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Abstract
This work focuses on distributed optimization for multi-task learning with matrix sparsity
regularization. We propose a fast communication-efficient distributed optimization method
for solving the problem. With the proposed method, training data of different tasks can be
geo-distributed over different local machines, and the tasks can be learned jointly through
the matrix sparsity regularization without a need to centralize the data. We theoretically
prove that our proposed method enjoys a fast convergence rate for different types of loss
functions in the distributed environment. To further reduce the communication cost during
the distributed optimization procedure, we propose a data screening approach to safely filter
inactive features or variables. Finally, we conduct extensive experiments on both synthetic
and real-world datasets to demonstrate the effectiveness of our proposed method.

Keywords Distributed learning · Multi-task learning · Acceleration

1 Introduction

Multi-task learning (MTL) (Caruana 1997) aims to jointly learn multiple machine learning
tasks by exploiting their commonality to boost the generalization performance of each task.
Similar to many standard machine learning techniques, in MTL, a single machine is assumed
to be able to access all training data over different tasks. However, in practice, especially in
the context of smart city, training data for different tasks is owned by different organizations
and geo-distributed over different local machines, and centralizing the data may result in
expensive cost of data transmission and cause privacy and security issues. Take personal-
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ized healthcare as a motivating example. In this context, learning a personalized healthcare
prediction model from each user’s personal data including his/her profile and various sen-
sor readings from his/her mobile device is considered as a different task. On one hand, the
personal data may be too sparse to learn a precise prediction model for each task, and thus
MTL is desired. On the other hand, some of the users may not be willing to share their per-
sonal data, which results in a failure of applying standard MTL methods. Thus, a distributed
MTL algorithm is more preferred. However, if frequent communication is required for the
distributed MTL algorithm to obtain an optimal prediction model for each task, users have
to pay for expensive cost on data transmission, which is not practical. Therefore, designing a
communication-efficient MTL algorithm in the distributed computing environment is crucial
to address the aforementioned problem.

Though a number of distributed machine learning frameworks have been proposed, most
of them are focused on single task learning problems (Li et al. 2014; Boyd et al. 2011; Jaggi
et al. 2014; Ma et al. 2015). In particular, COCOA+ as a general distributed machine learning
framework has been proposed for strongly convex learning problems (Smith et al. 2017b;
Ma et al. 2015; Jaggi et al. 2014). To handle non-strongly regularizers (e.g., �1-norm), Smith
et al. (2015, 2017b) extended COCOA+ by directly solving the primal problem instead of its
dual problem. However, in their proposed method, data needs to be distributed by features
rather than instances. In our problem setting, we suppose the training data for different tasks
is originally geo-distributed over different machines. In this case, to use the method proposed
in Smith et al. (2015, 2017b), one has to first centralize the data of all the tasks and then
re-distribute the data w.r.t. different sets of features, which is impractical.

In this paper, different from previous methods, we focus on the MTL formulation with a
�2,1-norm regularization on the weight matrix over all the tasks, and offer a communication-
efficient distributed optimization framework to solve it. Specifically, we have two main
contributions: (1) We first present an efficient distributed optimization method that enjoys a
fast convergence rate for solving the �2,1-norm regularizedMTL problem. To achieve this, we
carefully design a subproblem for each local worker by incorporating an extrapolation step on
the dual variables. We theoretically prove that with the well-designed local subproblem, our
proposedmethod obtains a faster convergence rate than COCOA+ (Ma et al. 2015; Smith et al.
2017b), especially on ill-conditioned problems. Recently, Ma et al. (2017) also attempted
to improve the convergence rate of COCOA+. However, our acceleration scheme is different
from theirs. Specifically, with a strongly convex regularizer, the acceleration (Ma et al. 2017)
can only be done for Lipschitz continuous losses, while our method is able to improve the
convergence rate for both smooth and Lipschitz continuous losses. (2) To further reduce the
communication cost at each round when handling extremely high-dimensional data, we pro-
pose a dynamic feature screening approach to progressively eliminate the features that are
associated with zeros values in the optimal solution. Consequently, the communication cost
can be substantially reduced as there are only a few features associated with nonzero values
in the solution due to the effect of the sparsity regularization. Note that there exist several
data or feature screening approaches for single task learning or MTL problems. We believe
that this is the first proposed to reduce communication cost in distributed optimization.

Recently, there have been several attempts at developing distributed optimization frame-
works for MTL. Baytas et al. (2016) and Xie et al. (2017) proposed asynchronous proximal
gradient based algorithms for distributed MTL. Their proposed methods, however, are
communication-heavy as gradients need to be frequently communicated among machines.
Wang et al. (2016) proposed a Distributed debiased Sparse Multi-task Lasso (DSML) algo-
rithm. In DSML, there is only one round of communication between the local workers and
the master. However, it requires the local workers to perform heavy computation (i.e., esti-
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mating a d × d sparse matrix) to obtain a debiased lasso solution. More importantly, DSML
makes a stronger assumption to ensure support recovery. More recently, to provide trade-
off between local computation and global communication, COCOA+ has been extended for
multi-task relationship learning by Liu et al. (2017). Later, this problem is further studied
in Smith et al. (2017a) by considering statistical and systems challenges. Note that our work
is different from Liu et al. (2017) and Smith et al. (2017a) in two ways: (1) Our proposed
method enjoys a faster convergence rate than that analyzed in Liu et al. (2017) and Smith
et al. (2017a) since their rates are the same as COCOA+. (2) We study different MTL models.
Specifically, Liu et al. (2017) and Smith et al. (2017a) studied task-relationship based MTL
model (Zhang and Yeung 2010) while our problem is feature based MTL. They are different
as discussed in Zhang and Yang (2017). Moreover, as our work focuses on feature-based
MTL model with sparsity (Obozinski et al. 2010, 2011; Wang and Ye 2015), it enables us
to design a tailored feature screening technique to further reduce the communication cost.
Unlike our framework, decentralized MTL methods have also been studied in Wang et al.
(2018), Bellet et al. (2018), Vanhaesebrouck et al. (2017) and Zhang et al. (2018). However,
these approaches may incur heavier communication cost because frequent communications
are often required between tasks in MTL.

2 Notation and preliminaries

Throughout this paper, w∈R
d K and W∈R

d×K denote a vector and a matrix, respectively,
and G denotes a set.

– [m] def= {i | 1 ≤ i ≤ m, i ∈ N}, {G j

}d
j=1: G j

def= {
(k − 1)d + j | k ∈ [K ]}, [x]+ def=

max(x, 0).
– wi and Wi j : the i th and (i, j)th entries of w andW, respectively.

– Wi·: the i th row of W, wG
def= {wi | i ∈ G },WG ·

def= {Wi· | i ∈ G }.
– 0: a vector or matrix with all its entries equal to 0, I: identity matrix.
– ‖w‖ def= √〈w,w〉: �2-norm of w, ‖W‖F def= √tr[W�W]: Frobenius norm ofW.

– ‖w‖2,1 def= ∑d
j=1 ‖wG j

‖ and ‖W‖2,1 def= ∑d
j=1 ‖W j·‖: �2,1-norm of w and W, respec-

tively.

Definition 1 A function f (·) is L-Lipschitz continuous with respect to ‖ · ‖, if ∀w, ŵ ∈ R
d

it holds that | f (ŵ) − f (w)| ≤ L‖ŵ − w‖.

Definition 2 A function f (·) is L-smooth with respect to ‖ · ‖, if ∀w, ŵ ∈ R
d it holds that

f (ŵ) ≤ f (w) + 〈∇ f (w), ŵ − w〉 + L‖ŵ − w‖2/2.

Definition 3 A function f (·) is γ -strongly convex with respect to ‖ · ‖, if ∀w, ŵ ∈ R
d it

holds that f (ŵ) ≥ f (w) + 〈∇ f (w), ŵ − w〉 + γ ‖ŵ − w‖2 /2.

Definition 4 For function f (·), its convex conjugate f ∗(·) is defined as f ∗(α)
def=

supw
{〈α,w〉 − f (w)

}
.

Lemma 1 (Hiriart-Urruty andLemaréchal 1993)Assume that function f is closed and convex.
If f is (1/γ )-smooth w.r.t. ‖ · ‖, then f ∗ is γ -strongly convex w.r.t. the dual norm ‖ · ‖∗.
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3 Problem setup

For simplicity, we consider the setting with K tasks distributed over K workers.1 For each
task k, we have nk labeled instances {xk

i , yk
i }nk

i=1 stored locally on worker k, where xk
i ∈R

d is
the i th input, and yk

i is the corresponding output. Our goal is to jointly learn different models
in terms of wk ∈R

d , k ∈[K ] for each task. For ease of presentation, we define
– n

def=∑K
k=1 nk : the total number of training instances over all the tasks.

– Xk def= [
xk
1, . . . , x

k
nk

] ∈R
d×nk and yk def= [

yk
1 , . . . , yk

nk

]� ∈R
nk : the input and output for

task k.
– W def= [w1, . . . ,wK ] ∈ R

d×K : the weight matrix over all the tasks.
– A def= diag

(
X1, . . . ,XK

)∈R
d K×n , w def= [(w1)�, . . . , (wK )�]� ∈ R

d K .

We focus on the following MTL formulation with sparsity regularization (Obozinski et al.
2010, 2011; Lee et al. 2010; Wang and Ye 2015):

min
W

1

n
f (w) + λ

(
ρ‖W‖2,1 + 1 − ρ

2
‖W‖2F

)
, (1)

where f (w)
def= ∑K

k=1
∑nk

i=1 fki

(〈xk
i ,w

k〉), fki

(〈xk
i ,w

k〉) is the loss function of the kth task
on the i th data point (xk

i , yk
i ) and ρ ∈(0, 1). The group sparsity regularization ‖W‖2,1 aims to

improve the generalization performance for each task by selecting important features, whose
effect to the overall objective is controlled by the parameter λ. Note that the regularization
term ‖W‖2F is not only to control the complexity of each linear model but also to facilitate
distributed optimization.2 One can rewrite (1) as the following vectorization form,

min
w

{
P(w)

def= 1

n
f (w) + λg(w)

}
, (2)

where g(w)
def= ρ

∑d
j=1 ‖wG j

‖ + (1−ρ)‖w‖2/2.

3.1 Dual problem

Compared to the primal problem, it is well-known that there is a dual variable associated
with each training instance in its dual problem. This property makes the dual problem more
tractable for distributed optimization if training instances are stored on different workers. Let
α=[α1

1, . . . , α
K
nK

]� ∈R
n . As derived in “Appendix A”, the dual problem of (2) is

min
α

{
D(α)

def= 1

n
f ∗(−α) + λg∗

(
Aα

λn

)}
, (3)

1 In general, the numbers of tasks and workers can be different.
2 Note that in this work we assume the regularizer is strongly convex which is the same as in COCOA+. As
discussed in Sect. 1, for non-strongly convex regularizer, though an extension of COCOA+ has been proposed
in Smith et al. (2015, 2017b), it is not practical for real-world scenarios as data needs to be geo-distributed by
features rather than instances over local workers. In fact, our proposedmethod can also be applied to accelerate
the approach proposed in Smith et al. (2015, 2017b). However, how to develop a distributed optimization
algorithm when data is geo-distributed by instances and the regularizer of the objective is non-strongly convex
is still an open problem. We leave this to our future study.
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where f ∗(−α)
def=∑K

k=1
∑nk

i=1 f ∗
ki (−αk

i ), f ∗
ki (·) is the conjugate function of fki (·) and

g∗
(
Aα

λn

)
def=

d∑

j=1

{
g∗

j

(AG j·α
λn

)
def=
[‖AG j·α‖ − ρλn

]2
+

2(1 − ρ)λ2n2

}
.

Let w� and α� be optimal solutions to (2) and (3), respectively. One can obtain a primal
solution w(α) from any dual feasible α via

w(α)
def= ∇g∗(Aα/(λn)

)
. (4)

Thus, the duality gap at α is G(α)
def= P(w(α)) − (−D(α)) = P(w(α)) + D(α).

4 Efficient distributed optimization

For ease of presentation, we further introduce some additional notations. Let {Pk}K
k=1 be

a partition of [n] such that αP k
∈R

nk are the dual variables associated with the training

instances of the kth task. For k ∈[K ], A∈R
d K×n and z∈R

n , we define

– Âk ∈ R
d K×n :

(
Âk
)
·i

def= A·i if i ∈ Pk , otherwise 0.

– α̂k ∈ R
n :
(
α̂k
)

i
def= αi if i ∈ Pk , otherwise 0, αk ∈ R

nk : αk def= αP k
, f ∗

k (−α̂k)
def=

∑
i∈P k

f ∗
ki (−αk

i ).

Recall that we assume {Xk, yk}K
k=1 to be stored over K local workers. Therefore, it is

highly desirable to develop a communication-efficient distributed optimization method to
solve (3). Note that one can adopt COCOA+ (Ma et al. 2015; Smith et al. 2017b) to solve
the dual problem, which is similar to the idea of adopting COCOA+ for distributed multi-
task relationship learning (Liu et al. 2017; Smith et al. 2017a). However, in this way, the
convergence rate of such a COCOA+-based approach fails to reach the best one as discussed
in Arjevani and Shamir (2015). To address this problem, we present an efficient distributed
optimization method to solve (3) with a faster convergence rate compared with the COCOA+-
based approach. The high-level idea of the proposed method is summarized in Algorithm 1,
and the details are discussed as follows.

Algorithm 1 Efficient Distributed Optimization for (3)

1: Input: {xk
i , yk

i }
nk
i=1, k ∈[K ] distributed on K workers, strong convexity parameterμ, which will be formally

defined in Sect. 5.
2: Initialize:α0

def=0, u1
def=α0, θ0

def=√
ϑη if μ>0 otherwise θ0

def= 1.
3: for t = 1 to T do
4: Send w(ut ) = ∇g∗(Aut /(λn)

)
to all workers

5: for k ∈ [K ] in parallel over workers do
6: Update αk

t via solving (5)
7: Send Aα̂k

t to the master
8: end for
9: Set θt via (7)
10: Update Aut+1 via (8)
11: end for

In order to minimize (3) with respect to α in a distributed environment, one needs to
design a subproblem for each worker such that the objective value of (3) decreases when
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each worker minimizes its local subproblem by only accessing its local data. In (3), the term
f ∗(·) is separable for examples on different workers but g∗(·) is not. Note that g∗(·) is a
smooth function. By Definition 2, it has a quadratic upper bound based on a reference point
u that is separable. By making use of this upper bound, one can design a subproblem for
each worker such that D(α) decreases if each worker minimizes its local subproblem. Let
η

def= (1 − ρ)λn2. The following subproblem is used for the kth worker at the t th iteration:

α̂k
t

def= argmin
α̂k

t ∈Rn

Lk
(
α̂k

t ; ûk
t ,w(ut )

)
, (5)

where ut is a reference point at the t th iteration and

Lk
(
α̂k

t ; ûk
t ,w(ut )

) def= 1

n
f ∗
k

(−α̂k
t

)+ λ

K
g∗(Aut

λn

)
+ 1

n

〈
w(ut ),A

(
α̂k

t − ûk
t

)〉

+ 1

2η

∥∥A
(
α̂k

t − ûk
t

)∥∥2. (6)

It can be proved that D(αt ) ≤ ∑K
k=1Lk

(
α̂k

t ; ûk
t ,w(ut )

)
holds for any ut . Therefore, D(α)

can be minimized by employing each local worker to solve its own local subproblem 5. With
w(ut ), each subproblem can be minimized by only accessing the corresponding local data
(Xk, yk).

In the literature of distributed optimization, e.g., COCOA+-based approaches (Ma et al.
2015; Smith et al. 2017a, b; Liu et al. 2017), the reference point ut is set to be the solution of
last iteration αt−1. It leads to that the convergence rate of COCOA+-based approachs fails to
reach the best one as discussed in Arjevani and Shamir (2015). In contrast, ut in our proposed
method is set as follows,

ut+1 = αt +
(
1 − θt−1

)
θt−1

θt + θ2t−1

(
αt − αt−1

)
,

where θt is the solution of
θ2t = (1 − θt

)
θ2t−1 + ϑηθt , (7)

where ϑ
def= μ/n. The definition of ut+1 implies

Aut+1=
K∑

k=1

{
Aα̂k

t + θt−1
(
1−θt−1

)

θt + θ2t−1

(
Aα̂k

t − Aα̂k
t−1
)}

. (8)

Specifically, ut+1 is obtained based on an extrapolation from αt and αt−1. This is similar to
Nesterov’s acceleration technique (Nesterov 2013). As we will see, this technique yields a
faster convergence rate compared to COCOA+-based approaches (Ma et al. 2015; Smith et al.
2017a, b; Liu et al. 2017). Recently, Zheng et al. (2017) presented an accelerated distributed
alternating dual maximization algorithm for single task learning, where an extrapolation is
applied on the primal variable for acceleration. For smooth losses, they only proved the
accelerated convergence rate in terms of primal suboptimality while we also prove it for
duality gap, resulting in a stronger result.

Remark 1 In each iteration of Algorithm 1, w(ut ) and {Aα̂k
t }K

k=1 are communicated between

master andworkers. By the definitions ofA and α̂k
t , we note that

(
w(ut )

)k∈R
d andXkαk

t ∈R
d

are actually communicated betweenmaster and the kth worker. Therefore, its communication
cost for each iteration is the same as COCOA+ in which

(
w(αt )

)k∈R
d and Xkαk

t ∈R
d are
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communicated. Note that w(ut+1) depends on Aαt but also Aαt−1, therefore we can keep
a copy of Aαt−1 on the master until iteration t . In this way, no extra communication cost is
induced in each iteration by our method for acceleration.

5 Convergence analysis

In this section, we analyze the convergence rate of the proposed method and show that it is
faster than COCOA+-based approaches. All the proofs can be found in “Appendix”. In our
analysis, we assume that all f ∗

ki , k ∈[K ], i ∈[nk] are μ-strongly convex (μ ≥ 0) with respect
to the norm ‖ · ‖. According to Lemma 1, it is equivalent to assuming that all fki , for k ∈[K ]
and i ∈[nk] are (1/μ)-smooth with respect to the norm ‖ · ‖. Since μ is allowed to be 0, our
analysis also covers the case that all f ∗

ki , for k ∈ [K ] and i ∈ [nk] are only generally convex
(i.e., μ = 0), which implies that all fki for k ∈ [K ] and i ∈ [nk] are Lipschitz continuous
instead of smooth. To facilitate analysis, we also assume that Lk

(
α̂k

t ; ûk
t ,w(ut )

)
is exactly

solved for any k ∈ [K ] and t ≥ 1.
By defining ζt

def= θ2t /η, (7) becomes

ζt = (1 − θt

)
ζt−1 + ϑθt . (9)

For any t ≥ 1 and k ∈ [K ], v̂k
t is defined as

v̂k
t

def= α̂k
t−1 + (α̂k

t − α̂k
t−1

)/
θt , k ∈ [K ]. (10)

In addition, the suboptimality on dual objective function εt
D is defined as εt

D
def= D(αt ) −

D(α�), t ≥ 0. By using the above notations, the following lemma shows that there is an
upper bound for the suboptimality εt

D . As we will see, this is the foundation for analyzing
the convergence rate of duality gap.

Lemma 2 Consider applying Algorithm 1 to solve (3), the following inequality holds for any
t ≥ 1,

εt
D + Rt ≤ γt

(
ε0D + R0), (11)

where Rt = ζt
2

∑K
k=1

∥∥A
(
α̂k

� − v̂k
t

)∥∥2, γt =∏t
i=1

(
1 − θi

)
for any t ≥ 1 and γ0 = 1.

It can be found that the form of γt determines the convergence rate of Algorithm 1. Therefore,
next, we study the convergence rate by using the upper bound of γt under different settings
of the loss function.

5.1 Convergence rate for smooth losses

By applying Lemma 2, the following lemma characterizes the effect of iterations of Algo-
rithm 1 when the loss functions fki ’s are (1/μ)-smooth for any k ∈ [K ] and i ∈ [nk].
Lemma 3 Assume the loss functions fki ’s are (1/μ)-smooth for any k ∈[K ] and i ∈[nk]. If
θ0=√

ϑη and (1 − ρ)λμn ≤1, then the following inequality holds for any t ≥ 1

εt
D ≤

(
1 −√(1 − ρ)λμn

)t(
ε0D + R0). (12)

Let σmax
def= maxα =0 ‖Aα‖2/‖α‖2. By applying Lemma 3, the next theorem shows the

communication complexities for smooth losses in terms of dual objective and duality gap.
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Theorem 1 Assume the loss functions fki ’s are (1/μ)-smooth for any k ∈ [K ] and i ∈ [nk].
If θ0=√

ϑη and (1 − ρ)λμn ≤1, then after T iterations in Algorithm 1 with

T ≥
√

1

(1 − ρ)λμn
log

((
1 + σmax

)ε0D
εD

)
,

D
(
αT

)− D
(
α�) ≤ εD holds. Furthermore, after T iterations with

T ≥
√

1

(1−ρ)λμn
log

((
1 + σmax

) (1 − ρ)λμn + σmax

(1 − ρ)λμn

ε0D

εG

)
,

it holds that P
(
w(αT )) − (−D(αT )) ≤ εG.

Following Zhang and Xiao (2017), we define the condition number κ as κ
def=

maxk,i ‖xk
i ‖2/(λμ). With the above analysis, the communication complexity of our method

is linear with respect to
√

κ , while it is linear with κ for COCOA+-based approaches (Ma et al.
2015; Smith et al. 2017b). The value of κ is typically the order of n as λ is usually set to the
order of 1/n (Bousquet and Elisseeff 2002). Therefore, our method is expected to converge
faster than COCOA+-based approaches.

5.2 Convergence rate for Lipschitz continuous losses

Next, we present the convergence rate of the Algorithm 1 when the loss function is just
general convex and Lipschitz continuous.

Theorem 2 Assume the loss functions fki ’s are generally convex and L-Lipschitz continuous
for any k ∈[K ], i ∈[nk]. If θ0=1, the following inequality holds for any t ≥1

εt
D ≤ 1

(t + 2)2

(
4ε0D + 8L2σmax

(1 − ρ)λn2

)
. (13)

After T iterations in Algorithm 1 with

T ≥
√

8L2σmax

(1 − ρ)λn2εD
+ 4ε0D

εD
− 2, (14)

it holds that D
(
αT

)− D
(
α�) ≤ εD.

Remark 2 For generally convex loss function, the dual objective obtained by Algorithm 1
decreses in O(1/t2) instead of O(1/t) for COCOA+. Therefore, the complexity for obtaining
εD-suboptimal solution is

√
1/εD that is faster than that of COCOA+ (i.e., 1/εD).

6 Further reduce communication cost via dynamic feature screening

In Sect. 4, we present an acceleration method for distributed optimization of (3) that reduces
the communication cost in terms of iteration of communications. As discussed in Remark 1,
the communication cost of our method in each iteration is linear with the number of features
d , that is the same as previous distributed optimization methods for sparsity-regularized
problems. It can be expensive for high-dimensional data. To address this issue, we present
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a method to reduce the communication cost for each iteration by exploiting the sparsity of
w� (Bonnefoy et al. 2015; Fercoq et al. 2015; Ndiaye et al. 2017). It is well-known that
the �2,1-norm regularization is able to produce a row sparse pattern on W� (Obozinski et al.
2011, 2010; Yuan et al. 2006; Zou and Hastie 2005). In other words, (w�)G j

will be 0 for
most Gj , j ∈ [d]. Thereafter, we refer the j th feature as an inactive feature if (w�)G j

= 0,
otherwise an active feature. The key idea of feature screening is to identify inactive features
before sending the updated information to workers (Line 4 in Algorithm 1). In this way, the
communication cost can be reduced since it is linear with the number active features.

To identify inactive features, we need to exploit the KKT condition of (2)

(
α�

)k
i ∈ ∂ fki

(〈
xk

i ,w
k
�

〉)
,∀k ∈ [K ], i ∈ [nk], (15)

AG j·α�

λn
∈ (1 − ρ)

(
w�

)
G j

+ ρ∂
∥∥(w�)G j

∥∥,∀ j ∈ [d]. (16)

By checking the subgradient of ‖ · ‖, it implies (w�)G j
=0 if ‖(w�)G j

‖<1. Combining this
fact with (16), we have ∥∥AG j·α�

∥∥ < ρλn ⇒ (w�)G j
= 0. (17)

Algorithm 2 Dynamic Feature Screening for (3)

1: Input:
{
Aα̂k

t
}K

k=1
2: Compute duality gap G(αt )
3: for all currently active features do
4: Identify inactive feature via solving (19)
5: end for

It can be shown that one can obtain the exact optimum even without considering these
inactive features during optimization. Therefore, one can reduce the communication cost by
discarding these inactive features, thus less information needs to be communicated. To use
(17) to identify inactive features, one needs to haveα� that is unknownbefore the optimization
problem (3) is solved. Next, we show that a feasible setF can be constructed for α� by using
the strong convexity of D(α).
Crucial Value λmax: In view of (17) and (15), there exists a crucial value λmax such that
w� =0 for any λ ≥ λmax. Let r=[ f ′

11(0), . . . , f ′
K nK

(0)]∈R
n , (15) implies that α�=r when

w�=0. By substituting α� into (17), we obtain λmax=max j∈[d] ‖AG j
r‖/(ρn). It is trivial to

obtain a closed form solution w� = 0 and α� = r if λ ≥ λmax. Therefore, we only focus on
the cases when λ < λmax.

Feasible Set of α�: Lemma 1 implies D(α) is strongly convex if fki ’s are smooth for all
k and i . By using this fact, the dual optimal solution α� can be bounded in terms of α and its
duality gap G(α) as stated in the following lemma.

Lemma 4 Assume the loss functions fki’s are (1/μ)-smooth for any k ∈[K ], i ∈[nk]. For any

dual feasible solution α, it holds that α� ∈F
def= {θ | ‖θ − α‖ ≤ √

2G(α)n/μ
}
.

By using Lemma 4, (17) can be relaxed as

max
θ∈F

‖AG j ·θ
∥∥ < ρλn ⇒ (w�)G j

= 0. (18)
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In other words, we need to solve the following problem

max
θ

∥∥AG j ·θ
∥∥, s.t. ‖θ − α‖ ≤ √2G(α)n/μ. (19)

Although it is non-convex, the global optimum of (19) can be obtained by using the result
in Gay (1981). Let us define H ∈ R

K×K , g ∈ R
K , υ j ,I j , �I j and�s ∈ R

K as

– H def= −diag
(
2‖X1

j·‖2, . . . , 2
∥∥XK

j·
∥∥2),g def= −2

[∥∥X1
j·
∥∥∣∣〈X1

j·,α1
〉∣∣, . . . ,

∥∥XK
j·
∥∥∣∣〈XK

j·,αK
〉∣∣]�.

– υ j
def= maxk∈[K ]

∥∥Xk
j·
∥∥2, I j

def=
{

k
∣∣ ∥∥Xk

j·
∥∥2 = υ j , k ∈ [K ]

}
, �I j

def= [K ] \ I j .

– �sk
def=
∥∥Xk

j·
∥∥∣∣〈Xk

j·,αk
〉∣∣

υ j −
∥∥Xk

j·
∥∥2 if k ∈ �I j , otherwise�sk

def= 0.

By using the above notations, the solution of (19) is given in the following lemma.

Lemma 5 If υ j =0, the maximum value of (19) is 0. Otherwise, the upper bound is

K∑

k=1

〈
Xk

j·,α
k 〉2+ nG(α)

μ
ϑ�− 1

2
〈g, s�〉 ,

where ϑ� and s� are defined as follows: (a) ϑ� =2υ j and s� =�s+̂s if 1) ∃ ŝ∈R
K with ŝI j =0

and ‖�s+̂s‖=√
2G(α)n/μ, and 2)

〈
Xt

· j , θ t

〉
=0,∀t ∈I j . (b) Otherwise, ϑ� >2υ j is solution

of ‖ (H+ϑ�I)−1 g‖=√
2G(α)n/μ, and s� =−(H+ϑ�I)−1g.

To perform screening every p iterations, one can simply add the following three lines
before line 4 in Algorithm 1.

– if t%p = 0 then
– Call Algorithm 2
– end if

Costs of Screening:Note that the screening is performed on the master every p iterations.

– By carefully examining the detailed screening rule, the master actually only needs Aαt
when evaluating screening rule. Even without screening, the Aαt needs to be computed
and sent to the master in each iteration as stated in Algorithm 1 and Remark 1. Therefore,
the feature screening does not induce extra communication cost.

– Regarding the computational cost, we note that the screening problem is dependent on the
number of active features that is atmost d (there are less and less feature due to screening).
As shown in Lemma 5, the screening problem for each feature is a one dimension variable
optimization problem. It either has a closed form solution (Case 1) or can be efficiently
solved by using Newton’s method (Case 2) that usually takes less than 5 iterations to
meet the accuracy 10−15.

– More importantly, by screening out inactive features, it can substantially save optimiza-
tion problem, especially on local computation. Recall that the local SDCA computation
complexity is O(Hd)where H is the local SDCA iteration number and its is usuallymore
than 105. Compared to local SDCA computation cost, the cost of screening is negligible.

We note that Ndiaye et al. (2015) also presented a feature screening method for multi-
task learning. However, in their work, all tasks are assumed to share the same training data
while our method allows each task to has its own training data. Consequently, the feature
screening problem (19) becomes non-convex instead of convex, which is different from and
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more challenging than that studied in Ndiaye et al. (2015). In addition, Wang and Ye (2015)
developed a static screening rule that exploits the solution at another regularization parameter
and only performs screening before the optimization procedure. By contrast, our screening
rule is a dynamicwith aweaker assumption to exploit the latest solution to repeatedly perform
screening during optimization. Therefore, our screening is more practical and performs better
empirically.

Difference between Our Proposed Method and COCOA+ We denote the proposed
method by DMTLS . There are two main differences between DMTLS and COCOA+. First,
DMTLS constructs the subproblem 5 by using the extrapolation of the solutions in last two
iterations that is able to achieve accelerated convergence rate. In contrast, COCOA+ only
uses the solution of last iteration. Second, DMTLS presents a dynamic feature screening
method to reduce the communication cost for each iteration by exploiting the sparsity of the
model.

7 Experiments

7.1 Experimental setting

In previous sections, we present our method by focusing on distributed MTL. We hereby
conduct experiments to show the advantages of the proposed method for MTL. In fact, our
approach can also be extended for distributed single task learning (STL) and the details are
provided in the “Appendix”.

To demonstrate the advantages of DMTLS , we compare DMTLS with a COCOA+-based
approach (Ma et al. 2015; Smith et al. 2017b) and its extension MOCHA (Smith et al. 2017a)
to solve the dual problem (3). In our experiments, the squared loss is used for regression,
and the smoothed hinge loss (Shalev-Shwartz and Zhang 2013) is used for classification
with μ = 0.5 for all experiments. It is clear to see that fki is (1/μ)-smooth. For ease of
comparison, the local subproblem is solved by using SDCA (Shalev-Shwartz and Zhang
2013) for all methods. The number of iterations for SDCA is set to H =104 for all datasets.

We run all experiments on a local server with 64 worker cores. A distributed environment
is simulated on the machine by using distributed platform Petuum (Xing et al. 2015),3 and
workers for each task are assigned to isolated processes that communicate solely through the
platform. Regarding the performance, we evaluate the number of communication iterations
required by different methods to obtain a solution with prescribed duality gap. Due to the
limitation of computational resources, we are not able to perform experiments on a real
distributed environment. However, the results (i.e., the number of communication iterations)
reported in this paper does not depend on the environment that it runs on. Compared to
COCOA+, the additional computation incurred by our method is negligible: the computation
complexity of each iteration of COCOA+ is O(H×d). The additional computations required
by our method for acceleration and feature screening is O(d) and O(d), respectively. This
cost is negligible compared to that of SDCA because H is usually around 105.

We conduct experiments on the following three datasets (Table 1).
Synthetic Data contains K =10 regression tasks and generated by using yk

i = 〈xk
i ,w

k〉+ ε.
The number of examples for each task is randomly generated, which ranges from 903 to
1098. xk

i ∈R
50,000 is drawn from N (0, I) and ε ∼ N (0, 0.5I). To obtain a W with row

3 Note that our method can be implemented in other distributed platforms.
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Table 1 Statistics of the datasets
for MTL

Dataset Synthetic News20 MDS

# Tasks 10 5 22

# Samples 9081 5869 16,967

# Features 50,000 34,967 10,000

Sparsity (%) 100 0.3 0.8

sparsity, we randomly select 400 dimensions from [d] and generate them from N (0, I) for
all tasks. For each task, extra noise from N (0, 0.5I) is added to W.
News20 (Lang 1995) is a collection of around 20,000 documents from 20 different news-
groups. To construct a multi-task learning problem, we create 5 binary classification tasks
using data of all the 5 groups from comp as positive examples. For the negative exam-
ples, we choose data from misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball and
rec.sport.hockey. The number of training examples for each task ranges from 1163 to 1190,
and the number of features is 34,967.
MDS (Blitzer et al. 2007) includes product reviews on 25 domains in Amazon. We use
22 domains each of which has more than 100 examples for multitask binary sentiment
classification. To simulate MTL, we randomly select 1000 examples as training data for the
domain withmore than 1000 examples. Consequently, the number training examples for each
domain ranges from 220 to 1000. The number of features of is 10,000.

7.2 Results of faster convergence rate

In order to test the convergence rate of DMTLS , we compare it with the COCOA+-based
approach to solving (3) under varying values of λ. In view of Sect. 6, we chose λ=10−2λmax

and λ=10−3λmax to solve (3). We set α0=0 for all methods and ρ =0.9 for all experiments.
Figure 1 shows the comparison results in terms of the numbers of iterations for commu-

nication used by DMTLS and COCOA+ to obtain a solution meeting a prescribed duality gap.
From the Fig. 1, we can observe that:

– DMTLS is significantly faster than COCOA+ in terms of the number of iterations to meet
a prescribed duality gap. Take the synthetic dataset and News20 for example, to obtain
a solution atλ=10−3λmaxwith duality gap 10−5, DMTLS obtains speedups of a factor of
6.64 and 6.94 over COCOA+ on the two datasets, respectively.

– Generally, the speedup obtained by DMTLS is more significant for small values of λ.
For example, when λ = 10−2λmax, DMTLS converges 4.81 and 4.05 times faster than
COCOA+ on the synthetic dataset and News20, respectively. In contrast, the speedups is
improved up to 7.00 and 5.70 times faster than COCOA+ when λ = 10−3λmax.

– The improvement is more pronounced when a higher precision is used as the stopping
criterion. Take News20 with λ = 10−3λmax for example, the speedups of DMTLS over
COCOA+ are 4.00, 4.94, 5.70 and 6.94 when the duality gaps are 10−2, 10−3, 10−4 and
10−5, respectively.

7.3 Robust to straggler

In Smith et al. (2017a), MOCHA is proposed to improve COCOA+ to handle systems hetero-
geneity, e.g., straggler. That means some workers are considerably slower than others and
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Fig. 1 Duality gap versus communicated iterations on the three datasets forλ = 10−2λmax andλ = 10−3λmax

the stragglers fail to return prescribed accurate solution for some iterations. Here, we com-
pare our method with COCOA+ equipped with handling system heterogeneity as presented in
Smith et al. (2017a) on News20 and show that our method converges faster even if there exist
stragglers. Specifically, we perform experiments under the setting of Smith et al. (2017a) by
using different values of H for different workers to simulate the effect of stragglers. The value
of H for each iteration is draw from [0.9nmin, nmin] to simulate low variability environment
and [0.5nmin, nmin] to simulate high variability environment, where nmin = mink nk .

As shown in Fig. 2, our method is still able to substantially reduce the number of commu-
nication for both low and high variability environments. This shows that empirically DMTLS

is robust to straggler although our analysis assumes that the local subproblem needs to be
exactly solved.

7.4 Results of reduced communication cost

To demonstrate the effect of dynamic screening for reducing communication cost, we perform
a warm start cross validation experiment on News20 and MDS. Specifically, we solve (3)
with 50 various values of λ, {λi }50i=1, which are equally distributed on the logarithmic grid
from 0.01λmax to 0.3λmax sequentially (i.e., the solution of λi is used as the initialization of
λi−1). To evaluate the total communication cost for the 50 values of λ, we calculate the total
number of vectors of dimension d used for communication for each worker. We experiment
on the following two settings: 1) DMTLS without dynamic screening (Without DS), and 2)
DMTLS with dynamic screening (With DS). Figure 3 presents the total communication cost
used by DMTLS without and with dynamic screening to solve (3) over {λi }50i=1 on News20
and MDS.

From Fig. 3, we can observe that:

– The communication cost has been substantially reduced by the proposed dynamic screen-
ing because the most inactive features have been progressively identified and discarded
during optimization. For example, when the prescribed duality is 10−7, the communi-
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Fig. 2 Duality gap versus communicated iterations on News20 with systems heterogeneity for λ=10−2λmax
and λ=10−3λmax. Here, COCOA+ denotes its original version equipped with handling system heterogeneity
as presented in Smith et al. (2017a)

Fig. 3 Effect of dynamic screening for reducing communication cost. Total communication cost (normalized
by feature dimension d) used by our method without and with dynamic screening for solving (3) over {λi }50i=1
on News20 and MDS

cation cost reduction by the proposed method is 83.32% and 67.43% on News20 and
MDS, respectively.

– This advantage of dynamic screening is more significant when a higer precision is used
as the stopping criterion. On News20, the speedup increases from 5.99 to 8.63 when the
duality gap changes from 10−7 to 10−8. This is because more inactive features can be
screened out when a more accurate solution is obtained.

– More importantly, the proposed dynamic screening is more pronounced for the prob-
lem with higher dimension. Take the duality gap of 10−8 for example, the speedups
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obtained by dynamic screening are 8.63 and 4.14 on News20 and MDS, respectively,
where News20 is of much higher dimensionality than MDS.

8 Conclusion

In this paper, we present a new distributed optimization method, DMTLS , for MTL with
matrix sparsity regularization. We provide theoretical convergence analysis for DMTLS . We
also propose a data screening method to further reduce the communication cost. We carefully
design and conduct extensive experiments on both synthetic and real-world datasets to verify
the faster convergence rate and the reduced communication cost of DMTLS in comparison
with two state-of-the-art baselines, COCOA+ and MOCHA.

Acknowledgements This work is supported by NTU Singapore Nanyang Assistant Professorship (NAP)
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Appendix A: Dual problem

By introducing zk
i for each fki , one can rewrite (2) as

min
w

1

n

K∑

k=1

nk∑

i=1

fki (−zk
i )

+ λ

(
ρ

d∑

j=1

‖wG j
‖ + 1 − ρ

2
‖w‖2

)
s.t. 〈xk

i ,w
k〉 + zk

i = 0, k ∈ [K ], i ∈ [nk].

Let − 1
n αk

i be the Lagrangian multiplier for the (k, i)th constraint. For convenience, let

z = [z11, . . . , zK
nK

]� ∈ R
n and α = [α1

1, . . . , α
K
nK

]� ∈ R
n .

Then, the Lagrangian is

L
(
w, z,α

) = 1

n

K∑

k=1

nK∑

i=1

fki (−zk
i ) + λ

(
ρ

d∑

j=1

‖wG j
‖ + 1 − ρ

2
‖w‖2

)

− 1

n

K∑

k=1

nK∑

i=1

αk
i

(
〈xk

i ,w
k〉 + zk

i

)

= 1

n

K∑

k=1

nK∑

i=1

(
fki (−zk

i ) − αk
i zk

i

)
+ λ

(
ρ

d∑

j=1

‖wG j
‖ + 1 − ρ

2
‖w‖2

)

− 1

n
〈Aα,w〉 .
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The dual problem can be obtained by taking the infimum with respect to both w and z

inf
w,z

L(w, z,α) = 1

n
inf
z

K∑

k=1

nK∑

i=1

(
fki (−zk

i ) − αk
i zk

i

)

+ inf
w

{
λ

(
ρ

d∑

j=1

‖wG j
‖ + 1 − ρ

2
‖w‖2

)
− 1

n
〈Aα,w〉

}
.

where

1

n
inf
z

K∑

k=1

nK∑

i=1

(
fki (−zk

i ) − αk
i zk

i

)
= −1

n
sup
z

K∑

k=1

nK∑

i=1

(
αk

i zk
i − fki (−zk

i )
)

= −1

n

K∑

k=1

nK∑

i=1

f ∗
ki (−αk

i ). (20)

λ inf
w

{
ρ

d∑

j=1

‖wG j
‖ + 1 − ρ

2
‖w‖2 − 1

λn
〈Aα,w〉

}

= −λ sup
w

{
1

λn
〈Aα,w〉 −

(
ρ

d∑

j=1

‖wG j
‖ + 1 − ρ

2
‖w‖2

)}
= −λg∗(Aα

λn

)
.

Regarding the explicit form of g∗(Aα
λn

)
, it can be shown that

g∗(Aα

λn

)
= inf

w

{
ρ

d∑

j=1

‖wG j
‖ + 1 − ρ

2
‖w‖2 − 1

λn
〈Aα,w〉

}
.

The optimality condition of the above problem implies

0 ∈ (1 − ρ)wG j
+ ρ∂‖wG j

‖ − 1

λn
AG j ·α, j ∈ [d]. (21)

The definition of subgradient implies

wG j
= 0 if

1

λn
‖AG j ·α‖ < ρ.

Otherwise, we have

0 = (1 − ρ)wG j
+ ρ

wG j

‖wG j
‖ − 1

λn
AG j ·α.

which implies

‖wG j
‖ = ‖AG j ·α‖ − ρλn

(1 − ρ)λn
and wG j

= ‖AG j ·α‖ − ρλn

(1 − ρ)‖AG j ·α‖
1

λn
AG j ·α.

Combining these two cases together, we obtain

wG j
=
[‖AG j ·α‖ − ρλn

]
+

(1 − ρ)‖AG j ·α‖
1

λn
AG j ·α, ∀ j ∈ [d]. (22)
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Then, the conjugate of g(w) is

g∗(Aα

λn

)
=

d∑

j=1

ρ‖wG j
‖ + 1 − ρ

2
‖w‖2 − 1

λn
〈α,Xw〉 =

d∑

j=1

[‖AG j ·α‖ − ρλn
]2
+

2(1 − ρ)λ2n2 .

Therefore, the dual problem of (2) is

max
α

−1

n

K∑

k=1

nK∑

i=1

f ∗
ki (−αk

i ) − λ

d∑

j=1

[‖AG j ·α‖ − ρλn
]2
+

2(1 − ρ)λ2n2 .

Letw� and α� denote the primal and dual optimal solutions, respectively. From (20) and (21)
the KKT condition of (2) establishes

(
α�

)k
i ∈ ∂ fki

(〈xk
i ,w

k
�〉
)
,∀k ∈ [K ], i ∈ [nk] and

1

λn
AG j ·α� ∈ (1 − ρ)w�G j

+ ρ∂‖w�G j
‖, j ∈ [d].

Appendix B: Convergence analysis

To facilitate the proof, we first introduce some useful notations and technical Lemmas. It is
easy to verify that ûk

t can be rewritten as

ûk
t = α̂k

t−1 + θtζt−1

ζt−1 + ϑθt

(
v̂k

t−1 − α̂k
t−1

)
, k ∈ [K ]. (23)

For any t ≥ 0, we define β t as β t
def= (ut − αt

)
/η ⇒ αt = ut − ηβ t ∀k ∈ [K ].

Lemma 6 (Dünner et al. 2016) Consider the following pair of optimization problems, which
are dual to each other:

min
α∈Rn

{
D(α)

def= f ∗(−α) + g∗(Aα)
}

and min
w∈Rd

{
P(w)

def= f (Aw) + g(w)
}
,

where f ∗ is μ-strongly convex with respect to a norm ‖·‖ f ∗ and g∗ is 1/β-smooth with respect
to a norm ‖ · ‖g∗ . Let σmax = maxα =0 ‖Aα‖2g∗/‖α‖2f ∗ . Suppose an arbitrary optimization
algorithm is applied to the first problem and it produces a sequence of (possibly random)
iterates {αt }∞t=0 such that there exits C ∈ (0, 1], D ≥ 0 such that

E
[
D(αt ) − D(α�)

] ≤ (1 − C)t D.

Then, for any

t ≥ 1

C
log

D(σmax + μβ)

μβε
,

it holds that E
[
P(w(αt )) − (−D(αt ))

] ≤ ε.

Remark 3 This lemma enables us transfer the convergence rate of objective function to the
convergence rate of duality gap.
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Lemma 7 For any t ≥ 1, the following identities hold

θtζt−1

ζt

(
ûk

t − v̂k
t−1

) = (α̂k
t−1 − ûk

t

)
(24)

ζt v̂
k
t = (1 − θt )ζt−1̂v

k
t−1 + ϑθt û

k
t − θt β̂

k
t (25)

ζt

2

(∥∥A
(
α̂k

� − v̂k
t

)∥∥2 − ∥∥A(ûk
t − v̂k

t

)∥∥2
)

− (1 − θt )ζt−1

2

(∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2 − ∥∥A(ûk
t − v̂k

t−1

)∥∥2
)

= ϑθt

2

∥∥A
(
α̂k

� − ûk
t

)∥∥2 + θt

〈
A
(
α̂k

� − ûk
t

)
,Aβ̂

k
t

〉
(26)

ζt

2

∥∥A
(
ûk

t − v̂k
t

)∥∥2 − (1 − θt )
〈
A
(
α̂k

t−1 − ûk
t

)
,Aβ̂

k
t

〉− η

2

∥∥Aβ̂
k
t

∥∥2

= (1 − θt )ζt−1

2

(
1 − ϑθt

ζt

)∥∥A
(
ûk

t − v̂k
t−1

)∥∥2. (27)

Proof First, we show that (24) can be proved by using the definition of ûk
t and ζt .

(ζt−1 + ϑθt )̂u
k
t = (ζt−1 + ϑθt )̂α

k
t−1 + θtζt−1

(
v̂k

t−1 − α̂k
t−1

)

⇒ (
(1 − θt )ζt−1 + ϑθt

)
ûk

t + θtζt−1û
k
t = ((1 − θt )ζt−1 + ϑθt

)
α̂k

t−1 + θtζt−1̂v
k
t−1

⇒ θtζt−1

(
ûk

t − v̂k
t−1

) = ζt

(
α̂k

t−1 − ûk
t

)
,

which implies θtζt−1

(
ûk

t − v̂k
t−1

)
/ζt = (α̂k

t−1 − ûk
t

)
. Next, (25) can be shown by using β̂

k
t

and ζt = θ2t /η. Following from the definition of v̂k
t , we have

v̂k
t = α̂k

t−1+
1

θt

(
α̂k

t −α̂k
t−1

) = α̂k
t−1+

1

θt

(
ûk

t −ηβ̂
k
t −α̂k

t−1

) = 1

θt

(
ûk

t −(1−θt )̂α
k
t−1

)− θt

ζt
β̂

k
t ,

which implies

ζt v̂
k
t = 1

θt

(
ζt û

k
t − ζt (1 − θt )̂α

k
t−1

)− θt β̂
k
t

= 1 − θt

θt

( ζt

1 − θt
ûk

t − ζt α̂
k
t−1

)
− θt β̂

k
t

= 1 − θt

θt

( (1 − θt )ζt−1 + ϑθt

1 − θt
ûk

t − ζt α̂
k
t−1

)
− θt β̂

k
t

= 1 − θt

θt

(
(ζt−1 + ϑθt )̂u

k
t − ζt α̂

k
t−1

)
− 1 − θt

θt

(
ϑθt − ϑθt

1 − θt

)
ûk

t − θt β̂
k
t

= (1 − θt )ζt−1̂v
k
t−1 + ϑθt û

k
t − θt β̂

k
t .

To proved (26), we need to use (24) and (25). By using the definition of ζt and (25), one can
show that

ζt

2

(∥∥A
(
α̂k

� − v̂k
t

)∥∥2 − ∥∥A(ûk
t − v̂k

t

)∥∥2
)

= 1

2ζt

(∥∥A
(
ζt α̂

k
� − ζt v̂

k
t

)∥∥2 − ∥∥A(ζt û
k
t − ζt v̂

k
t

)∥∥2
)

= 1

2ζt

(∥∥∥A
((

(1 − θt )ζt−1 + ϑθt

)
α̂k

� − ((1 − θt )ζt−1̂v
k
t−1 + ϑθt û

k
t − θt β̂

k
t

))∥∥∥
2
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−
∥∥∥A
((

(1 − θt )ζt−1 + ϑθt

)
ûk

t − ((1 − θt )ζt−1̂v
k
t−1 + ϑθt û

k
t − θt β̂

k
t

))∥∥∥
2)

= 1

2ζt

(∥∥∥(1 − θt )ζt−1A
(
α̂k

� − v̂k
t−1

)+ ϑθtA
(
α̂k

� − ûk
t

)+ θtAβ̂
k
t

∥∥∥
2

−
∥∥∥(1 − θt )ζt−1A

(
ûk

t − v̂k
t−1

)+ θtAβ̂
k
t

∥∥∥
2)

= 1

2ζt

(
(1 − θt )

2ζ 2
t−1

∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2 + ϑ2θ2t

∥∥A
(
α̂k

� − ûk
t

)∥∥2

− (1 − θt )
2ζ 2

t−1

∥∥A
(
ûk

t − v̂k
t−1

)∥∥2

+ 2ϑθt (1 − θt )ζt−1

〈
A
(
α̂k

� − v̂k
t−1

)
,A
(
α̂k

� − ûk
t

)〉

+ 2θt (1 − θt )ζt−1

〈
A
(
α̂k

� − v̂k
t−1

)
,Aβ̂

k
t

〉

+ 2ϑθ2t
〈
A
(
α̂k

� − ûk
t

)
,Aβ̂

k
t

〉− 2θt (1 − θt )ζt−1

〈
A
(
ûk

t − v̂k
t−1

)
,Aβ̂

k
t

〉)

= 1

2ζt

(
1 − θt

)
ζt−1

(
ζt − ϑθt

)(∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2 − ∥∥A(ûk
t − v̂k

t−1

)∥∥2
)

+ 1

2ζt
ϑθt

(
ζt − (1 − θt )ζt−1

)∥∥A
(
α̂k

� − ûk
t

)∥∥2

+ 1

ζt
ϑθt (1 − θt )ζt−1

〈
A
(
α̂k

� − v̂k
t−1

)
,A
(
α̂k

� − ûk
t

)〉

+ 1

ζt
θt (1 − θt )ζt−1

〈
A
(
α̂k

� − ûk
t

)
,Aβ̂

k
t

〉+ 1

ζt
ϑθ2t
〈
A
(
α̂k

� − ûk
t

)
,Aβ̂

k
t

〉

= (1 − θt )ζt−1

2

(∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2 − ∥∥A(ûk
t − v̂k

t−1

)∥∥2)+ ϑθt

2

∥∥A
(
α̂k

� − ûk
t

)∥∥2

− ϑθt (1 − θt )ζt−1

2ζt

(〈
A
((

α̂k
� + ûk

t − 2̂vk
t−1

)+ (α̂k
� − ûk

t

)

− 2
(
α̂k

� − v̂k
t−1

))
,A
(
α̂k

� − ûk
t

)〉)

+ θt

ζt

(
(1 − θt )ζt−1 + ϑθt

)〈
A
(
α̂k

� − ûk
t

)
,Aβ̂

k
t

〉

= (1 − θt )ζt−1

2

(∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2 − ∥∥A(ûk
t − v̂k

t−1

)∥∥2
)

+ ϑθt

2

∥∥A
(
α̂k

� − ûk
t

)∥∥2 + θt

〈
A
(
α̂k

� − ûk
t

)
,Aβ̂

k
t

〉
,

which can be rewritten as

ζt

2

(∥∥A
(
α̂k

� − v̂k
t

)∥∥2 − ∥∥A(ûk
t − v̂k

t

)∥∥2
)

− (1 − θt )ζt−1

2

(∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2 − ∥∥A(ûk
t − v̂k

t−1

)∥∥2
)

= ϑθt

2

∥∥A
(
α̂k

� − ûk
t

)∥∥2 + θt

〈
A
(
α̂k

� − ûk
t

)
,Aβ̂

k
t

〉
.
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Finally, we prove (27) by using (24) and (25).

ζt

2

∥∥A
(
ûk

t − v̂k
t

)∥∥2 = ζt

2

∥∥A
(
ζt û

k
t − ζt v̂

k
t

)∥∥2

= 1

2ζt

∥∥A
((

(1 − θt )ζt−1 + ϑθt )̂u
k
t

− (1 − θt )ζt−1̂v
k
t−1 − ϑθt û

k
t + θt β̂

k
t

)∥∥2

= 1

2ζt

∥∥A
(
(1 − θt )ζt−1

(
ûk

t − v̂k
t−1

)+ θt β̂
k
t

)∥∥2

= (1 − θt )
2ζ 2

t−1

2ζt

∥∥A
(
ûk

t − v̂k
t−1

)∥∥2

+ θt (1 − θt )ζt−1

ζt

〈
A
(
ûk

t − v̂k
t−1

)
,Aβ̂

k
t

〉+ θ2t

2ζt

∥∥Aβ̂
k
t

∥∥2.

By using (24), we obtain

ζt

2

∥∥A
(
ûk

t − v̂k
t

)∥∥

= (1 − θt )
ζt−1(ζt − ϑθt )

2ζt

∥∥A
(
ûk

t − v̂k
t−1

)∥∥2 + (1 − θt )
〈
A
(
α̂k

t−1 − ûk
t

)
,Aβ̂

k
t

〉

+ η

2

∥∥Aβ̂
k
t

∥∥2

= (1 − θt )
ζt−1

2

(
1 − ϑθt

ζt

)∥∥A
(
ûk

t − v̂k
t−1

)∥∥2

+ (1 − θt )
〈
A
(
α̂k

t−1 − ûk
t

)
,Aβ̂

k
t

〉+ η

2

∥∥Aβ̂
k
t

∥∥2.

This completes the proof. ��

B.1 Proof of Lemma 2

Lemma 2 Consider applying Algorithm 1 to solve (3), the following inequality holds for any
t ≥ 1,

εt
D + Rt ≤ γt

(
ε0D + R0), (11)

where Rt = ζt
2

∑K
k=1

∥∥A
(
α̂k

� − v̂k
t

)∥∥2, γt =∏t
i=1

(
1 − θi

)
for any t ≥ 1 and γ0 = 1.

Proof Following from the optimality condition of α̂k
t , the following holds for any k ∈ [K ]

0 ∈ Lk
(
α̂k

t ; ûk
t ,w(ut )

)

⇒ 0 ∈ −1

n
∂ f ∗

k

(− α̂k
t

)+ 1

n

(
Âk)�∇g∗(Aut

λn

)
+ 1

η

(
Âk)�A

(
α̂k

t − ûk
t

)

⇒ −1

n

(
Âk)�∇g∗(Aut

λn

)
− 1

η

(
Âk)�A

(
α̂k

t − ûk
t

) ∈ −1

n
∂ f ∗

k

(− α̂k
t

)
. (28)
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By using the fact f ∗ is μ-strongly convex, the following inequality holds for any z ∈ R
n

1

n
f ∗(−αt ) ≤ 1

n
f ∗(−z) − 1

n
〈∂ f ∗(−αt ),αt − z〉 − μ

2n
‖z − αt‖2

= 1

n
f ∗(−z) − 1

n

K∑

k=1

〈
∂ f ∗

k

(− α̂k
t

)
, α̂k

t − ẑk 〉− ϑ

2
‖z − αt‖2.

Substituting (28) into the above inequality, we obtain

1

n
f ∗(−αt ) ≤ 1

n
f ∗(−z) − 1

n

K∑

k=1

〈(
Âk)�∇g∗(Aut

λn

)
,
(
α̂k

t − ẑk)
〉

− 1

η

K∑

k=1

〈(
Âk)�A

(
α̂k

t − ûk
t

)
,
(
α̂k

t − ẑk)〉− ϑ

2
‖z − αt‖2

= 1

n
f ∗(−z) − 1

n

K∑

k=1

〈
∇g∗(Aut

λn

)
,A
(
α̂k

t − ẑk)
〉
− 1

η

K∑

k=1

〈
A
(
α̂k

t − ûk
t

)
,A
(
α̂k

t − ẑk)〉

− ϑ

2
‖z − αt‖2

= 1

n
f ∗(−z) − 1

n

〈
∇g∗(Aut

λn

)
,A
(
αt − z

)〉− 1

η

K∑

k=1

〈
A
(
α̂k

t − ûk
t

)
,A
(
α̂k

t − ẑk)〉

− ϑ

2
‖z − αt‖2.

By using the fact that g∗ is 1/(1− ρ)-smooth and convex, the following inequality holds for
any z ∈ R

n

λg∗(Aαt

λn

)

≤ λg∗(Aut

λn

)
+ λ
〈
∇g∗(Aut

λn

)
,
A(αt − ut )

λn

〉
+ λ

2(1 − ρ)

∥∥∥
A(αt − ut )

λn

∥∥∥
2

≤ λg∗(Az
λn

)
− λ
〈
∇g∗(Aut

λn

)
,
A(z − ut )

λn

〉

+ λ
〈
∇g∗(Aut

λn

)
,
A(αt − ut )

λn

〉
+ λ

2(1 − ρ)

∥∥∥
A(αt − ut )

λn

∥∥∥
2

= λg∗(Az
λn

)
− 1

n

〈
∇g∗(Aut

λn

)
,A(z − αt )

〉
+ λ

2(1 − ρ)

∥∥∥
A(αt − ut )

λn

∥∥∥
2

≤ λg∗(Az
λn

)
− 1

n

〈
∇g∗(Aut

λn

)
,A(z − αt )

〉
+ λ

2(1 − ρ)λ2n2

K∑

k=1

∥∥A(̂αk
t − ûk

t )
∥∥2

= λg∗(Az
λn

)
− 1

n

〈
∇g∗(Aut

λn

)
,A(z − αt )

〉
+ 1

2η

K∑

k=1

∥∥A(̂αk
t − ûk

t )
∥∥2,
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where the last inequality is obtained by using the fact thatA is a block diagonal matrix. Thus,

D(αt ) = 1

n
f ∗(−αt ) + λg∗(Aαt

λn

)

≤ 1

n
f ∗(−z) − 1

n

〈
∇g∗(Aut

λn

)
,A
(
αt − z

)〉− 1

η

K∑

k=1

〈
A
(
α̂k

t − ûk
t

)
,A
(
α̂k

t − ẑk)〉

− ϑ

2
‖z − αt‖2 + λg∗(Az

λn

)
− 1

n

〈
∇g∗(Aut

λn

)
,A(z − αt )

〉

+ 1

2η

K∑

k=1

∥∥A(̂αk
t − ûk

t )
∥∥2

= D(z) − 1

η

K∑

k=1

〈
A
(
α̂k

t − ûk
t

)
,A
(
α̂k

t − ûk
t + ûk

t − ẑk)〉

+ 1

2η

K∑

k=1

∥∥A(̂αk
t − ûk

t )
∥∥2 − ϑ

2
‖z − αt‖2

= D(z) − 1

η

K∑

k=1

〈
A
(
α̂k

t − ûk
t

)
,A
(
ûk

t − ẑk)〉− 1

2η

K∑

k=1

∥∥A(̂αk
t − ûk

t )
∥∥2

− ϑ

2
‖z − αt‖2

= D(z) −
K∑

k=1

〈
Aβ̂

k
t ,A
(
ẑk − ûk

t

)〉− η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2 − ϑ

2
‖z − αt‖2,

which implies

D(z) ≥ D(αt ) +
K∑

k=1

〈
Aβ̂

k
t ,A
(
ẑk − ûk

t

)〉+ η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2 + ϑ

2
‖z − αt‖2. (29)

Substituting z = α� and z = αt−1 into (29), we obtain

D(α�) ≥ D(αt ) +
K∑

k=1

〈
Aβ̂

k
t ,A
(
α̂k

� − ûk
t

)〉+ η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2 + ϑ

2
‖α� − αt‖2

D(αt−1) ≥ D(αt ) +
K∑

k=1

〈
Aβ̂

k
t ,A
(
α̂k

t−1 − ûk
t

)〉+ η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2 + ϑ

2
‖αt−1 − αt‖2.

Combining these two inequalities together with coefficients θt and (1− θt ), respectively, we
obtain

θt D(α�) + (1 − θt )D(αt−1)

≥ D(αt ) +
K∑

k=1

〈
Aβ̂

k
t ,A
(
θt α̂

k
� + (1 − θt )̂α

k
t−1 − ûk

t

)〉+ η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2

+ ϑθt

2
‖α� − αt‖2 + ϑ(1 − θt )

2
‖αt−1 − αt‖2,
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which is equivalent to

D(αt ) − D(α�) ≤(1 − θt )
(
D(αt−1) − D(α�)

)−
K∑

k=1

〈
Aβ̂

k
t ,A
(
θt α̂

k
� + (1 − θt )̂α

k
t−1 − ûk

t

)〉

− η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2 − ϑθt

2
‖α� − αt‖2 − ϑ(1 − θt )

2
‖αt−1 − αt‖2

= (1 − θt )
(
D(αt−1) − D(α�)

)− (1 − θt )

K∑

k=1

〈
Aβ̂

k
t ,A
(
α̂k

t−1 − ûk
t

)〉

− θt

K∑

k=1

〈
Aβ̂

k
t ,A
(
α̂k

� − ûk
t

)〉

− η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2 − ϑθt

2
‖α� − αt‖2 − ϑ(1 − θt )

2
‖αt−1 − αt‖2.

Substituting (26) into the above inequality, we obtain

D(αt ) − D(α�)

≤ (1 − θt )
(
D(αt−1) − D(α�)

)− (1 − θt )

K∑

k=1

〈
Aβ̂

k
t ,A
(
α̂k

t−1 − ûk
t

)〉

− ϑθt

2

K∑

k=1

∥∥A
(
α̂k

� − ûk
t

)∥∥2

− ζt

2

K∑

k=1

(∥∥A
(
α̂k

� − v̂k
t

)∥∥2 − ∥∥A(ûk
t − v̂k

t

)∥∥2
)

− η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2

− ϑ(1 − θt )

2
‖αt−1 − αt‖2

+ (1 − θt )ζt−1

2

K∑

k=1

(∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2 − ∥∥A(ûk
t − v̂k

t−1

)∥∥2
)

− ϑθt

2
‖α� − αt‖2,

which is equivalent to

(
D(αt ) − D(α�)

)+ ζt

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t

)∥∥2

≤ (1 − θt )

(

D(αt−1) − D(α�) + ζt−1

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2

−ζt−1

2

K∑

k=1

∥∥A
(
ûk

t − v̂k
t−1

)∥∥2
)
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+ ζt

2

K∑

k=1

∥∥A
(
ûk

t − v̂k
t

)∥∥2 − (1 − θt )

K∑

k=1

〈
Aβ̂

k
t ,A
(
α̂k

t−1 − ûk
t

)〉− η

2

K∑

k=1

∥∥Aβ̂
k
t

∥∥2

− ϑθt

2

K∑

k=1

∥∥A
(
α̂k

� − ûk
t

)∥∥2 − ϑθt

2
‖α� − αt‖2 − ϑ(1 − θt )

2
‖αt−1 − αt‖2.

Substituting (27) into the above inequality, we obtain

(
D(αt ) − D(α�)

)+ ζt

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t

)∥∥2

≤ (1 − θt )
(

D(αt−1) − D(α�) + ζt−1

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2

− ζt−1

2

K∑

k=1

∥∥A
(
ûk

t − v̂k
t−1

)∥∥2
)

+ (1 − θt )ζt−1

2

(
1 − ϑθt

ζt

)∥∥A
(
ûk

t − v̂k
t−1

)∥∥2

− ϑθt

2

K∑

k=1

∥∥A
(
α̂k

� − ûk
t

)∥∥2 − ϑθt

2
‖α� − αt‖2

− ϑ(1 − θt )

2
‖αt−1 − αt‖2

= (1 − θt )
(

D(αt−1) − D(α�) + ζt−1

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2
)

− (1 − θt )ζt−1

2

ϑθt

ζt

∥∥A
(
ûk

t − v̂k
t−1

)∥∥2

− ϑθt

2

K∑

k=1

∥∥A
(
α̂k

� − ûk
t

)∥∥2 − ϑθt

2
‖α� − αt‖2 − ϑ(1 − θt )

2
‖αt−1 − αt‖2,

which can be rewritten as

(
D(αt ) − D(α�)

)+ ζt

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t

)∥∥2

≤ (1 − θt )
(

D(αt−1) − D(α�) + ζt−1

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2
)

− (1 − θt )ζt−1

2

ϑθt

ζt

∥∥A
(
ûk

t − v̂k
t−1

)∥∥2

− ϑθt

2

K∑

k=1

∥∥A
(
α̂k

� − ûk
t

)∥∥2 − ϑθt

2
‖α� − αt‖2 − ϑ(1 − θt )

2
‖αt−1 − αt‖2.
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This implies

(
D(αt ) − D(α�)

)+
K∑

k=1

ζt

2

∥∥A
(
α̂k

� − v̂k
t

)∥∥2

≤ (1 − θt )
(

D(αt−1) − D(α�) + ζt−1

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t−1

)∥∥2
)
.

Applying the above inequality for i = 1 to t , we obtain

(
D(αt ) − D(α�)

)+ ζt

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t

)∥∥2

≤
t∏

i=1

(1 − θi )
(

D(α0) − D(α�) + ζ0

2

∥∥A
(
α̂k

� − v̂k
0

)∥∥2
)
,

By using the definition of γt , the above inequality can be rewritten as

(
D(αt ) − D(α�)

)+ ζt

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
t

)∥∥2 ≤ γt

(
D(α0) − D(α�) + ζ0

2

∥∥A
(
α̂k

� − v̂k
0

)∥∥2
)
.

This completes the proof. ��

B.2 Convergence analysis for smooth losses

B.2.1 Proof of Lemma 3

Lemma 3 Assume the loss functions fki ’s are (1/μ)-smooth for any k ∈[K ] and i ∈[nk]. If
θ0=√

ϑη and (1 − ρ)λμn ≤1, then the following inequality holds for any t ≥ 1

εt
D ≤

(
1 −√(1 − ρ)λμn

)t(
ε0D + R0). (12)

Proof It can be proved by using Lemma 2. From Lemma 1, we know that fki are μ-strongly
convex for any k ∈ [K ], i ∈ [nk] since fki is (1/μ)-smooth. If ζt−1 ≥ ϑ , then ζt =
(1− θt )ζt−1 + ϑθt ≥ (1− θt )ϑ + θtϑ = ϑ . There we have ζt ≥ ϑ holds for any t ≥ 1 since
ζ0 ≥ ϑ . Hence,

θ2t /η = ζt ⇒ θt ≥ √ηζt ⇒ θt ≥ √ηϑ = √(1 − ρ)λμn.

Then, γt can be bounded

γt =
t∏

i=1

(1 − θi ) ≤ (1 −√(1 − ρ)λμn
)t

.

Substituting this result and v0 = α0 into (11), we obtain

D(αt ) − D(α�) ≤ (1 −√(1 − ρ)λμn
)t(

D(α0) − D(α�) + ζ0

2

∥∥A(α� − α0)
∥∥2
)
.

This completes the proof. ��
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B.2.2 Proof of Theorem 1

Theorem 1 Assume the loss functions fki ’s are (1/μ)-smooth for any k ∈ [K ] and i ∈ [nk].
If θ0=√

ϑη and (1 − ρ)λμn ≤1, then after T iterations in Algorithm 1 with

T ≥
√

1

(1 − ρ)λμn
log

((
1 + σmax

)ε0D
εD

)
,

D
(
αT

)− D
(
α�) ≤ εD holds. Furthermore, after T iterations with

T ≥
√

1

(1−ρ)λμn
log

((
1 + σmax

) (1 − ρ)λμn + σmax

(1 − ρ)λμn

ε0D

εG

)
,

it holds that P
(
w(αT )) − (−D(αT )) ≤ εG.

Proof It is easy to see that D(α) is ϑ-strongly convex since fki is (1/μ)-smooth for any
k ∈ [K ], i ∈ [nk]. It implies

D(α0) ≥ D(α�) + ϑ

2
‖α0 − α�‖2 ⇒ ‖α0 − α�‖2 ≤ 2

ϑ

(
D(α0) − D(α�)

) = 2

ϑ
ε0D .

By using this result, (12) can be rewrite as

εt
D = D(αt ) − D(α�) ≤ (1 −√(1 − ρ)λμn

)t(
D(α0) − D(α�) + ζ0

2
‖A(α� − α0)‖2

)

≤ (1 −√(1 − ρ)λμn
)t(

ε0D + ζ0

2
σmax‖α� − α0‖2

)

≤ (1 −√(1 − ρ)λμn
)t(

ε0D + ζ0

2
σmax

2

ϑ
ε0D

)

= (1 −√(1 − ρ)λμn
)t

(1 + σmax)ε
0
D

≤ exp(−t
√

(1 − ρ)λμn)(1 + σmax)ε
0
D,

where the last upper bound will be smaller than εD if

t ≥
√

1

(1 − ρ)λμn
log
(
(1 + σmax)

ε0D

εD

)
.

By applying Lemma 6, we know that for any

T ≥
√

1

(1 − ρ)λμn
log

(1 + σmax)ε
0
D

( σmax
(1−ρ)λn2

+ ϑ
)

ϑεG

⇒ T ≥
√

1

(1 − ρ)λμn
log
(
(1 + σmax)

(1 − ρ)λμn + σmax

(1 − ρ)λμn

ε0D

εG

)
,

it holds that D(αT ) − P
(
w(αT )) ≤ εG . ��
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B.3 Convergence analysis for Lipschitz continuous losses: Proof of Theorem 2

Theorem 2 Assume the loss functions fki ’s are generally convex and L-Lipschitz continuous
for any k ∈[K ], i ∈[nk]. If θ0=1, the following inequality holds for any t ≥1

εt
D ≤ 1

(t + 2)2

(
4ε0D + 8L2σmax

(1 − ρ)λn2

)
. (13)

After T iterations in Algorithm 1 with

T ≥
√

8L2σmax

(1 − ρ)λn2εD
+ 4ε0D

εD
− 2, (14)

it holds that D
(
αT

)− D
(
α�) ≤ εD.

Proof It can be proved by using Lemma 2. It is easy to see that f ∗
ki are general convex

(i.e., μ = 0) since fki are L-Lipschitz continuous for any k ∈ [K ], i ∈ [nk]. By using the
definition of ζt and the fact thatμ = 0, we obtain γt = (1−θt )γt−1 = ζt/ζt−1γt−1. Applying
the above identity from i = 1 to t , we obtain γt = λ0ζt/ζ0 = ζt/ζ0. In addition, we can
obtain θt = (γt−1 − γt

)
/γt−1 from γt = (1 − θt )γt−1. Therefore,

1

γt
− 1

γt−1
= 2γt−1 − 2

√
γtγt−1

2γt−1
√

γt
≥ 2γt−1 − (γt−1 + γt )

2γt−1
√

γt

= θt

2
√

γt
= θt

2
√

ζt/ζ0
.

By using θ2t /η = ζt , we obtain 1/γt − 1/γt−1 ≥ 0.5
√

ηζ0 = 0.5
√

ζ0(1 − ρ)λn2. Combing
the above inequality from i = 1 to i = t , we obtain

1√
γt

− 1√
γ0

≥ t

2

√
ηζ0 ⇒ γt ≤ 4

(
t
√

ηζ0 + 2
)2 = 4

(
t
√

ζ0(1 − ρ)λn2 + 2
)2 .

Substituting this results into (11), we obtain

D(αt ) − D(α�) ≤ 4
(
t
√

ζ0(1 − ρ)λn2 + 2
)2

(
D(α0) − D(α�) + ζ0

2

K∑

k=1

∥∥A
(
α̂k

� − v̂k
0

)∥∥2
)

Since θ0 = 1, we have ζ0 = θ20 /η = 1/((1 − ρ)λn2). Substituting the value of ζ0 into (13),
we obtain

D(αt ) − D(α�) ≤ 4
(
t
√

ζ0(1 − ρ)λn2 + 2
)2

(

D(α0) − D(α�) + ζ0

2

K∑

k=1

∥∥A
(
α̂k

� − α̂k
0

)∥∥2
)

= 4

(t + 2)2

(
ε0D + 1

2(1 − ρ)λn2 ‖A(α� − α0)‖2
)

≤ 4

(t + 2)2

(
ε0D + 1

2(1 − ρ)λn2 σmax‖α� − α0‖2
)

≤ 1

(t + 2)2

(
4ε0D + 8L2σmax

(1 − ρ)λn2

)
,
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where the last upper bound will be smaller than εD if

T ≥
√

8L2σmax

(1 − ρ)λn2εD
+ 4ε0D

εD
− 2.

This completes the proof. ��

Appendix C: More details of dynamic feature screening

C.1 Proof of Lemma 4

Lemma 4 Assume the loss functions fki’s are (1/μ)-smooth for any k ∈[K ], i ∈[nk]. For any

dual feasible solution α, it holds that α� ∈F
def= {θ | ‖θ − α‖ ≤ √

2G(α)n/μ
}
.

Proof Since fki are (1/μ)-smooth for any k ∈ [K ], i ∈ [nk], it implies that D(α) is (μ/n)-
strongly convex.

D(α)
a≥ D

(
α�

)+ 〈∂ D
(
α�

)
,α − α�

〉+ μ

2n

∥∥α − α�

∥∥2

⇒ −D(α) ≤ −D
(
α�

)− 〈∂ D
(
α�

)
,α − α�

〉− μ

2n

∥∥α − α�

∥∥2

⇒ −D(α)
b≤ P(w(α)) − 〈∂ D

(
α�

)
,α − α�

〉− μ

2n

∥∥α − α�

∥∥2

⇒ −D(α)
c≤ P(w(α)) − μ

2n

∥∥α − α�

∥∥2 ,

where (a) follows from D(α) is (μ/n)-strongly convex , (b) is obtained by applying the
weakly duality theorem, and (c) follows from the optimality of α�. Therefore, we obtain

∥∥α� − α
∥∥ ≤ √2nG(α)/μ ⇒ α� ∈ B(α,

√
2nG(α)/μ).

This completes the proof. ��

Before proving Lemma 5, we first introduce the following lemma.

Lemma 8 (Gay 1981) Let us consider the following minimization problem

min
s∈Rn

{
ψ(s) def= 1

2
〈s,Hs〉 + 〈g, s〉 } s.t. ‖Ds‖ ≤ δ, (30)

where H ∈ R
n×n be a symmetric matrix, D ∈ R

n×n is an nonsingular matrix, and δ > 0.
Then, s� minimizes ψ(s) over the constraint set if and only if there exists a ϑ� ≥ 0 such that

H + ϑ�D�D � 0 (31)
(
H + ϑ�D�D

)
s� = −g (32)

‖Ds�‖ = δ if ϑ� > 0. (33)

This ϑ� is unique.

Next, we prove Lemma 5 by using Lemma 8.

123



Machine Learning (2020) 109:569–601 597

Lemma 5 If υ j =0, the maximum value of (19) is 0. Otherwise, the upper bound is

K∑

k=1

〈
Xk

j·,α
k 〉2+ nG(α)

μ
ϑ�− 1

2
〈g, s�〉 ,

where ϑ� and s� are defined as follows: (a) ϑ� =2υ j and s� =�s+̂s if 1) ∃ ŝ∈R
K with ŝI j =0

and ‖�s+̂s‖=√
2G(α)n/μ, and 2)

〈
Xt

· j , θ t

〉
=0,∀t ∈I j . (b) Otherwise, ϑ� >2υ j is solution

of ‖ (H+ϑ�I)−1 g‖=√
2G(α)n/μ, and s� =−(H+ϑ�I)−1g.

Proof Let z = θ − α, then (19) is equivalent to

max
z

∥∥AG j ·(z + α)
∥∥2 s.t. ‖z‖ ≤ √2G(α)n/μ,

The objective can be relaxed as following

∥∥AG j ·(z + α)
∥∥2 =

K∑

k=1

〈
Xk

j ·, (z
k + αk)

〉2
,

=
K∑

k=1

(〈
Xk

j ·, z
k 〉2 + 2

〈
Xk

j ·, z
k 〉〈Xk

j ·,α
k 〉+ 〈Xk

j ·,α
k 〉2
)
,

≤
K∑

k=1

(∥∥Xk
j ·
∥∥2‖zk‖2 + 2

∣∣〈Xk
j ·,α

k 〉∣∣∥∥Xk
j ·
∥∥‖zk‖

)
+

K∑

k=1

〈
Xk

j ·,α
k 〉2.

Let s ∈ R
K with st = ‖zk‖, we then define ψ(s) as ψ(s) = 1

2 〈s,Hs〉 + 〈g, s〉. By using the
relaxed objective function, (19) becomes

max
‖s‖≤√

2G(α)n/μ
−ψ(s) +

K∑

k=1

〈
Xk

j ·,α
k 〉2 = − min

‖s‖≤√
2G(α)n/μ

ψ(s) +
K∑

k=1

〈
Xk

j ·,α
k 〉2,

where min‖s‖≤√
2G(α)n/μ ψ(s) can be rewritten in the form of (30) by defining D = I and

δ = √
2G(α)n/μ. Then, Lemma 8 implies there exists a unique ϑ� such that

H + ϑ�I � 0 ⇒ ϑ� ≥ max
k∈[K ] 2

∥∥Xk
j ·
∥∥2 ⇒ ϑ� ≥ 2υ j ,

which implies ϑ� ≥> 0 since υ j > 0. Then, the problem can be considered as two cases
ϑ� = 2υ j and ϑ� ≥ 2υ j . Given ϑ� and s�, ψ(s�) can be formulated by using (32) and (33)

ψ (s�) = 1

2
〈s�,Hs�〉 + 〈g, s�〉 = 1

2
〈s�, (H + ϑ�I) s�〉 + 〈g, s�〉 − ϑ�

2
‖s�‖2

= − 1

2
〈s�, g〉 + 〈g, s�〉 − ϑ�

2
δ2 = 1

2
〈g, s�〉 − nG(α)

μ
ϑ�,

which implies the upper bound of (19) is

K∑

k=1

〈
Xk

j ·,α
k 〉2 − ψ (s�) =

K∑

k=1

〈
Xk

j ·,α
k 〉2 + nG(α)

μ
ϑ� − 1

2
〈g, s�〉 .

Next, we show the values of s� when ϑ� = 2υ j and ϑ� ≥ 2υ j , respectively.
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Table 2 Statistics of the datasets
for STL

Dataset # Samples # Features Sparsity (%)

RCV1 677,399 47,236 1.5e−3

URL 2,396,130 3,231,961 3.5e−5

Case 1: ϑ� = 2υ j . In this case, (32) and (33) imply (H + 2υ j I)s� = −g and ‖s�‖ = δ that
is equivalent to Therefore, if all above conditions hold then ϑ� = 2υ j , otherwise we have ϑ�

that is discussed in the following.
Case 2: ϑ� > 2υ j . In this case, H + ϑ�I is an invertible matrix. From (32) and (33), we
obtain

(H + ϑ�) s� = −g and ‖s�‖ = δ,

which implies s� = − (H + ϑ�I)−1 g and
∥∥(H+ ϑ�I

)−1g
∥∥ = √

2G(α)n/μ. This completes
the proof. ��

Lemma 5 shows that there exists a global optimum ϑ�, however, we need some algorithm
to obtain the value for the case of ϑ� > 2υ j . Note that ϑ� ∈ (2υ j ,∞) is the unique solution
of

ϕ(ϑ) = 1

‖ (H + ϑI)−1 g‖ −
√

μ

2G(α)n
= 0.

The above equation can be efficiently solved by using Newton’s method. Besides Newton’s
method, ϑ� can also be efficiently solved by using bisection method.

Appendix D: More details on single task learning

In this section, we providemore details on the extension of ourmethod to single task learning.
Specifically, we consider the following �1-norm regularized learning problem [i.e., elastic
net (Zou and Hastie 2005)]

min
w∈Rp

1

n

K∑

k=1

nk∑

i=1

fki

(〈xk
i ,w〉)+ λ

(
ρ‖w‖1 + 1 − ρ

2
‖w‖2

)
. (34)

Then, the local subproblem for each worker is

Lk

(
α̂k;ut

) def= 1

n
f ∗
k

(−α̂k)+ 1

n

〈
∇g∗(Aut

λn

)
,A
(
α̂k −̂uk

t

)〉

+ σ ′

2η

∥∥A(̂αk −̂uk
t )
∥∥2 + λ

K
g∗(Aut

λn

)
,

where η
def= (1 − ρ)λn2 and a safe value for σ ′ is σ ′ = K (Ma et al. 2015). We compare the

performance of our method with COCOA+ on two datasets (Table 2) with smoothed hinge
loss (Shalev-Shwartz and Zhang 2013)

fki (z
k
i ) =

⎧
⎪⎨

⎪⎩

0 if yk
i zk

i ≥ 1
1 − yk

i zk
i − μ

2 if yk
i zk

i ≤ 1 − μ
1
2μ

(
1 − yk

i zk
i

)2 otherwise

where μ is set to μ = 0.5.
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RCV1, lambda = 4.8416e-06
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Fig. 4 Duality gap versus communicated iterations for λ = 10−2λmax and λ = 10−3λmax

Fig. 5 Effects of dynamic screening for reducing communication costs. Total communication costs (normalized
by feature dimension d) used by the proposed method without and with dynamic screening for solving (3)
over {λi }50i=1 on RCV1 and URL

We compare the performance of our method with COCOA+ on two datasets in Table 2
with smoothed hinge loss (Shalev-Shwartz and Zhang 2013). In our experiments, 8 workers
are used (i.e., K = 8) and ρ = 0.9 for both datasets. The SDCA (Shalev-Shwartz and Zhang
2013) is used as local solver for both methods and H is set to H = 5 ×105. We evaluate
two methods for λ = 10−2λmax and λ = 10−3λmax. Figure 4 shows the comparison in terms
of the number iterations for communication used by our method and COCOA+ to obtain a
solution meeting a prescribed duality gap. In addition, we also evaluate the effect of dynamic
screening for further reduced communication cost. The setting is the same as that presented
in Sect. 7.4. Figure 5 presents the total communication cost used by our method without and
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with dynamic screening to solve (34) on RCV1 and URL. As observed, the proposed method
performs as well as it works for MTL.
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Ma, C., Jaggi, M., Curtis, F. E., Srebro, N., & Takáč, M. (2017). An accelerated communication-efficient

primal–dual optimization framework for structured machine learning. arXiv preprint arXiv:1711.05305.
Ma, C., Smith, V., Jaggi, M., Jordan, M. I., Richtárik, P., & Takác, M. (2015). Adding vs. averaging in

distributed primal–dual optimization. In Proceedings of ICML.
Ndiaye, E., Fercoq, O., Gramfort, A., & Salmon, J. (2015). Gap safe screening rules for sparse multi-task and

multi-class models. In Proceedings of NIPS.
Ndiaye, E., Fercoq, O., Gramfort, A., & Salmon, J. (2017). Gap safe screening rules for sparsity enforcing

penalties. Journal of Machine Learning Research, 18, 128:1–128:33.
Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course. Berlin: Springer.
Obozinski, G., Taskar, B., & Jordan, M. (2010). Joint covariate selection and joint subspace selection for

multiple classification problems. Statistics and Computing, 20(2), 231–252.
Obozinski, G., Wainwright, M. J., & Jordan, M. I. (2011). Support union recovery in high-dimensional mul-

tivariate regression. The Annals of Statistics, 39(1), 1–47.
Shalev-Shwartz, S., & Zhang, T. (2013). Stochastic dual coordinate ascent methods for regularized loss.

Journal of Machine Learning Research, 14(1), 567–599.
Smith, V., Chiang, C., Sanjabi, M., & Talwalkar, A. S. (2017a). Federated multi-task learning. In Proceedings

of NIPS.
Smith, V., Forte, S., Jordan, M. I., & Jaggi, M. (2015). L1-regularized distributed optimization: A

communication-efficient primal–dual framework. CoRR arXiv:1512.04011.

123

http://arxiv.org/abs/1711.05305
http://arxiv.org/abs/1512.04011


Machine Learning (2020) 109:569–601 601
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