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Abstract
We introduce a deep learning framework able to deal with strong privacy constraints. 
Based on collaborative learning, differential privacy and homomorphic encryption, the 
proposed approach advances state-of-the-art of private deep learning against a wider range 
of threats, in particular the honest-but-curious server assumption. We address threats from 
both the aggregation server, the global model and potentially colluding data holders. Build-
ing upon distributed differential privacy and a homomorphic argmax operator, our method 
is specifically designed to maintain low communication loads and efficiency. The proposed 
method is supported by carefully crafted theoretical results. We provide differential privacy 
guarantees from the point of view of any entity having access to the final model, including 
colluding data holders, as a function of the ratio of data holders who kept their noise secret. 
This makes our method practical to real-life scenarios where data holders do not trust any 
third party to process their datasets nor the other data holders. Crucially the computational 
burden of the approach is maintained reasonable, and, to the best of our knowledge, our 
framework is the first one to be efficient enough to investigate deep learning applications 
while addressing such a large scope of threats. To assess the practical usability of our 
framework, experiments have been carried out on image datasets in a classification context. 
We present numerical results that show that the learning procedure is both accurate and 
private.
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1 Introduction

Application scenarios. We consider n hospitals, each of which owns a (personal) labelled 
database composed of medical records from its patients and a model (e.g. neural network) 
trained on this database to predict if a new patient is victim of a given disease, say can-
cer. The hospitals’ goal is to collaborate in order to improve the early detection of cancer. 
Building a model from a larger dataset than the personal databases would lead to improved 
detection capabilities. Nevertheless, these medical databases are highly-sensitive and the 
information they contain about the patients cannot be disclosed (Parliament and Council 
2016). In such a setting, the hospitals wish to collaboratively train a global model while 
preserving confidentiality of their records. To do so, the idea is to rely on an aggregating 
institution (e.g. the World Health Organisation). This would amount to creating a three-
party architecture: hospitals, aggregating institution, global model. Note that in our exam-
ple, and in many real-world settings, all the training data providers may be recipients of the 
global model, or the global model may even be totally public. Hence, the global model may 
be exposed to attacks like membership inference attacks  (Shokri et  al. 2017) that could 
indicate with high accuracy the probability that one patient was present in a database. Also, 
given a set of instances, the risk of a model inversion attack (Wu et al. 2016) which tries 
to infer sensitive attributes on the instances from a supposedly non-sensitive (often white-
box) access to the model, is to be seriously taken into account as it would allow to infer for 
example that some of the hospital databases contain more ill patients than others. Besides, 
the aggregating institution might be the target of cyberattacks aimed at stealing data from 
it. For all these reasons, the three-party architecture we consider has to be resistant to 
threats coming from both the aggregation server and the global model recipients.

Another motivating example, from the field of cybersecurity, is when several actors 
each hold a database of cybersecurity incident signatures that have occurred on their cus-
tomer networks. The actors would rely on a third-party server to train the global model. In 
this scenario, it is a great security issue if the global model suffers from an attack (e.g. if 
the model features can be inferred (Tramèr et al. 2016; Yan et al. 2018; Wang and Gong 
2018) with limited access to the model). In this case, this would clearly leak some informa-
tion on the detection capabilities of the actors, giving a clear advantage to cyberattackers 
on the networks they supervise.

Deployment scenario and threat model. To perform the aggregation in a private 
way, we work in the tripartite setting summarised in Fig.  1 and formally detailed in 
Sect.  4. The student (who holds the global model, a.k.a. the student model) is the 
owner of the homomorphic encryption scheme under which encrypted-domain com-
putations will be performed by the aggregation server. This means that the student 
generates and knows both the encryption and decryption keys �� and �� . Then, when 
being submitted an unlabelled input, the data holders (a.k.a. the teachers) noise the 
predictions from their personal models, encrypt them under �� and send these encryp-
tions to the server. The server has the responsibility to homomorphically perform the 
aggregation in order to produce an encryption of the output (e.g. a label) which will 
be sent back to the student and used by the latter for learning, after due decryption. 
Homomorphic encryption thus provides a countermeasure to confidentiality threats on 
the teachers’ predictions from the aggregation server, while the noise introduced by the 
actor addresses, via differential privacy, the issue of attacks against the student model. 
In this setting, we assume that the student model is public or at least available to all the 
actors of the protocol, namely the teachers, the aggregation server and, of course, the 
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student. Our mechanism is differentially private in this context, and our guarantees still 
hold against a malicious teacher, who has the information of the noise she generated, 
or even against colluding teachers (see Sect.  5). On the contrary, we do not address 
threats whereby the student and the aggregation server collude in the sense that the 
student does not share �� with the server (in which case they would both get access 
to the teachers’ predictions). We do not consider either threats where the aggregation 
server behaves maliciously, e.g. to prevent the student model from effectively learning 
from the teachers, leading to more or less stealthy forms of denial-of-service, or to 
perform a chosen ciphertext attack via selected queries to the student model. This is 
the typical scenario in which homomorphic encryption intervenes and our setting thus 
covers the threat model whereby the aggregation server is assumed to operate properly 
but may perform computations on observed data to retrieve information. This threat 
model is commonly known as the honest-but-curious model (Ishai et al. 2003; Bona-
witz et al. 2016; Graepel et al. 2012).

Our contribution. In this paper, we present a complete collaborative learning pro-
tocol which is secure along the whole workflow regarding a large scope of threats. We 
ensure protection of the data against any malicious actor of the protocol during the 
learning phase and prevent indirect information leakage from the final model using 
both homomorphic encryption and differential privacy. While our framework is agnos-
tic to the kind of models used by both the teachers and the student, to the best of our 
knowledge this is the first work with this level of protection to be efficient enough to 
apply to deep learning, therefore allowing very good accuracy on difficult tasks such 
as image classification, as shown by the experiments we ran. Our framework is also 
bandwidth-efficient and does not require more interactions than required by the base-
line protocol.

Outline of the paper. Section 2 relates our work to the literature. In Sect. 3, we give 
some technical background on differential privacy and homomorphic encryption. We 
describe our SPEED framework in Sect. 4 and analyse its differential privacy guaran-
tees in Sect. 5. Section 6 presents our experimental results - SPEED achieves state-or-
the-art accuracy and privacy with a mild computational overhead w.r.t previous works. 
Section 7 concludes the paper and states some open questions for further works.

n teacher
models

Server Student

PRIVATE PUBLIC

Labeled
public
dataset

Unlabeled
public

dataset

ENCRYPTED

Labels

Queries

Training

Noised
predictions

Encryption

Decryption

Fig. 1  SPEED—teacher models send to the aggregation server their encrypted noisy answers to the stu-
dent’s queries. The server homomorphically performs the aggregation in the encrypted domain and sends 
the result to the student model which decrypts it and uses it for training
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2  Related work

Differential privacy (DP) Recent works considered to use differential privacy in col-
laborative settings close to the one we consider  (Beaulieu-Jones et al. 2018; Bhowmick 
et al. 2018; Geyer et al. 2017; Chase et al. 2017; Papernot et al. 2016, 2018). Among 
them, the most efficient technique in terms of accuracy and privacy guarantees is Pri-
vate Aggregation of Teacher Ensembles (PATE) first presented in Papernot et al. (2016) 
and refined in Papernot et al. (2018). PATE uses semi-supervised learning to transfer to 
the student model the knowledge of the ensemble of teachers by using a differentially 
private aggregation method. This approach considers a setting very close to ours with 
the notable difference that the aggregation server is trusted. Hence, applying PATE in 
our scenario makes the teacher models vulnerable. To tackle this issue, our work builds 
upon PATE idea with two key differences: we let the responsibility of generating the 
noise to the teachers and we add a layer of homomorphic encryption in order for the 
overall learning to be kept private. Another difference can also be noted. To derive pri-
vacy guarantees, PATE assumes that two databases d and d′ are adjacent if only one 
sample of the personal database di of one teacher i changes, with the hypothesis that the 
personal databases di are disjoint. We do not need this hypothesis and we only consider 
the teacher models, not the personal databases they use to train them. This leads us to a 
more powerful definition of adjacency: two databases d and d′ are adjacent if they differ 
by one teacher.

Homomorphic Encryption (HE) HE allows to perform computations over encrypted 
data. In particular, this can be used so that the model can perform both training and pre-
diction without handling cleartext data. In terms of learning, the naive approach would 
be to have the training sets homomorphically encrypted, sent to a server for training to 
be done in the encrypted domain and the resulting (encrypted) model sent back to the 
participants for decryption. However, putting aside many subtleties, even by deploying 
all the arsenal available in the HE practitioner toolbox (batching, transciphering, etc.) 
this would be impractical as “classical” learning is both computation and know-how 
intensive and HE operations are intrinsically costly. As a consequence, there are only 
very few works that capitalise on HE for private training  (Graepel et  al. 2012; Hesa-
mifard et al. 2017; Lou et al. 2020) and inference (Gilad-Bachrach et al. 2016; Juvekar 
et al. 2018) of machine learning tasks. Moreover, since some attacks can be performed 
in a black-box setting, the system is still vulnerable to attacks from the end user who 
has access to the decryption key. In our framework, we do not use HE directly to build 
the model, we use it as a mean for the aggregation to be kept private. That way, we are 
protected against potential threats from the aggregation server, which does not have the 
decryption key, and we keep a manageable computational overhead.

Federated learning. Federated learning approaches gather several users who own 
data and make them collaborate in an iterative workflow in order to train a global model. 
The most famous federated learning algorithm is federated averaging(McMahan et  al. 
2016) which is a parallelised stochastic gradient descent. In a context of sensitive user 
data, several works proposed privacy-preserving federated learning or closely related 
distributed learning that make use of differential privacy (Geyer et al. 2017; Shokri and 
Shmatikov 2015), cryptographic primitives  (Bonawitz et  al. 2016, 2017; Ryffel et  al. 
2020) or both (Chase et al. 2017; Sabater et al. 2020; Ryffel et al. 2018). These methods 
require online communication between the parties whereas our solution takes advan-
tage of homomorphic encryption and the existence of personal trained models to avoid 
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online communication and drastically limit the interactions, that are both bandwidth-
consuming and vulnerable to attacks.

Private aggregation Several approaches have been considered to limit the need for a 
trusted server when applying differential privacy, for example by considering local differ-
ential privacy  (Kasiviswanathan et  al. 2011; Duchi et  al. 2013; Kairouz et  al. 2016). In 
practice it often results in applying too much noise, and maintaining utility can be diffi-
cult (Ullman 2018; Kasiviswanathan et al. 2011) especially for deep learning applications. 
In order to recover more accuracy while keeping privacy, some works combined decentral-
ised noise distribution (a.k.a. distributed differential privacy Shi et al. 2011) and encryption 
schemes (Rastogi and Nath 2010; Ács and Castelluccia 2011; Goryczka and Xiong 2015; 
Shi et al. 2011) in the context of aggregation of distributed time-series. Our work contrib-
utes to this line of research. However, our framework is the first one to be efficient enough 
to investigate deep learning applications while combining distributed DP and HE. Another 
advantage of our solution concerns fault tolerance regarding the added noise. Some works 
addressed the problem of fault tolerance by making the server generate the noise that some 
users did not generate (Bao and Lu 2015) while other works assume that the users them-
selves adapt the noise they generate to the possible failures (Chan et al. 2012). In our set-
ting, because of the encryption and the absence of communication between the teachers, 
we cannot suppose that any honest entity knows if some failures occurred. Moreover, the 
addition of noise to compensate a failure does not solve the problem of colluding teachers 
who may still send noise but do not keep it secret. In our protocol, the task of an honest 
actor (teacher or server) does not depend on the number of failures and we provide privacy 
guarantees as a function of the number of failures (see Sect. 5)—it then suffices to assume 
an upper bound on this number to ensure a privacy guarantee.

Secure Multi-Party Computation (SMPC) Secure Multi-Party Computation is a general 
approach that enables several parties to collaboratively perform a given computation with-
out revealing to the other parties any more information than the result of this computation. 
In particular, secure aggregation regroups approaches which use SMPC techniques as one-
time pads masking  (Bonawitz et  al. 2016, 2017) or secret-sharing  (Danezis et  al. 2013) 
to perform aggregation over sensitive data. Although these approaches are very close in 
intent to FHE-based ones, as the present one, they achieve different trade-offs. In a nut-
shell, when FHE is computation-intensive and non-interactive, SMPC puts more stress on 
protocol interactions. SMPC requires a lot of communication (garbled circuit generation 
and evaluation, oblivious input key retrieval, secret key sharing), both time-consuming and 
vulnerable to attacks, and needs in general that all teachers play their role in the protocol 
for it to terminate—or fixing the fault tolerance issue implies additional rounds of commu-
nication (Bonawitz et al. 2016, 2017). On the contrary, the FHE approach is more versatile, 
requires no interaction among the teachers and is robust to temporary teacher unavailabil-
ity. Still, at the time of writing, it is the authors’ opinion that both approaches are worth 
investigating in their own right (and this paper obviously belongs to the FHE thread of 
research).
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3  Preliminaries

3.1  Differential privacy

Differential privacy (Dwork et al. 2006) is a gold standard concept in privacy preserving 
data analysis. It provides a guarantee that under a reasonable privacy budget (�, �) , two 
adjacent databases produce statistically indistinguishable results. In this section, two data-
bases d and d′ are said adjacent if they differ by at most one example.

Definition 1 A randomised mechanism A with output range R satisfies (�, �) -differential 
privacy if for any two adjacent databases d, d′ and for any subset of outputs S ⊂ R one has

Let us also present a famous and widely used differentially private mechanism, known 
as the report noisy max mechanism.

Definition 2 Let K ∈ ℕ
∗ , and let X  be a set that can be partitioned into K subsets X1 , ..., 

XK . The mechanism that, given a database d of elements of X  , reports argmaxk∈[K]
[
nk + Yk

]
, 

where [K] ∶= {1,… ,K} , nk ∶= |d ∩ Xk| and Yk is a Laplace noise with mean 0 and scale 1
�
 , 

� ∈ ℝ
∗
+
 , is called report noisy max.

Theorem 1 (Dwork et al. 2014) Let A be the report noisy max as above. Then A is (2� , 0)
-differentially private.

We now define the notion of infinite divisibility that we will use to implement distrib-
uted differential privacy.

Definition 3 A random variable Y is said to be infinitely divisible if, for any m ∈ ℕ
∗ , we 

can find a family (Xm,i)i∈[m] of independent and identically distributed (i.i.d.) random vari-
ables such that Y has the same distribution as 

∑m

i=1
Xm,i.

The following proposition from Kotz et al. (2001) claims that the Laplace distribution 
is infinitely divisible,1 enabling to distribute its generation among an arbitrary number of 
agents.

Proposition 1 (Kotz et al. 2001) Let m ∈ ℕ
∗ and � ∈ ℝ

∗
+
 . Let G(i)

p
 , for (i, p) ∈ [m] × [2] , be 

i.i.d. random variables following the Gamma distribution of shape 1
m

 and scale 1
�
 . Then 

∑m

i=1

�
G

(i)

1
− G

(i)

2

�
 follows the Laplace distribution of mean 0 and scale 1

�
 . The Laplace dis-

tribution is said to be infinitely divisible.

ℙ[A(d) ∈ S] ≤ e�ℙ
[
A(d�) ∈ S

]
+ �.

1 Another well-known example of infinitely divisible probability distribution is the Gaussian distribution 
which can be seen as the sum of Gaussian distributions of well chosen scale parameter. In a possible further 
work, we could indeed replace the (distributed) Laplace noise by a (distributed) Gaussian noise.
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Definition 4 Let A be a randomised mechanism with output range R and d, d′ a pair of 
adjacent databases. Let aux denote an auxiliary input. For any o ∈ R , the privacy loss at o 
is defined as

We define the privacy loss random variable C(A, aux, d, d�) as

i.e. the random variable defined by evaluating the privacy loss at an outcome sampled from 
A(d).

In order to determine the privacy loss of our protocol, we use a traditional two-fold 
approach. First of all, we determine the privacy loss per query and, in a second step, we 
compose the privacy losses of each query to get the overall loss. The classical composition 
theorem (see e.g. Dwork et al. 2014) states that the guarantees � of sequential queries add 
up. Nevertheless, training a deep neural network, even with a collaborative framework as 
presented in this paper, requires a large amount of calls to the databases, precluding the 
use of this classical composition. Therefore, to obtain reasonable DP guarantees, we need 
to keep track of the privacy loss with a more refined tool, namely the moments account-
ant (Abadiet al. 2016) that we introduce here, deferring the details of the method in Section 
A.1 of the appendix.

Definition 5 With the same notations as above, the moments accountant is defined for any 
l ∈ ℝ

∗
+
 as

where the maximum is taken over any auxiliary input aux and any pair of adjacent data-
bases (d, d�) and �A(l;aux, d, d�) ∶= log

(
�
[
exp(lC(A, aux, d, d�))

])
 is the moment generat-

ing function of the privacy loss random variable.

3.2  Homomorphic encryption

Let us consider Λ and � which respectively are the set of cleartexts (a.k.a. the clear 
domain) and the set of ciphertexts (a.k.a. the encrypted domain). A homomorphic encryp-
tion system first consists in two algorithms ����� ∶ Λ ⟶ � and ����� ∶ � ⟶ Λ where 
�� and �� are data structures which represent the public encryption key and the private 
decryption key of the cryptosystem.

Homomorphic encryption systems are by necessity probabilistic, meaning that some 
randomness has to be involved in the ��� function and that the ciphertexts set � is sig-
nificantly much bigger than the cleartexts set Λ . Any (decent) homomorphic encryption 
scheme possesses the semantic security property meaning that, given ���(m) and polyno-
mially many pairs (mi,���(mi)) it is hard2 to gain any information on m with a significant 

c(o;A, aux, d, d�) ∶= log

(
ℙ[A(aux, d) = o]

ℙ[A(aux, d�) = o]

)
.

C(A, aux, d, d�) ∶= c(A(d);A, aux, d, d�)

�A(l) ∶= max
aux,d,d�

�A(l;aux, d, d
�)

2 “Hard” means that it requires solving a reference (conjectured) computationally hard problem on which 
the security of the cryptosystem hence depends. From a practical viewpoint, given a security target � , the 
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advantage over guessing. Most importantly, a homomorphic encryption scheme offers two 
other operators ⊕ and ⊗ where

– ���(m1)⊕ ���(m2) = ���(m1 + m2) ∈ 𝛺

– ���(m1)⊗ ���(m2) = ���(m1m2) ∈ 𝛺

When these two operators are supported without restriction by a homomorphic scheme, 
it is said to be a Fully Homomorphic Encryption (FHE) scheme. A FHE with Λ = ℤ2 is 
Turing-complete and, as such, is in principle sufficient to perform any computation in 
the encrypted domain with a computational overhead depending on the security tar-
get3. In practice, though, the ⊕ and ⊗ are much more computationally costly than their 
clear domain counterparts which has led to the development of several approaches to HE 
schemes design each with their pros and cons.

Somewhat HE (SHE). Somewhat homomorphic encryption schemes, such as BGV 
(Brakerski et  al. 2012) or BFV (Fan and Vercauteren 2012), provide both operators but 
with several constraints. Indeed, in these cryptosystems the ⊗ operator is much more costly 
than the ⊕ operator and the cost of the former strongly depends on the multiplicative depth 
of the calculation, that is the maximum number of multiplications that have to be chained 
(although this depth can be optimised Aubry et al. 2019). Interestingly, most SHE schemes 
offer a batching capability by which multiple cleartexts can be packed in one ciphertext 
resulting in (quite massively) parallel homomorphic operations i.e.,

(and similarly so for ⊗ ). Typically, several hundreds such slots are available which often 
allows to significantly speed up encrypted-domain calculations.

Fully HE (FHE). Fully homomorphic encryption schemes offer both the ⊕ and ⊗ opera-
tors without restrictions on multiplicative depth. At the time of writing, only the FHE-over-
the-torus approach, instantiated in the TFHE cryptosystem  (Chillotti et  al. 2016), offers 
practical performances. In this cryptosystem, ⊕ and ⊗ have the same constant cost. On the 
downside, TFHE offers no batching capabilities. To get the best of all worlds, the TFHE 
scheme is often hybridised with SHE by means of operators allowing to homomorphically 
switch among several ciphertext formats  (Boura et al. 2018; Lou et al. 2020) to perform 
each part of calculation with the most appropriate scheme (see e.g. Zuber et al. 2020).

4  SPEED: secure, private, and efficient deep learning

4.1  A distributed learning architecture

Let us consider a set of n owners (a.k.a. teachers) each holding a personal sensitive model 
fi . We assume that we also have an unlabelled public database D. The goal is to label D 

(1)���(m1,… ,m𝜅)⊕ ���(m�
1
,… ,m�

𝜅
) = ���(m1 + m�

1
,… ,m𝜅 + m�

𝜅
)

3 Polynomial in �.

Footnote 2 (continued)
concrete parameters of a homomorphic scheme are chosen such that the best known (exponential-time) 
algorithms for solving the underlying reference problem require an order of magnitude of 2� nontrivial 
operations.
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using the knowledge of the private (teacher) models to train a collaborative model (a.k.a. 
student model) mapping an input space X  to an output space [K] = {1,… ,K} . To do so 
while keeping the process private, we follow the setting illustrated by Fig. 1 relying on a 
(distrusted) aggregation server: 

1. For every sample x of the public database D, the student sends x to the aggregator 
requesting it to output label for x. The aggregator forwards this request to the n teachers.

2. Each teacher i labels x using its own private model fi . Then each teacher adds noise to 
the label (see Sect. 4.2) and encrypts the noisy label before sending it to the aggregation 
server.

3. The aggregator performs a homomorphic aggregation of the noisy labels and returns the 
result to the student model, namely the most common answered label (see Sect. 4.3).

4. The student, who owns the decryption key, decrypts the aggregated label and is then 
able to use the labelled sample to train its model.

Our framework addresses two kinds of threats using two complementary tools. On one 
hand, differential privacy protects the sensitive data from attacks against the student model. 
Indeed, some model inversion attacks (Wu et al. 2016) might disclose the training data of 
the student model, and especially the labels of database D. But differential privacy ensures 
that the noise applied to the teachers’ answers prevents the aggregated labels from leaking 
information about the sensitive models fi.4 On the other hand, the homomorphic encryp-
tion of the teachers’ answers prevents the aggregator to learn anything about the sensitive 
data while enabling it to blindly compute the aggregation.

4.2  Noise generation and threat models

When requested to label a sample x, each owner i uses its model fi to infer the label of x. In 
order for the aggregator to compute the most common label in the secret domain, the owner 
must send a one-hot encoding of the label. That is, rather than sending fi(x) , the i-th teacher 
sends a K-dimensional vector, say z(i) , whose fi(x)-th coordinate is an encryption of 1 while 
all the other coordinates are encryptions of 0. To guarantee differential privacy (see Sect. 5 
for the formal analysis), the owner adds to this one-hot encoding a noise drawn from 
G

(i)

1
− G

(i)

2
 where the G(i)

1
 and G(i)

2
 are 2n i.i.d. K-dimensional random variables following the 

Gamma distribution of shape 1
n
 and scale 1

�
 , where � ∈ ℝ

∗
+
 . Then, i sends the (encrypted) 

noisy one-hot encoded vector whose k-th coordinate corresponds to z(i)
k
+ G

(i)

k,1
− G

(i)

k,2
.

Assuming that the aggregator has access to the student model, distributing the respon-
sibility of adding the noise among all the teachers instead of delegating this task to the 
aggregator (see paragraph on centralised noise below) is necessary to protect the data 
against an honest-but-curious aggregator. Indeed, such an aggregator could use the infor-
mation of the noise it generated to break the differential privacy guarantees and, poten-
tially, recover the sensitive data by model inversion on the student model. Note that such an 
attack does not break the honest-but-curious assumption since the aggregator still performs 
its task correctly.

Beyond the honest-but-curious model In a model that would go beyond the honest-but-
curious aggregator hypothesis, the capability for the aggregator to add its own noise is even 

4 Thanks to the DP guarantees, the labels of D could actually be published as well.
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more harmful for the privacy (and of course, the accuracy) than not using noise at all. 
Indeed it gives the aggregator much more freedom to attack. As an example, think about a 
malicious aggregator that wants to know a characteristic � on a particular teacher, called 
its victim. Given a query, for all k ∈ [K] , we write nk ∶= |{i ∶ fi(x) = k}| and call it the 
number of votes for class k. Let us suppose that, for a given query, changing the value of 
the victim’s characteristic � from �0 to �1 also changes the victim’s vote from a class k0 
to a class k1 . Hence, by denoting nk0 = �0 and nk1 = �1 if � = �0 , we get nk0 = �0 − 1 and 
nk1 = �1 + 1 if � = �1 . Then, if the aggregator knows all the nk for k ∈ [K]⧵{k0, k1} and 
knows �0 and �1 (which are the classical hypotheses in differential privacy), it can add just 
as much noise as needed for the class k0 to be the argmax if and only if � = �0 5. The result 
from the homomorphic argmax would then leak the information about the value of the vic-
tim’s characteristic �.

Centralised noise generation In a context in which the student model is kept private and, 
especially, not available to the aggregator, we can consider a centralised way of generating 
the noise. If we do not trust the teachers to generate the noise, we can charge the aggrega-
tor to do it, since it will not be able to use the knowledge of the noise to attack the sensi-
tive data via the student model. The aggregator only needs to generate a Laplace noise (in 
the clear domain), and homomorphically add it to the unnoisy encryption of nk it receives 
from the teachers. The infinite divisibility of the Laplace distribution (Proposition 1) shows 
that the resulting noise is the same as in the case presented above in which each teacher 
generates an individual noise drawn from the difference of two Gamma distributions. The 
privacy cost of one request is simply the privacy cost of the report noisy max, namely 2� 
(Theorem 1).

In a nutshell, we can consider the following different threat models:

– honest (H) : the aggregation server performs its tasks properly and do not try to retrieve 
information from the data it has access to

– honest-but-curious (HBC) : the aggregation server performs its tasks properly but it 
may compute the available data to get sensitive information

– beyond honest-but-curious (BHBC) : the aggregation server performs the aggregation 
correctly but cannot be trusted to properly generate the noise necessary to the DP guar-
antees

Table 1 summarises against which kind of server our protocol is protected, depending on 
the access the server has to the student model and on the way the noise is generated. As 
already emphasised, we focus on the case where the student model is public and the noise 
is distributively generated by the teachers because it is the most general model among the 
realistic threat models and thus gives the better tradeoff between flexibility and security.

Table 1  Robustness of our 
framework depending on the 
availability of the student model 
and the noise generation

Private model Public model

Centralised noise HBC H
Distributed noise BHBC BHBC

5 For example, add �
0
−

1

2
− n

k
 to all the classes except k

0
 and k

1
 , �

0
− 1 − �

1
 to the class k

1
 and nothing to 

the class k
0
.
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4.3  Technical details on the homomorphic aggregation

Summing the noisy counts The aggregation server receives the n encrypted noisy labels 
and sums them up in the secret domain. Due to the infinite divisibility of the Laplace dis-
tribution, the server obtains a K-dimensional vector whose k-th ( k ∈ [K] ) coordinate is an 
encryption of:

where nk ∶= |{i ∶ fi(x) = k}| and Yk is a Laplace noise with mean 0 and scale 1
�
.

So far, we have only needed homomorphic addition which is a good start. Then an arg-
max operator must be performed after the summation. However, efficiently handling the 
highly nonlinear argmax function by means of FHE is much more challenging.

Computing the argmax. Most prior work on secure argmax computations use some kind 
of interaction between a party that holds a sensitive vector of values and a party that wants 
to obtain the argmax over those values. The non-linearity of the argmax operator presents 
unique challenges that have mostly been handled by allowing the two interested parties 
to exchange information. This means increased communication costs and, in some cases, 
information leakage. This is with the exception of Zuber et al. (2020). They provide a fully 
non-interactive homomorphic argmax computation scheme based on the TFHE encryption. 
We implemented and parametrised their scheme to fit the specific training problems pre-
sented in Sect. 6. We present here the main idea behind this novel FHE argmax scheme. 
For more details, see the original paper. The TFHE encryption scheme provides a boot-
strap operation that can be applied on any scalar ciphertext. Its purpose is threefold: switch 
the encryption key; reduce the noise; apply a non-linear operation on the underlying plain-
text value. This underlying operation can be seen as a function

One notable application is that of a “sign” bootstrap: we can extract the sign of the input 
with the underlying function g0,1,0(x) . The argmax computation in the ciphertext space is 
made as follows. For every k, k′ , k ≠ k′ , we compare the values nk + Yk and nk� + Yk� with a 
subtraction ( nk + Yk − nk� − Yk� ) and application of a sign bootstrap operation. This yields 
�k,k′ , a variable with value 1 if nk + Yk > nk� + Yk� and 0 otherwise. Therefore the complex-
ity will be quadratic in the number of classes. For a given k we can then obtain a boolean 
truth value (0 or 1) for whether nk + Yk is the maximum value. To this end, we compute

nk is the max if and only if, for all i one has �k,i = 1 i.e. �k = K − 1 . We can therefore apply 
another bootstrap operation with g

K−
3

2
,1,0 . If �k = K − 1 , the boostrap will return an 

encryption of 1, and return an encryption of 0 otherwise. Once decrypted, the position of 
the only non-zero value is the argmax. Because the underlying function gt,a,b is applied 
homomorphically, its output is inherently probabilistic. In the FHE scheme used, an error 

n∑

i=1

(
z
(i)

k
+ G

(i)

k,1
− G

(i)

k,2

)
= nk + Yk

gt,a,b(x) =

{
a if x > t

b if x < t.

�k =
∑

i≠k
�k,i.
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is inserted in all the ciphertexts at encryption time to ensure an appropriate level of secu-
rity. This means that if two values are too close, then the sign bootstrap operation might 
return the wrong result over their difference. The exact impact of this approximation on the 
accuracy is evaluated in Sect. 6.

Remark Another solution would be to send the noisy histogram nk + Yk of the counts for 
each class k to the student and let her process the argmax in the clear domain. This could 
indeed be performed with a plain-old additively-homomorphic cryptosystem such as Pail-
lier or (additive-flavored) ElGamal, avoiding the machinery of the homomorphic argmax. 
Nevertheless, this approach was put aside because sending the whole histogram instead of 
the argmax would provide much worse DP guarantees.

5  Differential privacy analysis

In this section, we will give privacy guarantees considering that two databases d and d′ are 
adjacent if they differ by one teacher i.e. there exists i0 ∈ [n] such that fi0 ≠ f ′

i0
 and, for all 

i ∈ [n]⧵{i0} , fi = f �
i
 . This definition of adjacency is quite conservative and is strictly larger 

than the definition of adjacency from  Papernot et  al. (2016) (indeed, in the assumption 
whereby the personal teacher databases di are disjoint, changing one sample from a per-
sonal database changes at most one teacher).

Robustness against colluding teachers As we have decided not to trust the aggregation 
server to generate the noise necessary to the privacy guarantees, we may also assume that a 
subset of teachers might be malicious and collude by communicating their generated noise, 
which gives the same DP guarantees from the point of view of a colluding teacher as if they 
would have not generated any noise and, to this extent, our protocol, which addresses this 
issue, is fault tolerant. The following theorem quantifies the privacy cost of such failures.

In the following, we call A the aggregation mechanism that outputs the argmax of the 
noisy counts. A(d,Q) is the output of A for the database d and the query Q. Let � ∈ ℝ

∗
+
 be 

the inverse scale parameter of the distributed noise. Considering the DP guarantees from 
the point of view of an entity E , let � ∈ (0, 1) be the ratio of the teachers whose noise is 
ignored by E.

Theorem  2 Let us define I ∶ v ∈ ℝ
∗
+
↦ ∫ +∞

0
(t + v)�−1t�−1e−2tdt and 

g ∶ t ∈ ℝ ↦
∫ +∞

�t
e−vI(v)dv

∫ +∞

�(t+2)
e−vI(v)dv

.

Then, from E ’s point of view, A is (�, 0)-differentially private, with

Moreover, if 𝜏 >
1

2
 , g is differentiable in 0 and A is (��, 0)-differentially private, with

where g�(0) = �
Γ(�)2

2
e−2� I(2�)−I(0) ∫ +∞

2�
e−vI(v)dv

(∫ +∞

2�
e−vI(v)dv

)2 .

Sketch of proof  Adapting the proof of the privacy cost of the report noisy max 
from Dwork et al. (2014), we first show that, if we can find a function M of � and � such 

� = log

(
1 + 2

∫ �

0
e−vI(v)dv

∫ +∞

2�
e−vI(v)dv

)
.

�� = min
[
�, log

(
g(0) − g�(0)

)]
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that, for any t ∈ ℝ , g(t) ≤ M , then A is (log(M), 0)-differentially private. This motivates us 
to find an upper bound of g.

To do so, we prove that g has a maximum on ℝ and that this maximum is reached on the 
interval [−1;0] . On one hand, we show that, for all t ∈ [−1;0] , g(t) ≤ 1 + 2

∫ �

0
e−vI(v)dv

∫ +∞

2�
e−vI(v)dv

 . On 

the other hand, we prove that, if besides 𝜏 >
1

2
 , then g is concave on [argmax(g);0] and thus, 

for all t ∈ [−1;0] , g(t) ≤ g(0) − g�(0) (note that g is not differentiable in 0 if � ≤ 1

2
 ).   ◻

Denoting S the subset of teachers who are honest (i.e. do not collude), this theorem 
allows us to control the privacy cost by the ratio � of the teachers who kept their noise 
secret, from the point of view of both:

– a colluding teacher, taking � =
|S|
n

– an honest teacher, taking � =
n−1

n
– any entity who has access to the student model but is not a teacher, taking � = 1

Note that we can also use Theorem 2 in the hypothesis whereby the colluding teachers pub-
lish their noise (to the whole world), adapting � in consequence.6 For � = 1 , the privacy 
guarantee is given by lim

�→1
�′ which, as shown by Proposition 2, is the classical bound of the 

report noisy max with a centralised Laplace noise.

Proposition 2 For all � ∈ ℝ
∗
+
 , lim
�→1

[
log(g(0) − g�(0))

]
= 2�.

Furthermore, Proposition 3 shows that, naturally, the privacy cost tends to be null when 
the noise becomes infinitely large ( � approaches 0).

Proposition 3 For all � ∈ (0, 1) , lim
�→0

[
log

(
1 + 2

∫ �
2

0
e−vI(v)dv

∫ +∞

�
e−vI(v)dv

)]
= 0.

Let us also give an upper bound of the probability that the noisy argmax is different 
from the true argmax.

Proposition 4 Let k∗ be the class corresponding to the true argmax.

If � ∈ (
1

2
;1),

where �k ∶= nk∗ − nk for any k ∈ [K] and Γ ∶ � ∈ ℝ
∗
+
↦ ∫ +∞

0
t�−1e−tdt is the gamma 

function.

If � ∈ (0;
1

2
],

ℙ[A(d;Q) ≠ k∗] ≤ ∑

k≠k∗
e−��k

[
1

2
+

(��k)
2�−1

�24�−2Γ(�)2

]

6 e.g. the privacy guarantee for an honest teacher would be computed with � =
|S|−1
n

.
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Sketch of proof.  The event (A(d;Q) ≠ k∗) is the union of the events (nk + Yk ≥ nk∗ + Yk∗ ) , 
for k ∈ [K]⧵{k∗} , and thus ℙ[A(d;Q) ≠ k∗] ≤ ∑

k≠k∗ ℙ(nk + Yk ≥ nk∗ + Yk∗ ) . We remark 
that, for any k ∈ [K]⧵{k∗},

where f ∶ u ∈ ℝ
∗ ↦

�

Γ(�)2
e−�|u|I(�|u|) and F ∶ t ∈ ℝ ↦ ∫ t

−∞
f (u)du.

We show that ∫ +∞

�k
f (t)F(t − �k)dt ≤ 3

8
e−��k and ∫ 0

−∞
f (t)F(t − �k)dt ≤ 1

8
e−��k . Moreo-

ver, using Hölder’s inequality, we show that, for all q ∈ (
1

1−�
; +∞) , calling p ∶=

1

1−
1

q

 , 

∫ �k

0
f (t)F(t − �k)dt ≤ e−��k

�2
4�−2+

1
q Γ(�)2

×
(��k)

2�−1+
1
q

p
1
p [q(1−�)−1]

1
q

 . For 𝜏 >
1

2
 , we take the particular (and 

classic) case of the limit of the previous bound when q tends to +∞ . For � ≤ 1

2
 , we take 

q =
1

1−
3

2
�
 .   ◻

Theorem 2 and Proposition 4 serve as building blocks to which we apply the following 
theorem from Papernot et al. (2016).

Theorem  3 (Papernot et  al. 2016) Let �, l ∈ ℝ
∗
+
 . Let A be a (�, 0)-differentially private 

mechanism and q ≥ ℙ[A(d) ≠ k∗] for some outcome k∗ . If q <
e𝜖−1

e2𝜖−1
 , then for any addi-

tional information aux and any pair (d, d�) of adjacent databases, A satisfies

As in Papernot et al. (2016), Theorem 3 coupled with some properties of the moments 
accountant (composability and tail bound) allows one to devise the overall privacy budget 
(�, �) for the learning procedure (see Sect. 6 for numerical results). We refer the interested 
reader to Section A of the appendix for more details and for the extended proofs of our 
claims.

Influence of the cryptographic layer One must be aware that the cryptographic layer 
perturbates the noisy votes because the computation of the homomorphic argmax has a 
small probability of error. Although this topic deserves further investigations, we make the 
assumption that these perturbations are negligible and that they do not change the privacy 
guarantees as they basically constitute an additional noise on the votes. We further discuss 
this point in Appendix A.3.

6  Experimental results

The experiments presented below enable us to validate the accuracy of our framework 
on well-known image classification tasks and illustrate the practicality of our method in 
terms of performance, since the computational overhead due to the homomorphic layer 

ℙ[A(d;Q) ≠ k∗] ≤ ∑

k≠k∗
e−��k

[
1

2
+

(��k)
�

2

�2
5

2
�−1Γ(�)2

×
(
3

2
�

) 3

2
�(2

�
− 3

)1−
3

2
�
]
.

ℙ(nk + Yk ≥ nk∗ + Yk∗ ) = ℙ(Yk∗ ≤ Yk − �k)

= �
0

−∞

f (t)F(t − �k)dt + �
�k

0

f (t)F(t − �k)dt + �
+∞

�k

f (t)F(t − �k)dt

�A(l;aux, d, d
�) ≤ min

[
�l,

�2l(l + 1)

2
, log

(
(1 − q)

(
1 − q

1 − e�q

)l

+ qe�l

)]
.
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remains reasonable. The source codes necessary to run the following experiments are 
available on https:// github. com/ Arnaud- GS/ SPEED.

HE time overhead We implemented the homomorphic argmax computation presented 
in Sect. 4.3. Without parallelizing, a single argmax query requires just under 4 s to com-
pute on an Intel Core i7-6600U CPU. Importantly, this does not depend on the input 
data. The costliest operation is the computation of � . Any other part of the scheme is 
negligible in comparison. Therefore, once the parameters are set, the time performance 
depends solely on the number of classes (the number of bootstrap comparisons is quad-
ratic in the number of classes). As such, 100 queries require 6.5 min and 1000 que-
ries 65 min. Of course, the queries can be performed in parallel to decrease the latency 
allowing for much more challenging applications.

Homomorphic argmax accuracy As we mention in Sect. 4.3, the homomorphic com-
putation of the argmax is inherently probabilistic. This is due both to the noise added 
to any ciphertext at encryption time, and to limitations of the bootstrapping operation 
in terms of accuracy. On MNIST dataset LeCun (1998), we evaluate the method with 
� = 1∕0.9∕0.7 and compare the cleartext argmax to our homomorphic argmax. Our 
implementation of the HE argmax has an average accuracy of 99.4% , meaning that it 
retrieves the cleartext argmax 99.4% of the time.

To obtain a more general and conservative measure of the inherent accuracy of the 
HE argmax (which can be applied on any dataset), we make the teachers give uniformly 
random answers to the queries. In this setting, most counts nk are likely to be close to 
one another, which makes even a classical argmax useless. This kind of scenario can be 
seen as worst-case, since the teacher voting is adversarial to argmax computation. Even 
in this scenario, and with the same parameters as for MNIST, our implementation of the 
HE argmax algorithm still produces an average accuracy of 90% . Hence, an accuracy 
of 90% can be considered a lower bound for any adaptation of this argmax technique to 
other datasets. Yet in practice a tweaking of the parameters can yield a better accuracy 
even for this worst-case scenario, at the cost of time efficiency.

Learning setup To evaluate the performances of our framework, we test our method 
on MNIST LeCun (1998) and SVHN Netzer et al. (2011) datasets. To represent the data 
holders, we divide the training set in 250 equally distributed and disjoint subsets, keep-
ing the test set for learning and evaluation of the student model. Then we apply the fol-
lowing procedures. We refer the interested reader to Section C of the appendix for more 
details on the hyper-parameters and learning procedure.

– Teacher models For MNIST, given a dataset, a data holder builds a local model by 
stacking two convolutional layers with max pooling and a fully connected layer with 
ReLu activations. Two additional layers have been added for SVHN.

Table 2  Results for MNIST 
dataset with 250 teachers and 
100 student queries. We used an 
inverse noise scale � = 0.1 . The 
DP guarantees, computed by 
composability with the moments 
accountant method over the 100 
queries, are given for � = 10

−5

Framework � Acc. (± std) [%] HE overhead

Non-private – 96.22 ( ±2.27) –
Trusted 1.41 95.95 ( ±2.97) –
� = 1 1.41 95.91 ( ±2.57) 6.5min
� = 0.9 1.66 96.02 ( ±2.92)
� = 0.7 2.37 96.06 ( ±2.61)

https://github.com/Arnaud-GS/SPEED
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– Student model Following the idea from Papernot et al. (2016), we train the student in a 
semi-supervised fashion. Unlabelled inputs are used to estimate a good prior distribu-
tion using a GAN-based technique first introduced in Salimans et al. (2016). Then we 
use a limited amount of queries (100 for MNIST, 500 for SVHN) to obtain labelled 
examples which we use to fine tune the model.

For MNIST experiments, as the student model can substantially vary based on the selected 
subset of labelled examples, the out-of-sample accuracy has been evaluated 15 times, with 
100 labelled examples sampled from a set of 9000 ones. For each experiment, the remain-
ing 1000 examples have been used to evaluate the student model accuracy. For SVHN, the 
computations being much more heavy, the out-of-sample accuracy has been evaluated 3 
times, with 500 examples sampled from a set of 10, 000 ones. We used 16, 032 examples to 
test the student model accuracy.

Performances on MNIST Table  2 displays our experimental results for SPEED with 
MNIST and compares them to a non-private baseline (without DP or HE) and to the frame-
work that we call Trusted which assumes that the server is trusted and thus only involves 
DP and not HE. Trusted can be considered as PATE framework from Papernot et al. (2016) 
with some subtle differences: the noise is generated in a distributed way in Trusted and the 
notion of adjacency is larger. Even if the inverse noise scale � we use is greater than the one 
in Papernot et al. (2016) (0.1 instead of 0.05), which should lead to a worse DP guarantee, 
an argmax-specific analysis of the privacy cost per query allowed us to provide a better 
DP guarantee ( � = 1.41 instead of � = 2.04 with � = 10−5 and 100 queries). To be more 
conservative in terms of accuracy, the experiments were run considering that the colluding 
teachers did not generate any noise, which does not change anything in terms of DP. That is 
why, in spite of the variability of the accuracy, we observe a tradeoff between accuracy and 
DP. Indeed, even if the reported average accuracy does not vary much across conditions, 
consistent rankings of the methods have been observed, confirming the expected average 
rank of the method based on the amount of added noise. As expected, the best DP guar-
antee ( � = 1.41 ) is obtained when all the teachers generated noise ( � = 1 ), but this is the 
case where the accuracy is the lowest. On the contrary, when some teachers failed to gen-
erate noise ( � = 0.9 and � = 0.7 ), the counts are more precise, leading to a slightly better 

Fig. 2  Differential privacy guar-
antees for MNIST as a function 
of � , with � = 0.9
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accuracy but worse DP guarantees. It should also be noted that the variance is high in each 
condition. It masks the fact that the distribution is highly skewed, with a majority of results 
in the 97.5−98.5% range, and a few samplings yielding an out-of-sample accuracy around 
90%.

Figure 2 shows the evolution of our DP guarantee as a function of � , with � = 0.9 fixed. 
Note that the privacy cost decreases for � ≥ 2 which may seem counterintuitive but the rea-
son is thoroughly explained in Section A.4 of the appendix. Anyway, we observed empiri-
cally that the privacy cost has a finite limit in +∞ (approximately 2.87) and remains greater 
than this limit for any � ≥ 2 . The asymptote is shown by a dashed line on Fig. 2.

Figure 3 shows the evolution of the DP guarantee as a function of � , with � = 0.1 fixed. 
As explained before, the greater � , the better the DP guarantee.

Performances on SVHN Table 3 presents our experimental results on SVHN dataset.7 
The variance on the accuracy is much smaller than for MNIST dataset because the test set 
is constituted of 16, 032 samples. Similarly to the MNIST experiment, the accuracy and 
the privacy cost increase when less noise is applied because less teachers noised their votes 
(i.e. when � is small). The DP guarantees are not as good as for MNIST, this is due to the 

Fig. 3  Differential privacy guar-
antees for MNIST as a function 
of � , with � = 0.1

Table 3  SVHN experimental 
results for 500 queries, with 
noise inverse scale � = 0.1 , 
� = 10

−5

Framework � Acc. [%] HE overhead

Non-private – 84.7 –
Trusted 4.73 83.7 –
� = 1 4.73 83.5 32.5 min
� = 0.9 5.59 83.8
� = 0.7 8.16 84.6

7 Note that our DP guarantee � for Trusted cannot be directly compared with PATE’s one since we do not 
use the same �.
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high amount of queries (500) necessary to obtain a good accuracy because the learning 
task is more complex.

7  Conclusion and open questions for further works

Our framework allows a group of agents to collaborate and put together their sensitive 
knowledge while protecting it via two complementary technologies—differential privacy 
and homomorphic encryption—against any entity contributing to the learning or having 
access to the final model. Crucially, our experiments showed that our method is practical 
for deep learning applications, combining high accuracy, mild computational overhead and 
privacy guarantees adapting to the number of malicious teachers.

An interesting further work could investigate the fault tolerance of the privacy guar-
antees with other noises (e.g. Gaussian noise) or other infinite divisions (Laplace dis-
tribution can also be infinitely divided using individual Gaussian noises or individual 
Laplace noises, Goryczka et al. 2013). A more ambitious direction towards collaborative 
deep learning with privacy would be to design new aggregation operators, more suitable 
to FHE performances yet still providing good DP bounds. In particular, a linear or quad-
ratic aggregation operator would be amenable to almost negligible homomorphic computa-
tions overhead. This lighter homomorphic layer would enable to extend the applicability of 
our framework to more complex datasets. Such aggregation operators would also allow to 
associate homomorphic calculations with verifiable computing techniques (e.g. Fiore et al. 
2014) whereby the server would provide an encrypted aggregation result along with a for-
mal proof that aggregation was indeed done correctly. These perspectives would then allow 
to address threats beyond the honest-but-curious model.
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