9
0.

53
9

–
0.

01
8

H
0.

00
0

0.
00

9
–

0.
00

1
LE

H
0.

13
9

0.
06

7
0.

03
7

–
LE

H
0.

30
8

0.
30

8
0.

01
8

–
LE

H
0.

43
5

0.
46

8
0.

00
1

–

3087Machine Learning (2021) 110:3059–3093

1 3

Ta
bl

e
12

A

 c
om

pa
ris

on
 o

f s
am

pl
in

g
in

 a
 sp

ec
ifi

c
re

gi
on

s,
w

ith
 A

U
C

 u
se

d
as

 th
e

pe
rfo

rm
an

ce
 m

et
ric

B
es

t a
ve

ra
ge

 ra
nk

s d
en

ot
ed

 in
 b

ol
d

(a
) C

A
RT

(b

) K
N

N
(c

) L
-S

V
M

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

12
2.

77
2.

75
2.

35
R

an
k

2.
51

2.
71

2.
22

2.
56

R
an

k
2.

79
2.

14
2.

56
2.

51

L
–

0.
04

4
0.

04
4

0.
69

1
L

–
1.

00
0

0.
69

4
1.

00
0

L
–

0.
04

4
0.

73
7

0.
73

7
E

0.
04

4
–

0.
94

2
0.

24
5

E
1.

00
0

–
0.

25
3

1.
00

0
E

0.
04

4
–

0.
24

5
0.

38
3

H
0.

04
4

0.
94

2
–

0.
28

6
H

0.
69

4
0.

25
3

–
0.

47
1

H
0.

73
7

0.
24

5
–

0.
82

8
LE

H
0.

69
1

0.
24

5
0.

28
6

–
LE

H
1.

00
0

1.
00

0
0.

47
1

–
LE

H
0.

73
7

0.
38

3
0.

82
8

–

(d
) R

-S
V

M
(e

) P
-S

V
M

(f
) L

R

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
1.

79
2.

67
3.

37
2.

18
R

an
k

2.
75

2.
44

2.
24

2.
58

R
an

k
3.

02
2.

32
1.

96
2.

70

L
–

0.
00

1
0.

00
0

0.
11

0
L

–
0.

61
3

0.
21

2
1.

00
0

L
–

0.
01

1
0.

00
0

0.
33

1
E

0.
00

1
–

0.
01

1
0.

08
4

E
0.

61
3

–
1.

00
0

1.
00

0
E

0.
01

1
–

0.
33

1
0.

33
1

H
0.

00
0

0.
01

1
–

0.
00

0
H

0.
21

2
1.

00
0

–
0.

47
1

H
0.

00
0

0.
33

1
–

0.
00

7
LE

H
0.

11
0

0.
08

4
0.

00
0

–
LE

H
1.

00
0

1.
00

0
0.

47
1

–
LE

H
0.

33
1

0.
33

1
0.

00
7

–

(g
) N

B
(h

) R
-M

LP
(i)

 L
-M

LP

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

05
2.

88
2.

60
2.

47
R

an
k

2.
07

2.
61

2.
81

2.
51

R
an

k
2.

82
2.

30
2.

32
2.

56

L
–

0.
00

4
0.

07
4

0.
24

5
L

–
0.

07
4

0.
01

4
0.

20
9

L
–

0.
17

7
0.

17
7

0.
83

0
E

0.
00

4
–

0.
49

1
0.

28
6

E
0.

07
4

–
0.

85
0

0.
85

0
E

0.
17

7
–

0.
94

2
0.

83
0

H
0.

07
4

0.
49

1
–

0.
61

2
H

0.
01

4
0.

85
0

–
0.

65
2

H
0.

17
7

0.
94

2
–

0.
83

0
LE

H
0.

24
5

0.
28

6
0.

61
2

–
LE

H
0.

20
9

0.
85

0
0.

65
2

–
LE

H
0.

83
0

0.
83

0
0.

83
0

–

3088 Machine Learning (2021) 110:3059–3093

1 3

Ta
bl

e
13

A

 c
om

pa
ris

on
 o

f s
am

pl
in

g
in

 a
 sp

ec
ifi

c
re

gi
on

s,
w

ith
 F

-m
ea

su
re

 u
se

d
as

 th
e

pe
rfo

rm
an

ce
 m

et
ric

B
es

t a
ve

ra
ge

 ra
nk

s d
en

ot
ed

 in
 b

ol
d

(a
) C

A
RT

(b

) K
N

N
(c

) L
-S

V
M

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

49
2.

68
2.

19
2.

63
R

an
k

2.
70

2.
53

2.
19

2.
58

R
an

k
2.

93
2.

49
2.

05
2.

53

L
–

1.
00

0
0.

65
2

1.
00

0
L

–
1.

00
0

0.
21

2
1.

00
0

L
–

0.
20

9
0.

00
2

0.
20

9
E

1.
00

0
–

0.
25

3
1.

00
0

E
1.

00
0

–
0.

50
4

1.
00

0
E

0.
20

9
–

0.
20

9
0.

88
5

H
0.

65
2

0.
25

3
–

0.
25

3
H

0.
21

2
0.

50
4

–
0.

33
1

H
0.

00
2

0.
20

9
–

0.
15

0
LE

H
1.

00
0

1.
00

0
0.

25
3

–
LE

H
1.

00
0

1.
00

0
0.

33
1

–
LE

H
0.

20
9

0.
88

5
0.

15
0

–

(d
) R

-S
V

M
(e

) P
-S

V
M

(f
) L

R

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

37
2.

61
2.

33
2.

68
R

an
k

2.
46

2.
61

2.
51

2.
42

R
an

k
3.

11
2.

60
1.

70
2.

60

L
–

0.
92

9
1.

00
0

0.
88

1
L

–
1.

00
0

1.
00

0
1.

00
0

L
–

0.
10

6
0.

00
0

0.
10

6
E

0.
92

9
–

0.
88

1
1.

00
0

E
1.

00
0

–
1.

00
0

1.
00

0
E

0.
10

6
–

0.
00

1
1.

00
0

H
1.

00
0

0.
88

1
–

0.
88

1
H

1.
00

0
1.

00
0

–
1.

00
0

H
0.

00
0

0.
00

1
–

0.
00

1
LE

H
0.

88
1

1.
00

0
0.

88
1

–
LE

H
1.

00
0

1.
00

0
1.

00
0

–
LE

H
0.

10
6

1.
00

0
0.

00
1

–

(g
) N

B
(h

) R
-M

LP
(i)

 L
-M

LP

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

12
2.

95
2.

39
2.

54
R

an
k

2.
30

2.
60

2.
44

2.
67

R
an

k
3.

18
2.

39
1.

89
2.

54

L
–

0.
00

4
0.

55
3

0.
24

5
L

–
0.

76
6

1.
00

0
0.

76
6

L
–

0.
00

4
0.

00
0

0.
02

7
E

0.
00

4
–

0.
06

1
0.

28
6

E
0.

76
6

–
1.

00
0

1.
00

0
E

0.
00

4
–

0.
07

1
0.

53
7

H
0.

55
3

0.
06

1
–

0.
55

3
H

1.
00

0
1.

00
0

–
1.

00
0

H
0.

00
0

0.
07

1
–

0.
02

0
LE

H
0.

24
5

0.
28

6
0.

55
3

–
LE

H
0.

76
6

1.
00

0
1.

00
0

–
LE

H
0.

02
7

0.
53

7
0.

02
0

–

3089Machine Learning (2021) 110:3059–3093

1 3

Ta
bl

e
14

A

 c
om

pa
ris

on
 o

f s
am

pl
in

g
in

 a
 sp

ec
ifi

c
re

gi
on

s,
w

ith
 G

-m
ea

n
us

ed
 a

s t
he

 p
er

fo
rm

an
ce

 m
et

ric

B
es

t a
ve

ra
ge

 ra
nk

s d
en

ot
ed

 in
 b

ol
d

(a
) C

A
RT

(b

) K
N

N
(c

) L
-S

V
M

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

18
2.

68
2.

72
2.

42
R

an
k

2.
46

2.
70

2.
19

2.
65

R
an

k
2.

75
2.

12
2.

56
2.

56

L
–

0.
14

7
0.

14
7

0.
83

0
L

–
0.

92
9

0.
83

0
0.

92
9

L
–

0.
05

4
1.

00
0

1.
00

0
E

0.
14

7
–

0.
88

5
0.

83
0

E
0.

92
9

–
0.

21
2

0.
92

9
E

0.
05

4
–

0.
20

9
0.

20
9

H
0.

14
7

0.
88

5
–

0.
65

2
H

0.
83

0
0.

21
2

–
0.

21
2

H
1.

00
0

0.
20

9
–

1.
00

0
LE

H
0.

83
0

0.
83

0
0.

65
2

–
LE

H
0.

92
9

0.
92

9
0.

21
2

–
LE

H
1.

00
0

0.
20

9
1.

00
0

–

(d
) R

-S
V

M
(e

) P
-S

V
M

(f
) L

R

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
1.

82
2.

68
3.

37
2.

12
R

an
k

2.
81

2.
35

2.
12

2.
72

R
an

k
2.

98
2.

35
1.

93
2.

74

L
–

0.
00

1
0.

00
0

0.
21

7
L

–
0.

17
8

0.
02

8
0.

71
7

L
–

0.
02

7
0.

00
0

0.
31

0
E

0.
00

1
–

0.
01

4
0.

04
1

E
0.

17
8

–
0.

69
1

0.
38

3
E

0.
02

7
–

0.
24

5
0.

24
5

H
0.

00
0

0.
01

4
–

0.
00

0
H

0.
02

8
0.

69
1

–
0.

04
1

H
0.

00
0

0.
24

5
–

0.
00

3
LE

H
0.

21
7

0.
04

1
0.

00
0

–
LE

H
0.

71
7

0.
38

3
0.

04
1

–
LE

H
0.

31
0

0.
24

5
0.

00
3

–

(g
) N

B
(h

) R
-M

LP
(i)

 L
-M

LP

L
E

H
LE

H
L

E
H

LE
H

L
E

H
LE

H

R
an

k
2.

30
2.

67
2.

54
2.

49
R

an
k

2.
18

2.
58

2.
72

2.
53

R
an

k
2.

72
2.

20
2.

43
2.

65

L
–

0.
76

6
0.

92
9

1.
00

0
L

–
0.

28
6

0.
14

7
0.

44
0

L
–

0.
19

4
0.

69
4

1.
00

0
E

0.
76

6
–

1.
00

0
1.

00
0

E
0.

28
6

–
1.

00
0

1.
00

0
E

0.
19

4
–

1.
00

0
0.

19
4

H
0.

92
9

1.
00

0
–

1.
00

0
H

0.
14

7
1.

00
0

–
1.

00
0

H
0.

69
4

1.
00

0
–

1.
00

0
LE

H
1.

00
0

1.
00

0
1.

00
0

–
LE

H
0.

44
0

1.
00

0
1.

00
0

–
LE

H
1.

00
0

0.
19

4
1.

00
0

–

3090 Machine Learning (2021) 110:3059–3093

1 3

Appendix B: Examination of the impact of energy parameter

In addition to the sampling region, another hyperparameter that can have a significant
influence on the performance of RB-CCR is its energy, which regulates the size of sam-
pling regions and the extent of translation. To assess the exact impact of energy on the
algorithms behavior we conducted an experiment, in which we measured the change in
performance depending on the choice of energy value. Similar to the previous experiments,
we used cross-validation to adjust the values of � parameter in {0.5, 1.0, 2.5, 5.0, 10.0},
and the choice of sampling regions in {L, E, H, LEH}. In Fig. 9 we presented the impact
of energy, with values chosen from {0.5, 1.0, 2.5, 5.0, ..., 100.0}, on the performance aver-
aged across all of the datasets. First of all, as can be seen the choice of energy has, on
average, a clear impact on precision, specificity and recall, with the first two decreasing
monotonically proportional to the energy, and the last one increasing monotonically. This
is relevant because it indicates that CCR already has an inbuilt mechanism for controlling
the precision-recall trade-off, and as a result the performance improvement displayed by

Fig. 9 Visualization of the impact of energy parameter on the performance with respect to different metrics

3091Machine Learning (2021) 110:3059–3093

1 3

the RB-CCR cannot be explained solely due to providing that, rather it provides a more
optimal trade-off (with respect to the combined metrics).

Furthermore, as can be seen, the value of energy for which RB-CCR achieves the
best average performance depends on the choice of classifier and metric. In the case of
F-measure the best performance is observed for the minimal energy, when the precision-
to-recall ratio is the highest. This is another empirical confirmation of the claim made in
Brzezinski et al. (2019), according to which F-measure tends to be more biased towards
the majority class performance. More importantly, in the case of AUC and G-mean,
both of which tend to be highly correlated, two types of behavior can be observed. First
of all, in the case of linear models, that is LR, L-SVM and L-MLP, the best average
performance was observed with the energy values in {0.5, 1.0, 2.5, 5.0}, with little to no
difference between those values. Secondly, in the case of the remaining classifiers the
optimal performance was observed around the value of energy equal to 5.0, with both
decrease and the increase of energy negatively affecting the performance. Considering
the fact that as the energy goes down the methods behavior starts resembling random
oversampling more closely, this seems to indicate that the expected performance gain
due to using RB-CCR is highest for non-linear methods, capable of producing more
complex decision boundaries. Finally, irregardless of the choice of classifier, from the
practical standpoint observed results also suggest that using the value of energy equal to
5.0 is a sensible default.

Acknowledgements Michał Koziarski was supported by the Polish National Science Center under the grant
no. 2017/27/N/ST6/01705. Michał Woźniak was supported by the Polish National Science Center under the
grant no. 2017/27/B/ST6/01325. This research was supported in part by PL-Grid Infrastructure.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., & García, S. (2011). KEEL data-mining software
tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of
Multiple-Valued Logic & Soft Computing, 17(2–3), 255–287.

Alpaydin, E. (1999). Combined 5 × 2 cv F test for comparing supervised classification learning algorithms.
Neural Computation, 11(8), 1885–1892.

Barua, S., Islam, M. M., Yao, X., & Murase, K. (2012). MWMOTE—Majority weighted minority oversam-
pling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engi-
neering, 26(2), 405–425.

Bellinger, C., Drummond, C., & Japkowicz, N. (2016). Beyond the boundaries of SMOTE. In Joint Euro-
pean conference on machine learning and knowledge discovery in databases (pp. 248–263). Springer.

Bellinger, C., Drummond, C., & Japkowicz, N. (2018). Manifold-based synthetic oversampling with mani-
fold conformance estimation. Machine Learning, 107(3), 605–637.

Bellinger, C., Sharma, S., Japkowicz, N., & Zaïane, O. R. (2020). Framework for extreme imbalance clas-
sification: SWIM—Sampling with the majority class. Knowledge and Information Systems, 62(3),
841–866.

http://creativecommons.org/licenses/by/4.0/

3092 Machine Learning (2021) 110:3059–3093

1 3

Bhowan, U., Johnston, M., Zhang, M., & Yao, X. (2012). Evolving diverse ensembles using genetic pro-
gramming for classification with unbalanced data. IEEE Transactions on Evolutionary Computation,
17(3), 368–386.

Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A survey of predictive modeling on imbalanced domains.
ACM Computing Surveys (CSUR), 49(2), 1–50.

Brzezinski, D., Stefanowski, J., Susmaga, R., & Szczęch, I. (2019). On the dynamics of classification meas-
ures for imbalanced and streaming data. IEEE Transactions on Neural Networks and Learning Sys-
tems, 31(8), 2868–2878.

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-Level-SMOTE: Safe-level-syn-
thetic minority over-sampling technique for handling the class imbalanced problem. In Pacific-Asia
conference on knowledge discovery and data mining (pp. 475–482). Springer.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEBoost: Improving prediction of
the minority class in boosting (pp. 107–119). Berlin: Springer.

Chen, X.-W., & Wasikowski, M. (2008). Fast: A ROC-based feature selection metric for small samples and
imbalanced data classification problems. In Proceedings of the ACM SIGKDD international confer-
ence on knowledge discovery and data mining (pp. 124–132).

Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceed-
ings of the 23rd international conference on Machine learning (pp. 233–240).

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). A review on ensembles for
the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463–484.

García, V., Sánchez, J. S., & Mollineda, R. A. (2012). On the effectiveness of preprocessing methods when
dealing with different levels of class imbalance. Knowledge-Based Systems, 25(1), 13–21.

Han, H., Wang, W., Mao, B. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data
sets learning. In Advances in intelligent computing, international conference on intelligent computing,
ICIC 2005, Hefei, China, August 23–26, 2005, Proceedings, Part I (pp. 878–887).

Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A new over-sampling method in imbal-
anced data sets learning. In International conference on intelligent computing (pp. 878–887). Springer.

Hand, D., & Christen, P. (2018). A note on using the F-measure for evaluating record linkage algorithms.
Statistics and Computing, 28(3), 539–547.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbal-
anced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress
on computational intelligence) (pp. 1322–1328). IEEE.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data
Engineering, 21(9), 1263–1284.

Japkowicz, N., Myers, C., & Gluck, M. (1995). A novelty detection approach to classification. In Proceed-
ings of the 14th international joint conference on artificial intelligence—Volume 1, IJCAI’95, San
Francisco, CA, USA (pp. 518–523). Morgan Kaufmann Publishers Inc.

Jeni, L. A., Cohn, J. F., & De La Torre, F. (2013). Facing imbalanced data—Recommendations for the use
of performance metrics. In 2013 Humaine association conference on affective computing and intel-
ligent interaction (pp. 245–251). IEEE.

Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., & Togneri, R. (2018). Cost-sensitive learning of deep
feature representations from imbalanced data. IEEE Transactions on Neural Networks and Learning
Systems, 29(8), 3573–3587.

Koziarski, M. (2020a). CSMOUTE: Combined synthetic oversampling and undersampling technique for
imbalanced data classification. preprint arXiv:2004.03409.

Koziarski, M. (2020b). Radial-based undersampling for imbalanced data classification. Pattern Recognition,
102, 107262.

Koziarski, M., Krawczyk, B., & Woźniak, M. (2019). Radial-based oversampling for noisy imbalanced data
classification. Neurocomputing, 343, 19–33.

Koziarski, M., & Wożniak, M. (2017). CCR: A combined cleaning and resampling algorithm for imbal-
anced data classification. International Journal of Applied Mathematics and Computer Science, 27(4),
727–736.

Koziarski, M., Woźniak, M., & Krawczyk, B. (2020). Combined cleaning and resampling algorithm for
multi-class imbalanced data with label noise. Knowledge-Based Systems, 204, 106223.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in
Artificial Intelligence, 5(4), 221–232.

3093Machine Learning (2021) 110:3059–3093

1 3

Krawczyk, B., Koziarski, M., & Woźniak, M. (2019). Radial-based oversampling for multiclass imbalanced
data classification. IEEE Transactions on Neural Networks and Learning Systems, 31(8), 2818–2831.

Krawczyk, B., Wozniak, M., & Cyganek, B. (2014). Clustering-based ensembles for one-class classification.
Information Sciences, 264, 182–195.

Krawczyk, B., Woźniak, M., & Schaefer, G. (2014). Cost-sensitive decision tree ensembles for effective
imbalanced classification. Applied Soft Computing, 14(Part C), 554–562.

Kubat, M., Holte, R., & Matwin, S. (1997). Learning when negative examples abound. In European confer-
ence on machine learning (pp. 146–153). Springer.

Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection.
In In Proceedings of the 14th international conference on machine learning (pp. 179–186). Morgan
Kaufmann.

Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution. In
Conference on artificial intelligence in medicine in Europe (pp. 63–66). Springer.

Lemaitre, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A Python toolbox to tackle the curse
of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17), 1–5.

Li, F., Zhang, X., Zhang, X., Chunlei, D., Yue, X., & Tian, Y.-C. (2018). Cost-sensitive and hybrid-attribute
measure multi-decision tree over imbalanced data sets. Information Sciences, 422, 242–256.

López, V., Fernández, A., Moreno-Torres, J. G., & Herrera, F. (2012). Analysis of preprocessing vs. cost-
sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert
Systems with Applications, 39(7), 6585–6608.

Maciejewski, T., & Stefanowski, J. (2011). Local neighbourhood extension of SMOTE for mining imbal-
anced data. In Proceedings of the IEEE symposium on computational intelligence and data mining,
CIDM 2011, part of the IEEE symposium series on computational intelligence 2011, April 11–15,
2011, Paris, France (pp. 104–111).

Mathew, J., Pang, C. K., Luo, M., & Leong, W. H. (2018). Classification of imbalanced data by oversam-
pling in kernel space of support vector machines. IEEE Transactions on Neural Networks and Learn-
ing Systems, 29(9), 4065–4076.

Napierala, K., & Stefanowski, J. (2012). Identification of different types of minority class examples in
imbalanced data. In International conference on hybrid artificial intelligence systems (pp. 139–150).
Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.

Pérez-Ortiz, M., Gutiérrez, P. A., Tiño, P., & Hervás-Martínez, C. (2016). Oversampling the minority class
in the feature space. IEEE Transactions on Neural Networks and Learning Systems, 27(9), 1947–1961.

Sharma, S., Bellinger, C., Krawczyk, B., Zaiane, O., & Japkowicz, N. (2018). Synthetic oversampling with
the majority class: A new perspective on handling extreme imbalance. In 2018 IEEE international
conference on data mining (ICDM) (pp. 447–456). IEEE.

Stefanowski, J. (2016). Dealing with data difficulty factors while learning from imbalanced data. In S.
Matwin & J. Mielniczuk (Eds.), Challenges in computational statistics and data mining (pp. 333–363).
Cham: Springer.

Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics, 6,
769–772.

Wallace, B. C., & Dahabreh, I. J. (2012). Class probability estimates are unreliable for imbalanced data (and
how to fix them). In 2012 IEEE 12th international conference on data mining (pp. 695–704). IEEE.

Wang, S., Chen, H., & Yao, X. (2010). Negative correlation learning for classification ensembles. In The
2010 international joint conference on neural networks (IJCNN) (pp. 1–8). IEEE.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, 2(3), 408–421.

Woźniak, M., Graña, M., & Corchado, E. (2014). A survey of multiple classifier systems as hybrid systems.
Information Fusion, 16, 3–17.

Zhou, Z.-H., & Liu, X.-Y. (2006). Training cost-sensitive neural networks with methods addressing the class
imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18(1), 63–77.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	RB-CCR: Radial-Based Combined Cleaning and Resampling algorithm for imbalanced data classification
	Abstract
	1 Introduction
	2 Related work
	2.1 Inbuilt mechanisms
	2.2 Data-level methods
	2.3 Hybrid methods

	3 Radial-based combined cleaning and resampling
	3.1 Guided sampling procedure
	3.2 Integrating guided sampling with the CCR algorithm
	3.2.1 Cleaning the minority neighborhoods
	3.2.2 Selectively oversampling the minority class
	3.2.3 Combining guided sampling with CCR

	3.3 Computational complexity analysis

	4 Experimental study
	4.1 Set-up
	4.1.1 Datasets
	4.1.2 Classification algorithms
	4.1.3 Reference methods
	4.1.4 Performance metrics
	4.1.5 Evaluation procedure
	4.1.6 Statistical analysis
	4.1.7 Implementation and reproducibility

	4.2 Evaluation of the choice of sampling region on the algorithms performance
	4.3 Comparison of CCR and RB-CCR
	4.4 Comparison of RB-CCR with the reference methods
	4.5 Lessons learned

	5 Conclusions
	Acknowledgements
	References

