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Abstract
Traditional clustering algorithms focus on a single clustering result; as such, they cannot 
explore potential diverse patterns of complex real world data. To deal with this problem, 
approaches that exploit meaningful alternative clusterings in data have been developed 
in recent years. Existing algorithms, including single view/multi-view multiple cluster-
ing methods, are designed for applications with i.i.d. data samples, and cannot handle the 
data samples with dependency presented in networks, especially in heterogeneous informa-
tion networks (HIN). In this paper, we propose a framework (NetMCs) that can explore 
multiple clusterings in HIN. Specifically, NetMCs adopts a set of meta-path schemes with 
different semantics on HIN, and considers each meta-path scheme as a base clustering 
aspect. Guided by the meta-path schemes, NetMCs then introduces a variation of the skip-
gram framework that can jointly optimize multiple clustering aspects, and simultaneously 
obtain the respective embedding representations and individual clusterings therein. To 
reduce redundancy between alternative clusterings, NetMCs utilizes an explicit regulariza-
tion term to control the embedding diversity of the same nodes among different clustering 
aspects. Experiments on benchmark HIN datasets confirm the performance of NetMCs in 
generating multiple clusterings with high quality and diversity.

Keywords Multiple clusterings · Heterogeneous information networks · Meta-path · 
Quality and diversity · Network embedding

1 Introduction

Clustering is an unsupervised learning task whose aim is to partition the data into a num-
ber of homologous clusters. Traditional clustering methods typically provide a single clus-
tering, and fail to reveal the diverse patterns underlying the data. In fact, because of the 
multiplexes of real world data, several different clusterings may co-exist in a given dataset, 
and each may provide a meaningful grouping of the data (Bailey 2013; Niu et al. 2013; 
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Wang et al. 2018). For instance, a collection of films can be grouped based on genre, pro-
ducer or on director; the authors in an academic network can be clustered by their research 
fields or by their organizations. These alternative clusterings are all meaningful. To mine 
the underlying structure of the data from different perspectives and present alternative clus-
terings of different aspects, the study of multiple clusterings has emerged during the last 
decade (Bailey 2013). Multiple clustering approaches not only focus on the quality of the 
clusterings, but also on their diversity. However, it is a known dilemma to reach a balance 
between quality and diversity (Bailey 2013; Wang et al. 2020).

The early approaches to multiple clusterings mainly focus on single-view data to gener-
ate alternative clusterings in non-redundant (independent) subspaces (Cui et al. 2007; Niu 
et al. 2013; Mautz et al. 2018; Wang et al. 2019b; Miklautz et al. 2020), by meta clustering 
of multiple base clusterings (Caruana et  al. 2006), by reducing the redundancy with the 
already generated clusterings (Bae and Bailey 2006; Yang and Zhang 2017), or by simulta-
neously reducing the redundancy between all the to-be-generated clusterings (Wang et al. 
2018; Yao et al. 2019b). Recently, some works extend multiple clusterings to multi-view 
data, which are naturally represented with heterogeneous feature views. For example, a 
film can be encoded by its audio, video and snapshots. Multi-view multiple clusterings 
(Yao et al. 2019a) first adapts self-representation learning (Luo et al. 2018) to extract the 
individuality and commonality information matrices of multi-view data, and then applies 
semi-nonnegative matrix factorization (Ding et al. 2010) on each combination of an indi-
viduality (for diversity) and the shared commonality (for quality) matrices to generate 
alternative clusterings. Deep matrix factorization based multi-view multiple clusterings 
(Wei et al. 2020b) factorizes the multi-view data matrices into multiple common subspaces 
layer-by-layer, and generates an alternative clustering per layer. Deep incomplete multi-
view multiple clusterings (Wei et al. 2020a) seeks multiple clusterings by completing the 
missing data with multiple decoding networks. All these single-/multi-view multiple clus-
terings algorithms are designed for applications with i.i.d. data samples, and cannot handle 
the data samples with dependency presented with linkages in networks.

In the real world, many complex systems take the form of networks (Cui et al. 2019; 
Zhang et  al. 2020; Yang et  al. 2020), where the samples are nodes with dependency on 
others to some degree, reflected by the seen/unseen links between them. There are homo-
geneous networks with only one type of nodes and relationships. Yet a large number of 
networks are heterogeneous in nature, involving diverse types of node and/or relationships 
between nodes, such as social networks, biological networks, and academic networks. Tra-
ditional approaches perform clustering on networks by spectrum method (Mall et al. 2013; 
Li et al. 2019), by ranking learning (Sun et al. 2009; Chen et al. 2015), by matrix factoriza-
tion method (Lin et al. 2016), by hierarchical approach (Pio et al. 2018), or by representa-
tion learning (Perozzi et  al. 2014; Grover and Leskovec 2016; Dong et  al. 2017). These 
methods only focus on a single clustering assignment for networks, while in reality a node 
in networks usually has multiple clustering assignments. As illustrated in Fig.  1, nodes 
(e.g., authors) in an academic publication network can be grouped by their research fields 
and by their organizations. Ensemble clustering also aims to generate diverse base cluster-
ings to reach a consolidated clustering, but it still targets to output a single clustering. In 
addition, these base clusterings are often with high redundancy.

Several attempts have been made to generate multiple vector representations for each 
network node. Splitter (Epasto and Perozzi 2019) splits original network into multiple 
ego-networks and then learns a new representation from each ego-network. MNE (Yang 
et  al. 2018) factorizes the network proximity matrix into several groups of embed-
ding matrices to generate different representations. These two methods are designed 
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for homogeneous network. ASPEM (Shi et al. 2018a) decomposes a HIN into multiple 
aspects and then learns representations of HIN. HEER (Shi et al. 2018b) embeds HIN 
via edge representations. But HEER defines the aspects based on the edges with pre-
defined ground-truth labels, which are not always available in reality. Although these 
multi-facet network embedding methods can produce multiple representations, in which 
multiple clustering results can be generated consequently, they are not designed for mul-
tiple clusterings. Furthermore, they suffer the optimization inconsistency and the diffi-
culty of redundancy control between alternative clusterings.

We propose an approach called NetMCs to explore multiple clusterings in HIN. Net-
MCs first adopts a set of meta-path schemes with different semantics on HIN and con-
siders each meta-path scheme as a base clustering aspect. Then, guided by the set of 
meta-path schemes, NetMCs introduces a variation of the skip-gram framework that can 
jointly optimize multiple clustering aspects, and obtain respective embedding represen-
tations and individual clusterings therein. In addition, NetMCs explicitly controls the 
embedding diversity of the same node between different clustering aspects, and thus 
enhances the diversity between alternative clusterings. The main contributions of our 
work are summarized as follows: 

 (i) To the best of our knowledge, NetMCs is the first effort to generate multiple cluster-
ings with quality and diversity from a heterogeneous information network, which 
is an important and practical topic, but quite challenging and mostly overlooked by 
previous solutions.

 (ii) NetMCs introduces a variation of the skip-gram model to jointly optimize different 
clustering aspects to learn multiple diverse embeddings, and to generate multiple 
clusterings therein. The corresponding optimization procedure for the variation 
is also presented. As a result, NetMCs addresses the optimization inconsistency 
between representation learning and clustering, and can generate multiple clusterings 
of quality.

Organization Author Paper Conference
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Clustering 1: clustering
authors by domain

Clustering 2: clustering
authors by organization

Fig. 1  An example of the academic heterogeneous network. The authors can be clustered according to alter-
native meaningful patterns (i.e., research areas and organizations)
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 (iii) NetMCs introduces the redundancy terms that can simultaneously minimize the 
overlap between embeddings and place nodes with similar embeddings into the same 
cluster, and therefore generates alternative clusterings of diversity.

 (iv) Experiments on real-world datasets and visualization examples demonstrate the 
effectiveness of NetMCs on mining multiple clusterings on heterogeneous networks.

2  Related works

Our work has close connections with three lines of related works, that is multiple cluster-
ings, network clustering and multi-facet network embedding learning.

Multiple clusterings focuses on how to generate different clusterings with both high 
quality and diversity from the same dataset (Bailey 2013). It is less well studied than sin-
gle/multi-view clustering and ensemble clustering (Jain 2010; Zhou 2012), especially net-
work clustering, because of its demand on generating multiple groups of clusters, and the 
difficulties on well tradeoff the quality and diversity at the mean time. Based on hierarchi-
cal clustering, Bae and Bailey (2006) presented a multiple clusterings solution (COALA). 
The main idea of COALA is that instances with higher intra-class similarity in the first 
clustering still gather in the same cluster, while those with lower intra-class similarity are 
considered to be placed into different clusters for the next clustering. Jain et al. (2008) pro-
posed Dec-kmeans to find multiple sets of mutually orthogonal cluster centroids and then 
generate diverse clusterings based on these centroids. Different from COALA and Dec-
kmeans that directly control the diversity between clustering assignment, other solutions 
control the diversity between clustering subspaces and then generate different clusterings 
in these subspaces. Cui et al. (2007) projected the data matrix into orthogonal subspaces 
to get different feature representations and then found alternative clusterings in these sub-
spaces. Mautz et  al. (2018) also attempted to explore multiple mutually orthogonal sub-
spaces, along with the optimization of classical k-means objective function, to find non-
redundant clusterings. However, the orthogonal constraint is too strict to generate more 
than two clusterings. Wang et al. (2019b) generated multiple independent subspaces with 
semantic interpretation via independent subspace analysis and minimum description 
length, and then performed kernel matrix factorization-based clustering in these subspaces 
to explore diverse clusterings. Miklautz et al. (2020) combined the benefits of a deep neural 
network-based non-linear feature transformation with a non-redundant clustering objective 
to gain alternative clusterings. Yang and Zhang (2017) explicitly introduced a regulariza-
tion term to quantify and minimize the redundancy between the already generated cluster-
ing and the to-be-generated one, and then plugged this regularization as the constraint of 
the next clustering based on nonnegative matrix decomposition (Ding et al. 2010) to find 
another clustering. Wang et al. (2018) and Yao et al. (2019b) directly reduced the redun-
dancy between all the to-be-generated clusterings to simultaneously find all clusterings. 
Besides, Caruana et al. (2006) firstly generated a number of high-quality clusterings, and 
then grouped these clusterings at the meta-level, and thus allowed the user to select desired 
non-redundant clusterings for application. These multiple clusterings methods are designed 
only for single-view data.

Given the multiplicity of multi-view data, it is desirable but more difficult to generate 
multiple clusterings from the same multi-view data. Three approaches have been proposed 
for attacking this challenging task. MVMC (Yao et al. 2019a) first explores multiple clus-
terings on multi-view data by mining the individuality information encoding matrices and 
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the commonality information matrix shared across views by self-representation learning 
(Luo et al. 2018). It employs each individuality similarity matrix and the commonality sim-
ilarity to generate a distinct clustering by matrix factorization-based clustering. However, 
given the cubic time complexity of the self-representation learning, MVMC can hardly 
be applicable on datasets with a large number of samples. To alleviate this drawback, 
DMClusts extends the deep matrix factorization (Trigeorgis et al. 2016) to collaboratively 
factorize the multi-view data matrices into multiple representational subspaces layer-by-
layer, and seeks a different clustering of high quality per layer. In addition, it introduces a 
new balanced redundancy quantification term to enhance the diversity among these cluster-
ings, and thus reduces the overlap between the produced clusterings. DiMVMC (Wei et al. 
2020a) considers the incomplete multi-view data, which achieves the completion of data 
view and multiple shared representations simultaneously by optimizing multiple groups of 
decoder deep networks. It further minimizes a redundancy term to simultaneously control 
the diversity among these representations and among parameters of different networks to 
generate individual clusterings.

All these single-/multi-view multiple clusterings algorithms are vector-based methods, 
which assume that data samples can be directly represented by independent feature vectors. 
As such, they cannot be applied directly for extensive network data with inter-dependence. 
With the increase of network data, many network clustering works have been proposed. To 
name a few, Li et al. (2019) formulated the similarity matrix construction as an optimiza-
tion problem and applies spectral clustering to network data. Lin et al. (2016) transformed 
different types of relations into a group of matrices and subsequently combined with a 
greedy search approach. Chen et al. (2015) proposed a probabilistic generative model that 
simultaneously achieves clustering and ranking on a heterogeneous network with arbitrary 
network schema. Zhou et  al. (2019) proposed a recurrent meta-structure based frame-
work to measure the similarity between nodes by integrating all the meta-paths and meta-
structures, and applied it for clustering and ranking task on HIN. HENPC (Pio et al. 2018) 
extracts possibly overlapping and hierarchically-organized heterogeneous clusters and 
exploits them for predictive purposes, and it can take into account autocorrelation of HIN 
at different levels of granularity. Random walk based methods (Perozzi et al. 2014; Grover 
and Leskovec 2016; Dong et al. 2017) firstly obtain a pile of random walk sequences and 
subsequently put them into skip-gram framework to learn the node embedding, along with 
traditional clustering algorithms on the embeding. These methods only generate a single 
embedding or clustering for one network and lack of consideration for redundancy control.

Some multi-facet network embedding methods have been introduced, most of which 
focus on generating multiple vector representations for each network node. Based on a prin-
cipled decomposition of the ego-network, Splitter (Epasto and Perozzi 2019) splits each 
node into multiple representations by performing local graph clustering, each representa-
tion encodes the role of the node in a different local community in which the nodes partici-
pate. MNE (Yang et al. 2018) factorizes the network proximity matrix into several groups 
of embedding matrices, and adds a diversity constraint to force different matrices focusing 
on different aspects of nodes. ASPEM (Shi et al. 2018a) decomposes a HIN into multiple 
aspects before learning embedding to obtain quality representations of HIN. HEER (Shi 
et al. 2018b) embeds HIN via edge representations that are further coupled with properly-
learned heterogeneous metrics to capture the incompatible semantics of HIN.

Although these network embedding methods can generate different representation 
vectors, they cannot produce clustering results directly and thus suffer the optimization 
inconsistency between representation learning and clustering. Furthermore, they neglect 
the redundancy control among clusterings. To address these issues, our NetMCs generate 
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diverse HIN node embeddings by different meta-path based semantics and alternative clus-
terings based on these embeddings in a coherent way.

3  Our method

3.1  Preliminaries

For problem formulation, we first give related concepts and notations.

Definition 1 (HIN) A Heterogeneous Information Network is defined as a graph 
G = (V, E, T) , in which each node v and each edge e are associated with their mapping func-
tions �(v) ∶ V → TV and �(e) ∶ E → TE respectively. TV and TE denote the sets of nodes 
and edge types, where |TV | + |TE| 2.

Definition 2 (Meta-path) a meta-path scheme P is defined as a path in the form 
of V1

R1

⟶V2

R2

⟶⋯Vt

Rt

⟶Vt+1 ⋯
Rl−1

⟶Vl , wherein Ri ∈ TE represents an edge type and 
R = R1◦R2◦⋯Rl−1 defines the composite relations between node types V1 and Vl.

Definition 3 (Multiple clusterings on a HIN) Given a HIN G = (V, E, T) , a set of meta-
paths PS = {Pm}

M
m=1

 , and a set of the number of clusters K = {km}
M
m=1

 , the problem of 
multiple clusterings on G is to partition nodes into M diverse clustering patterns. The nodes 
in the m-th clustering are partitioned into km disjoint clusters Cm = {Cm,1,… , Cm,km}.

3.2  The proposed methodology

Random walk is a powerful approach for capturing information in networks, and exten-
sively used for network embedding (Perozzi et al. 2014; Grover and Leskovec 2016; Dong 
et al. 2017). Considering its efficiency and effectiveness in handling large-scale networks, 
we adopt a random walk approach as the base of NetMCs. Thus, we briefly introduce ran-
dom walk-based network embeddings first.

3.2.1  Generating node embeddings

Given a text corpus, Mikolov et al. (2013) proposed the word2vec to learn the distributed 
representations of words in the corpus. Inspired by it, previous network representation 
learning methods, such as DeepWalk (Perozzi et al. 2014) and node2vec (Grover and Lesk-
ovec 2016) view nodes in a graph as words in a corpus. Specifically, they both perform 
random walks on a graph and obtain a set of truncated random walks sequences W . Then, 
the skip-gram model is introduced to learn the representation of each node. The objective 
is to maximize the likelihood of the context given the target node:

where N(u) denotes the neighbors of target node u and p(v|u) is commonly defined as a 
softmax function as:

(1)max
∏

u∈V

∏

v∈N(u)

p(v|u)
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where �u represents the embedding vector for node u, �v represents the context embedding 
vector for node v and ⟨�u, �v⟩ means the inner product of �u and �v . By maximizing Eq. 
(1), nodes that frequently appear together within a context window will be trained to have 
similar embeddings. Equation (1) is limited to homogeneous networks. In other words, it 
cannot leverage the information of multi-type of nodes in HIN.

Meta-path can capture the structural and semantic correlations between different 
types of nodes in HIN (Sun and Han 2013). It is defined by a sequence of relations 
in the network, and can be described by a sequence of object types when there is no 
ambiguity. For example, A-O-A in Fig.  1 is a meta-path denoting the colleague rela-
tion between authors, and A-P-C is a meta-path denoting the publication relationship 
between the authors and conferences. metapath2vec (Dong et al. 2017) introduces a het-
erogeneous skip-gram model to perform meta-path based random walk in heterogene-
ous networks to learn the representation of the nodes. Formally, given a heterogeneous 
network G = (V, E, T) with |TV | > 1 , metapath2vec learns the representation of node u by 
maximizing the probability of having the heterogeneous context Nt(u) ( t ∈ TV ) gener-
ated by meta-path-based random walk:

where Nt(u) includes u’s neighbors with the t-th type of nodes.
For the work in this paper, we follow the concept of meta-path to describe the pos-

sible relations that can be derived from a heterogeneous network between different types 
of objects in a meta level. Most meta-path based methods usually use only one meta-
path in a specific task. However, the semantic included in a single meta-path is too lim-
ited to mine the abundant information in HIN. To solve this problem, Zhao et al. (2017) 
introduced the concept of meta-graph which is an extension of meta-paths. Compared 
with the sequence structure of meta-path, meta-graph does not restrict the intermediate 
linked structure between the source and target nodes. Wang et al. (2019a) merged multi-
ple meta-paths to learn the node similarity via weighting the meta-paths. Nevertheless, 
while both the meta-graph and merged meta-paths strive for richer semantic informa-
tion, they may encounter the semantic incompatibility problem, due to heterogeneity 
of HIN (Shi et  al. 2018b). Semantic incompatibility refers to the semantic inconsist-
ency of meta paths with respect to the same node. If the semantics of these meta-paths 
are inconsistent, then projecting the related nodes into a uniform embedding space will 
result in the degradation of the embedding vectors. For example, Bob likes both musics 
and movies directed by Nolan. If these nodes were embedded to one metric space, Bob 
would be close to neither musics nor Nolan due to the dissimilarity between musics and 
Nolan, which results in information loss. Therefore, we adopt multiple different meta-
paths to perform random walks on HIN to capture diverse semantic information. Specif-
ically, guided by a set of diverse meta-paths PS , we implement random walks on HIN. 
Each meta-path Pm ∈ PS can generate truncated random walk sequences WPm

 , which 
are subsequently used as the input for the variant skip-gram framework. Thus, NetMCs 
generates an embedding for nodes in each selected meta-path as follows:

(2)p(v�u) =
exp(⟨�u, �v⟩)∑

v� ∈V
exp(⟨�u, �v� ⟩)

(3)max
∑

u∈V

∑

t∈TV

∑

vt∈Nt(u)

log p(v|u)
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where �m
u
∈ ℝ

d is the embedding vector of node u in terms of the meta-path Pm , and Nm(u) 
denotes the nodes within the context window of u. By optimizing the above equation, we 
can obtain individual embeddings of each node under different semantics guided by diverse 
meta-paths.

3.2.2  Enhancing diversity and quality

However, the semantics of different meta-paths may overlap. for instance, A-O-A and 
A-P-A may have the same semantics to some extent, because authors in the same institu-
tion are more likely to co-author, which may cause similar clustering results. We expect 
embeddings induced from different meth-paths being different. Thus, we introduce a regu-
larization term to quantify and minimize the overlap between embedding vectors of the 
same node by their similarity of probability distributions. In addition, NetMCs should 
make each embedding space having different semantic information as much as possible 
and capture information from other embedding spaces also. In this way, a clustering is dif-
ferent from others by reducing the redundancy between embedding spaces respectively 
induced by individual meta-paths. For M different embeddings of node u, the regulariza-
tion term is defined as:

We can now jointly optimize Eqs. (4) and (5) to obtain multiple embeddings of the same 
node in the HIN and then execute clustering in the respective embedding spaces. How-
ever, as we pointed out, the sequential embedding and clustering paradigm may lead to 
optimization inconsistency, due to the distinct goals of embedding and clustering (this is 
confirmed in our experiments). Thus, we try to achieve multiple embeddings and multi-
ple clusterings therein simultaneously by employing a transformation f (�m

u
) that generates 

a node’s clustering assignment from its embedding. To keep the model from getting too 
complicated, we simply adopt �m

u
= softmax(�m�

m
u
) in this paper, where �m

u
∈ ℝ

km is the 
soft assignment vector of node u in the m-th clustering, and �m ∈ ℝ

km×d is a transformation 
matrix for the m-th clustering aspect. Because each meta-path can generate an embedding 
space and reflect a semantic pattern of HIN, we generate a clusteing result in each embed-
ding space. Thus, the number of clusterings M is equal to the number of meta-paths.

In addition, we assume that the assignment vectors of similar embeddings should be 
similar. Cross entropy is a common evaluation index in multi-classification tasks; it can 
measure the difference between two probability distributions. Therefore, we can naturally 
adopt the cross entropy metric to measure the similarity between different soft assignment 
vectors. Given a node u and its neighborhood v in the m-th clustering aspect, the cross 
entropy is minimized as:

(4)max
�

Pm∈PS

�

u∈WPm

�

v∈Nm(u)

log
exp(⟨�m

u
, �m

v
⟩)

∑
v�∈V exp(�

m
u
, �m

v�
⟩)

(5)min

M∑

m�=1,m�≠m

log p(�m
�

u
|�m

u
)

(6)min CE(�m
u
, �m

v
) = −

km∑

i=1

(�m
u
)i log(�

m
v
)i
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where (�m
u
)i is the i-th element of �m

u
 , and v ∈ Nm(u) . By minimizing the cross entropy 

between the embedding vectors with high similarity, NetMCs can constrain these nodes 
also having similar clustering assignment and thus improve the clustering quality.

3.2.3  Unified objective

By integrating the above objectives we can define the comprehensive loss function of Net-
MCs. The optimization of Eq. (4) is computationally expensive, which requires the sum-
mation over the entire set of vertices in {WPm

}M
m=1

 when calculating the softmax function. 
In addition, the skip-gram model has a very large number of parameters. As a result, it is 
time-demanding to train such a large neural network using gradient descent. Furthermore, 
we need a lot of training data to adjust these weights to avoid over-fitting. To address this 
problem, we adopt the negative sampling strategy with linear-time computation (Mikolov 
et  al. 2013) that samples multiple negative nodes according to some noisy distribution 
for each target node. The sampling distribution is proportional to the 3/4 power of node 
degree. Therefore, in each iteration, we only need to care about the positive sample, its 
neighbor nodes, and its negative samples. In this way, the comprehensive loss function of 
NetMCs is defined as follows:

where � is a trade-off parameter that controls the diversity extent of the embeddings of the 
same node in different embedding spaces, � is the Sigmoid function, and b is the number of 
negative samples. The first term forces the embedding representations of u and its context v 
to be similar, while the second term is to force �m

u
 and the embeddings of negative samples 

�m
v′
j

 in the same clustering aspect to be different. The third term seeks different embedding 
representations of the same nodes for different clustering aspects, and the last term forces 
nodes with similar embeddings to be placed into the same cluster via the classical cross 
entropy. By maximizing the objective loss, NetMCs can generate multiple embeddings and 
multiple clusterings of nodes therein.

(7)

J =

M∑

m=1

∑

u∈WPm

Jm
u
(�m

u
;�m

u
),

where Jm
u
(�m

u
;�m

u
) = log �((�m

u
)T�m

v
) +

b∑

j=1

�v�
j
[log �(−(�m

u
)T�m

v�
j

)]

+ �

M∑

m�=1,m�≠m

log �(−(�m
u
)T�m

�

u
) − CE(�m

u
, �m

v
)



1514 Machine Learning (2021) 110:1505–1526

1 3

Algorithm 1NetMCs: Multiple Clusterings of Heterogeneous Information Networks
Input: A heterogeneous information network dataset G = (V, E, T ), scalar parameter λ, a set of
meta-paths PS = {Pm}Mm=1, a set of numbers of clusters K = {km}Mm=1, walks per node w, walk
length l, and learning rate η.
Output: Multiple node embeddings H = {hm

u |u ∈ V}Mm=1, and multiple clustering results
Z = {zmu |u ∈ V}Mm=1.

MetaPathBasedRandomWalk(G,PS, u, l)
1: MP = {}Mm=1
2: form = 1: M do
3: for u ∈ V do
4: mp[1] = u
5: for i = 2: l do
6: Sample v according to the meta-path Pm ∈ PS
7: mp[i] = v
8: end for
9: MP [m] = MP [m] ∪mp
10: end for
11: end for
12: return MP

VariantSkipGram(H,Z,MP )
1: Initialize H, Z
2: while not converged do
3: form = 1: M do
4: for u ∈ V do
5: Sample neighbor nodes v and negative samples v

′
of u fromMP [m]

6: hm
u ← hm

u − η∂Jm
u /∂hm

u ;
7: zmu ← zmu − η∂Jm

u /∂zmu ;
8: end for
9: end for
10: end while
11: ReturnH,Z .

Algorithm  1 gives in details how our method works. NetMCs can be divided into 
preprocessing phase (MetaPathBasedRandomWalk) and training phase (VariantSkip-
Gram). First of all, some parameters, such as scalar parameter � , a set of meta-paths 
PS = {Pm}

M
m=1

 and walks per node w, are initialized. Next, NetMCs executes meta-
path based random walk on the input HIN, guided by the set of predefined meta-paths 
PS = {Pm}

M
m=1

 , and Pm represents a meta-path schema in PS . NetMCs starts random 
walks from the node whose type accords with the head of Pm . Then the flow of the 
walker is conditioned on the predefined meta-path Pm . When this preprocessing phase is 
over, M sets of random walk sequences MP are generated and then are sent into the next 
training phase. In the training phase, NetMCs firstly initializes node embeddings Hm 
and clustering assignment Zm . After that, NetMCs samples target node u successively as 
well as its neighbor nodes v and negative nodes v′ from random walk sequences MP as a 
tuple, along with the loss defined in Eq. (7) to optimize the variant skip-gram model to 
generate the diverse node embeddings Hm and clustering results Zm.
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4  Experimental results and analysis

In this section, we evaluate the effectiveness and efficiency of our proposed NetMCs on 
mining multiple clusterings on real-world HIN datasets.

4.1  Experimental setup

Datasets We use three publicly available real-world HIN datasets: DBLP, IMDb, and 
YAGO. DBLP is a bibliographical network in the computer science domain. We use its 
subnetwork collected by Lu et al. (2019), which contains four types of nodes: author (A), 
paper (P), venue (V), and term (T). The edge types include authors writing papers, papers 
published in venues, and papers belonging to terms. IMDb is a HIN built by linking the 
movie-attribute information from IMDb and the user-reviewing-movie relationship from 
MovieLens-100K. There are five types of nodes in the network: user (U), movie (M), actor 
(A), director (D), and genre (G). The edge types include: user reviewing movie, actor fea-
turing in movie, director directing movie, and movie being of genre. YAGO (Suchanek 
et al. 2007) is a knowledge graph derived from merging Wikipedia, GeoNames and Word-
Net. YAGO dataset consists of 7 types of nodes: person (P), organization (O), location 
(L), prize (R), work (W), position (S), event (E), and 24 edge types. The statistics of these 
datasets are listed in Table 1.

Baselines We compare NetMCs against four recent multiple clusterings methods and 
four multi-facet network representation learning methods. MNMF (Yang and Zhang 2017) 
is a multiple clusterings solution based on vector data, it defines a regularization term to 
quantify and minimize the redundancy between the already generated clusterings and the 
to-be-generated one. Nr-kmeans (Mautz et  al. 2018) tries to explore multiple mutually 
orthogonal subspaces from vector data, along with the optimization of k-means objective 
function, to find non-redundant clusterings. MVMC (Yao et  al. 2019a) mines common 
and specific information of multi-view data with self-representation learning to achieve 
multiple clusterings. DMClusts (Wei et al. 2020b) employs deep matrix factorization and 
redundancy control to generate multiple subspaces from layer-wise and obtains different 
clustering results therein. Splitter (Epasto and Perozzi 2019) is the only compared method 
designed for homogeneous networks, while the others (metapath2vec (Dong et al. 2017), 
ASPEM (Shi et al. 2018a), HEER (Shi et al. 2018b)) are applied for heterogeneous net-
works. These multi-facet network embedding methods were introduced in the Introduction.

For all the embedding methods, we set the embedding dimension d to 128. For the 
random walk based methods (metapath2vec, Splitter and NetMCs), we use the following 
parameter values, number of walks per node w: 20; walk length l: 30; neighborhood size 
c: 3; and size of negative samples b: 5. The other input parameters of the compared meth-
ods are fixed (or optimized) as the authors suggested in their papers or shared codes. For 

Table 1  Statistics of DBLP, 
IMDb and YAGO networks

Datasets Number of nodes |V| Node type |T
v
|

DBLP 37,582 4
IMDb 45,519 5
YAGO 579,721 7
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MNMF and Nr-kmeans, we take each row vector of the adjacency matrix of a HIN as the 
input feature vector of the single view compared methods. For MVMC and DMClusts, we 
adopt different node similarity matrices as data views, following the work in Pathsim (Sun 
et al. 2011) using different meta-paths of HIN. For the sake of fair comparison, the selected 
meta-path is the same as the following experimental setup. The codes of NetMCs are avail-
able at our website.1

Evaluation metrics Multiple clusterings approaches aim to generate diverse cluster-
ings of good quality. To measure quality, we use the Silhouette Coefficient (SC) and the 
Dunn Index (DI) as internal indices to quantify the compactness and separation of clusters. 
To measure redundancy, we use the Normalized Mutual Information (NMI) and the Jac-
card Coefficient (JC) as external indices to quantify the similarity between clusters of two 
clusterings. These metrics have been extensively used in the multiple clusterings literature 
(Yang and Zhang 2017; Yao et  al. 2019a; Wang et  al. 2020). The formal definitions of 
these metrics are given as below.

Silhouette Coefficient is the mean silhouette value over all samples. The silhouette value 
of each sample is a measure of how similar the sample is to the points in its own cluster, 
when compared to the samples in other clusters. SC is computed as follows:

where N is the number of samples, a(i) is the average distance of the i-th sample to the 
other points in the same cluster, and f(i) is the minimum average distance of the i-th sample 
to the points in a different cluster, minimized over the clusters.

Dunn Index measures the ratio between the minimum distance of two arbitrary clusters 
and the maximum inter-cluster distance. DI is defined as follows:

where �(ci, cj) is the cluster-to-cluster distance of pairwise clusters and �(cl) is the cluster 
diameter measure.

Normalized Mutual Information measures diversity based on the ratio of joint entropy 
and individual entropy of clusterings C and C∗ . NMI is computed as follows:

where ni denotes the number of samples in cluster Ci , nj is the number of points in C∗
j
 , and 

nij denotes the number of data in the intersection of clusters Ci and C∗
j
.

Jaccard Coefficient measures the overlap between two different clusterings based on 
‘pair-counting’ as follows:

(8)SC(C) =
1

N

N∑

i=1

f (i) − a(i)

max {a(i), f (i)}

(9)DI(C) =
mini≠j{�(ci, cj)}

max1≤l≤k{�(cl)}

(10)NMI(C, C∗) =

∑k

i=1

∑k∗

j=1
nij log

nij

ninj�
(
∑k

i=1
ni log

ni

n
)(
∑k∗

j=1
nj log

nj

n
)

(11)JC(C, C∗) =
n11

n11 + n10 + n01

1 http:// sdu- idea. cn/ codes. php? name= NetMCs.

http://mlda.swu.edu.cn/codes.php?name=NetMCs
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where n11 is the number of pairwise samples that are in the same cluster in both C and C∗ ; 
n00 measures the number of pairs that are in different clusters in both C and C∗ ; n01 and n10 
are the numbers of pairs in the same cluster in one of C and C∗ , but not in the other.

We want to remark that higher values of SC and DI signify a clustering of higher qual-
ity. On the other hand, smaller values of NMI and JC imply that two clusterings have a 
smaller redundancy, or a higher diversity. We take the average SC and DI of multiple clus-
terings, and the average NMI and JC of pairwise clusterings as the evaluation results.

4.2  Discovering multiple clusterings in HIN

For the first experiment, we set the number of clusterings M = 2 . The nodes in DBLP are 
connected with 20 conferences, and the nodes in IMDb are connected with 23 movie gen-
res. In addition, we extract nodes that are related to 10 prizes on YAGO dataset. In this 
way, we fix the number of clusters of individual clusterings on DBLP, IMDb and YAGO 
as 20, 23 and 10, respectively. Such configuration of the number of clusters is motivated 
by two factors. First, they are widely used clustering ways for these public heterogeneous 
network datasets. Second, it is necessary to unify the number of clusters for the computa-
tion of evaluation metrics and for quantitative comparison. The parameter � of NetMCs 
is chosen from 10−3 to 103 . Because these compared methods (except MNMF, Nr-kmeans 
and MVMC) can not directly give the clustering results, we employ k-means to generate 
individual clusterings from respective embeddings of these methods. Since how to select 
meta-paths is a non-trivial work in heterogeneous network analysis and there is currently 
no principle way for selecting meta-paths (Meng et al. 2015; Zhou et al. 2019), we choose 
the meta-paths widely used in past works (Sun et  al. 2013; Dong et  al. 2017). Particu-
larly, for DBLP we select two candidate meta-paths (A-P-C-P-A and A-P-T-P-A) for all 
applicable methods. The candidate meta-paths for IMDb are U-M-G-M-U and U-M-U; for 
YAGO are P-L-P, P-R-P and P-O-L-O-P. If there are many valid meta paths, we can just 
use some of them, choose from them by reducing the redundancy, or by referring to the 
clustering results in a wrapper way. We report the average results and standard deviations 
of ten independent runs of each method on generating two clusterings on the same datasets, 
and report the results in Table 2. ‘N/A’ means no experimental results, since Nr-kmeans 
can only produce one clustering on the YAGO dataset. In the experiments, we focus on the 
clustering of authors by attended conferences or paper topics in DBLP, of users by geners 
or taste for movies in IMDb, and of persons by awarded prizes or locations in YAGO. We 
can make the following observations: 

 (i) Quality of multiple clusterings NetMCs often obtains a better quality than the other 
methods. Both MNMF and Nr-kmeans target at multiple clusterings on vector data, 
they suffer the difficulty to find subspaces of good quality from sparse network data. 
Although different feature views of the HIN were generated for multi-view multiple 
clusterings algorithms, our NetMCs frequently outperforms MVMC and DMClusts, 
which are less capable to capture semantic information and nonlinear structure of 
network data. As such, traditional vector-based multiple clusterings methods have 
a lower quality than NetMCs. This fact suggests the necessity of developing the 
network-based multiple clusterings solution. The other four compared methods first 
seek multiple embeddings and then generate alternative clusterings in the embed-
ding spaces. They also lose to NetMCs, which suggests that the joint optimization of 
embeddings and clusterings is necessary. In other words, the stage-wise approaches 
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suffer from the optimization inconsistency between the sequential embedding and 
clustering steps. We observe that NetMCs sporadically has lower SC and DI values 
than some of the compared methods. This is due to the widely-recognized dilemma 
of obtaining alternative clusterings with both high diversity and high quality. Overall, 
the results prove the effectiveness of our proposed unified framework to generate 
multiple clusterings of quality.

 (ii) Diversity of multiple clusterings Both NMI and JC are canonically used to measure 
the diversity of multiple clusterings. The two clusterings generated by NetMCs often 
have a lower redundancy (higher diversity) than those generated by the compared 
methods. This is because NetMCs introduces a regularization term to specifically 
control the redundancy. Although MNMF considers the redundancy, it cannot control 
the clusterings’ diversity well because of the sparseness and high dimensionality of 
the node feature vectors. Nr-kmeans does not explicitly consider the redundancy. 
MVMC and DMClusts also emphasize on redundancy control, so their diversity is 
relatively lower compared with other methods. Splitter cannot distinguish different 
types of nodes to eliminate semantic redundancy. metapath2vec cannot control the 
semantic redundancy between different meta-paths, and it can only utilize a single 
meta-path each time. ASPEM and HEER consider the inconsistency between dif-
ferent types of relations, but they cannot capture the diverse semantic information 
as meta-path based methods. For these reasons, the multiple clusterings generated 
by the compared methods have a lower diversity.

Besides the pairwise t-test, we further applied the nonparametric Wilcoxon signed-rank 
test to check the difference between NetMCs and other compared methods, all the p-val-
ues are smaller than 0.01. In conclusion, NetMCs outperforms the other methods across 
the benchmark HIN datasets on generating multiple clusterings in terms of quality and 
diversity.

Table 3  Comparison results of 
NetMCs and its variants

NetMCs-nRC diregards the redundancy control term, and NetMCs-
nCE disregards the cross entropy term. ∙∕◦ indicates whether our Net-
MCs is superior/inferior to the variant, with statistical significance 
checked by pairwise t-test at 95% level

NetMCs-nRC NetMCs-nCE NetMCs

DBLP SC↑ −0.008 ± 0.001∙ 0.005 ± 0.000∙ 0.024 ± 0.002
DI↑ 0.333 ± 0.009◦ 0.252 ± 0.003◦ 0.223 ± 0.007
NMI↓ 0.013 ± 0.000∙ 0.005 ± 0.000 0.005 ± 0.000
JC↓ 0.079 ± 0.002∙ 0.127 ± 0.005∙ 0.053 ± 0.001

IMDb SC↑ 0.030 ± 0.001◦ −0.041 ± 0.001∙ 0.009 ± 0.000
DI↑ 0.363 ± 0.011◦ 0.283 ± 0.004∙ 0.315 ± 0.007
NMI↓ 0.113 ± 0.004∙ 0.143 ± 0.002∙ 0.066 ± 0.001
JC↓ 0.069 ± 0.000∙ 0.049 ± 0.000∙ 0.048 ± 0.000

YAGO SC↑ 0.038 ± 0.001◦ −0.016 ± 0.000∙ 0.031 ± 0.001
DI↑ 0.267 ± 0.011◦ 0.200 ± 0.006∙ 0.238 ± 0.008
NMI↓ 0.057 ± 0.003∙ 0.007 ± 0.000◦ 0.020 ± 0.001
JC↓ 0.237 ± 0.010∙ 0.152 ± 0.005∙ 0.055 ± 0.003
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4.3  Ablation study

We perform ablation study to investigate the contribution factors of NetMCs and report 
the results in Table 3. For this investigation, we introduce two variants of NetMCs. Net-
MCs-nRC means NetMCs without the redundancy control term (the third term in Eq. (7)). 
NetMCs-nCE means NetMCs without the cross entropy term (the last term in Eq. (7)). 
Because NetMCs-nCE can not directly give the clustering results, we perform k-means 
on the node embeddings generated by NetMCs-nCE. We can see that NetMCs-nRC often 
performs better than NetMCs in terms of the quality (SC and DI), but loses to NetMCs 
in terms of the diversity (NMI and JC) between clusterings. This result proves the effec-
tiveness of the redundancy control term on improving the diversity, but it comes at the 
expense of compromising the quality, which coincides with known dilemma of quality and 
diversity of multiple clusterings. On the other hand, NetMCs always has a higher quality 
than NetMCs-nCE, while maintains a comparable diversity. This observation confirms that 
optimizing the objective of multi-facet embeddings and of multiple clusterings in a unified 
framework can alleviate the optimization inconsistency problem and produce alternative 
clusterings of better quality.

(a) (b)

(c)

Fig. 2  Three alternative clusterings generated by NetMCs on the YAGO dataset. The various clusters in 
each clustering are distinguished by different node colors. The labels PE, PR, AD, and AS on the nodes rep-
resent different node types (person, prize, location, and organization)
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We also visualize three alternative clustering results discovered by NetMCs on the 
YAGO dataset in Fig. 2. The considered meta-paths are P-L-P, P-R-P and P-O-L-O-P. Dif-
ferent clusters in each clustering are distinguished by different node colors. From Fig. 2, 
we can see that the persons in three subgraphs are clustered by the prize they win, by their 
locations and by their affiliated organizations. All these three clusterings for the same set 
of persons are with different semantics but meaningful, which signifies the capability of 
NetMCs on generating more than two alternative cluterings. In addition, NetMCs can not 
only cluster a single type of nodes of a HIN, but also other types of nodes included in the 
meta-path, such as prizes in Fig. 2a, locations in Fig. 2b and organizations in Fig. 2c. As 
a result, NetMCs can generate multiple clusterings for more than one node type in HIN 
simultaneously. Finally, the semantics of different meta-path schemes may overlap to some 
extents, due to the rich semantics of HIN. For example, in the second and the third cluster-
ings, the persons in the same locations are more likely to belong to the same organizations. 
To sum up, NetMCs can generate meaningful alternative clusterings of HIN from different 
perspectives.

4.4  Parameter, convergence, and complexity analysis

Parameter analysis To study the impact of redundancy term, we set M = 2 and vary � from 
10−3 to 103 with an exceptional condition � = 0 , and then plot the variation of quality (SC, 
the larger the better) and diversity (NMI, the smaller the better) of NetMCs on IMDb data-
set in Fig. 3a. We see that: (i) the quality (SC) fluctuates within a certain range at first and 
then decreases rapidly as � further increases; (ii) diversity (1-NMI) gradually increases and 
then keeps relatively stable. Overall, SC and NMI tend to decline as � increases, and they 
are always below the starting point ( � = 0 , no diversity control). This pattern is explain-
able, the larger � is, the less similarity of probability distributions of the same node in 
different embedding spaces is. In addition, the enhancement of diversity between multiple 
clusterings are often accompanied by a decrease in quality. In summary, � indeed helps to 
boost the diversity between clusterings. The best � should give the highest value both in 
quality and diversity. Unfortunately, the best quality and diversity often can not be attained 
at the same time. As a result, a best � is hard to choose. Users can adjust � according to 
their prefer on diversity (large � ) or quality (small �).

We study the impact of embedding dimension d of NetMCs. From Fig.  3b, we can 
observe that the quality (SC) fluctuates slightly, while the diversity (1-NMI) gradually 
decreases as the dimension increase. Overall, the embedding dimensions d impacts the 
quality of multiple clusters to some extent. The best balance between quality and diversity 
can be made when d ≈ 128 ∼ 256.

We vary M (number of alternative clusterings) from 2 to 6 on IMDb dataset to explore 
the variation of average quality (SC) and diversity (NMI) of multiple clusterings generated 
by NetMCs. In Fig. 3c, with the increase of M, the average quality (SC) decreases slowly 
while the diversity (NMI) fluctuates within a small range. Overall, NetMCs can generate 
M ≥ 2 alternative clusterings of quality and diversity, it obtains a better performance than 
other compared methods across different input values of M in most cases. In fact, the num-
ber of alternative clusterings of NetMCs can be adjusted according to user preference or 
determined in advance by prior knowledge.

We also investigate the effect of walk length l on the performance of NetMCs. In 
Fig. 3d, we vary walk length l from 10 to 60 and plot the corresponding SC and NMI 
under each fixed l. We find that either a too short or too long walk length has a negative 
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impact on quality and diversity of multiple clusterings. That is because a too short walk 
length will affect the capture of semantic information, while a too long walk length will 
introduce noisy information.

Convergence analysis Figure 3e shows the loss value against the number of epochs 
for NetMCs and its variants. We see that at the beginning the loss value drops rapidly, 
and typically converges in around 5 epochs. This not only proves the efficiency of Net-
MCs, but also shows that the redundancy control term and cross entropy term do not 
significantly increase the complexity of the optimization procedure.

(b)

(d)

(a)

(c)

(e)

Fig. 3  Parameter and convergence analysis of NetMCs
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Complexity analysis The time complexity of NetMCs includes two parts. NetMCs 
takes O(Mlw|V|) steps to obtain M groups of meta-path random walk sequences, and 
O(eMlw(c + b)d|V|) steps to update the nodes’ embeddings and clustering assignment vec-
tors, where e, l, w, c, b, and d are the number of epoches for optimization, the walk length, 
the number of walks per node, the neighborhood size, the number of negative samples, and 
the embedding dimensions, respectively. Note that eMlwcd ≪ |V| , and the complexity of 
NetMCs is linear with respect to |V| , while existing multiple clustering methods (Yang and 
Zhang 2017; Mautz et al. 2018; Yao et al. 2019a; Wei et al. 2020b) typically have a quad-
ratic or cubic complexity in |V|.

Table 4 gives the runtimes of the compared methods and of NetMCs. The experiments 
are conducted on a server.2 All methods are implemented in Python supported by PyTorch 
machine learning framework, except for MNMF and MVMC that run on Matlab2014a. We 
observe that the three fastest methods are DMClusts, ASPEM and HEER. DMClusts has a 
linear time complexity. ASPEM and HEER both build on LINE (Tang et al. 2015), which 
considers the second order approximation of networks and ignores the semantic informa-
tion embodied by meta-path; as such, they run faster than the other approaches. MNMF 
is also relatively fast, due to the decomposition of the sparse adjacency matrix into low 
dimensional ones. On the contrary, Nr-kmeans bears the curse of dimensionality and it 
cannot run on the large YAGO dataset. MVMC runs slowly due to the high time complex-
ity of self-representation learning. NetMCs builds on metapath2vec, and the introduced 
terms (redundancy control and clustering assignment) of NetMCs do not increase the order 
of computational complexity, so NetMCs and metapath2vec have similar runtimes. Splitter 
is also a random walk based solution, but it needs to cluster each node based on its context 
to build the ego networks. Therefore, it has the highest runtime. Compared with other lin-
ear methods, NetMCs bears larger coefficient over |V| , the walk length l and the number of 
walks per node w. In addition, NetMCs has to generate both embeddings and clustering 
results simultaneously, while other compared methods do not. Thus, its running times are 
high with respect to most of the competitors. In conclusion, the runtime of NetMCs is in 
the medium range, and it runs slightly slower than metapath2vec, since it has to control the 
redundancy and execute clustering assignments.

Table 4  Runtimes of compared methods (in min) on three network datasets

MNMF Nr-kmeans MVMC DMClusts ASPEM Splitter Metapath2vec HEER NetMCs

DBLP 2769 6495 3811 293 39 7226 3956 52 4426
IMDb 33 417 6 2 41 6641 470 46 754
YAGO 981 N/A 6153 438 1463 15,793 4421 1700 5195
Total 3783 N/A 9970 733 1543 29,660 8847 1798 10,375

2 Configuration: OS Ubuntu 16.04, Intel Xeon8163, 1TB RAM with NVIDIA TITAN V.
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5  Conclusion and future work

In this paper, we introduced the NetMCs model to explore alternative clusterings from 
the ubiquitous heterogeneous information networks, which is an interesting, practical 
but overlooked clustering topic that conjoins multiple embeddings and multiple cluster-
ings of the same network. NetMCs can seek multiple embeddings and multiple cluster-
ing results simultaneously by a variation of the skip-gram model under different seman-
tic meta-paths. It further introduces a redundancy term to improve the diversity between 
alternative clusterings. Experimental results confirm the advantage of NetMCs to state-
of-the-art competitive multiple embeddings/clusterings solutions. We will investigate a 
principle to automatically choose the meta-paths (Sun et  al. 2013; Zhou et  al. 2019; 
Meng et  al. 2015) and number of alternative clusterings, and multiple clusterings on 
dynamic network (Loglisci et al. 2012).
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