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Abstract
We consider the problem of learning a binary classifier from only positive and unlabeled
observations (called PU learning). Recent studies in PU learning have shown superior perfor-
mance theoretically and empirically. However, most existing algorithms may not be suitable
for large-scale datasets because they face repeated computations of a large Gram matrix
or require massive hyperparameter optimization. In this paper, we propose a computation-
ally efficient and theoretically grounded PU learning algorithm. The proposed PU learning
algorithm produces a closed-form classifier when the hypothesis space is a closed ball in
reproducing kernel Hilbert space. In addition, we establish upper bounds of the estimation
error and the excess risk. The obtained estimation error bound is sharper than existing results
and the derived excess risk bound has an explicit form, which vanishes as sample sizes
increase. Finally, we conduct extensive numerical experiments using both synthetic and real
datasets, demonstrating improved accuracy, scalability, and robustness of the proposed algo-
rithm.
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1 Introduction

Supervised binary classification assumes that all the training data are labeled as either being
positive or negative. However, in many practical scenarios, collecting a large number of
labeled samples from the two categories is often costly, difficult, or not even possible. In con-
trast, unlabeled data are relatively cheap and abundant. As a consequence, semi-supervised
learning is used for partially labeled data (Chapelle et al. 2006). In this paper, as a special
case of semi-supervised learning, we consider Positive-Unlabeld (PU) learning, the problem
of building a binary classifier from only positive and unlabeled samples (Denis et al. 2005;
Li and Liu 2005). PU learning provides a powerful framework when negative labels are
impossible or very expensive to obtain, and thus has frequently appeared in many real-world
applications. Examples include document classification (Elkan and Noto 2008; Xiao et al.
2011), image classification (Zuluaga et al. 2011; Gong et al. 2018), gene identification (Yang
et al. 2012, 2014), and novelty detection (Blanchard et al. 2010; Zhang et al. 2017).

Several PU learning algorithms have been developed over the last 2 decades. Liu et al.
(2002) and Li and Liu (2003) considered a two-step learning scheme: in Step 1, assigning
negative labels to some unlabeled observations believed to be negative, and in Step 2, learning
a binary classifierwith existing positive samples and the negatively labeled samples fromStep
1. Liu et al. (2003) pointed out that the two-step learning scheme is based on heuristics, and
suggested fitting a biased support vector machine by regarding all the unlabeled observations
as being negative.

Scott and Blanchard (2009) and Blanchard et al. (2010) suggested a modification of
supervised Neyman–Pearson classification, whose goal is to find a classifier minimizing the
false positive rate keeping the false negative rate low. To circumvent the problem of lack of
negative samples, they tried to build a classifier minimizing the marginal probability of being
classified as positive while keeping the false negative rate low. Solving the empirical version
of this constrained optimization problem is challenging, but the authors did not present an
explicit algorithm.

Recently, many PU learning algorithms based on the empirical riskminimization principle
have been studied. Du Plessis et al. (2014) proposed the use of the ramp loss and provided an
algorithm that requires solving a non-convex optimization problem. Du Plessis et al. (2015)
formulated a convex optimization problem by using the logistic loss or double hinge loss.
However, all the aforementioned approaches involve solving a non-linear programming prob-
lem. This causes massive computational burdens for calculating the large Gram matrix when
the sample size is large. Kiryo et al. (2017) suggested a stochastic algorithm for large-scale
datasets with a non-negative risk estimator. However, to execute the algorithm, several hyper-
parameters are required, and choosing the optimal hyperparameter may demand substantial
trials of running the algorithm (Oh et al. 2018), causing heavy computation costs.

In supervised binary classification, Sriperumbudur et al. (2012) proposed a computation-
ally efficient algorithm building a closed-form binary discriminant function. The authors
showed that their function estimator obtained by evaluating the negative of the empirical
integral probability metric (IPM) is the minimizer of the empirical risk using the specific
loss defined in Sect. 3.1. They further showed that a closed form can be derived as the result
of restricting a hypothesis space to a closed unit ball in reproducing kernel Hilbert space
(RKHS).

In this paper, capitalizing on the properties shown in the supervised learning method by
Sriperumbudur et al. (2012), we extend it to PU learning settings. In addition, we derive new
theoretical results on excess risk bounds. We first define a weighted version of IPM between
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two probability measures and call it the weighted integral probability metric (WIPM). We
show that computing the negative of WIPM between the unlabeled data distribution and the
positive data distribution is equivalent to minimizing the hinge risk. Based on this finding, we
propose a binary discriminant function estimator that computes the negative of the empirical
WIPM, and then derive associated upper bounds of the estimation error and the excess risk.
Under a mild condition, our obtained upper bounds are shown to be sharper than the existing
ones because of using Talagrand’s inequality over McDiarmid’s inequality (Kiryo et al.
2017). Moreover, we pay special attention to the case where the hypothesis space is a closed
ball in RKHS and propose a closed-form classifier. We show that the associated excess risk
bound has an explicit form that converges to zero as the sample sizes increase. To the best of
our knowledge, this is the first result to explicitly show the excess risk bound in PU learning.

As a summary, our main contributions are:

– We formally define WIPM and establish a link with the infimum of the hinge risk (The-
orem 1). We derive an estimation error bound and show that it is sharper than existing
results (Theorem 2 and Proposition 1).

– Theproposed algorithmproduces a closed-formclassifierwhen the underlyinghypothesis
space is a closed ball in RKHS (Proposition 2). Furthermore, we obtain a novel excess
risk bound that converges to zero as sample sizes increase (Theorem 3).

– Numerical experiments using both synthetic and real datasets show that our method
is comparable to or better than existing PU learning algorithms in terms of accuracy,
scalability, and robustness in the case of unknown class-priors.

2 Preliminaries

In this section, we describe the L-risk for binary classification and present its PU represen-
tation. We briefly review several PU learning algorithms based on the L-risk minimization
principle. We first introduce problem settings and notations.

2.1 Problem settings of PU learning

Let X and Y be random variables for input data and class labels, respectively, whose range is
the product space X × {± 1} ⊆ R

d × {± 1}. The d is a positive integer. We denote the joint
distribution of (X , Y ) by PX ,Y and the marginal distribution of X by PX . The distributions
of positive and negative data are defined by conditional distributions, PX |Y=1 and PX |Y=−1,
respectively. Let π+ := PX ,Y (Y = 1) be the marginal probability of being positive and set
π− = 1−π+. We follow the two samples of data scheme (Ward et al. 2009; Niu et al. 2016).
That is, let Xp = {xpi }

np
i=1 and Xu = {xui }nui=1 be observed sets of independently identically

distributed samples from the positive data distribution PX |Y=1 and the marginal distribution
PX , respectively. Here, the np and nu are the number of positive and unlabeled data points,
respectively. Note that the unlabeled data distribution is the marginal distribution.

Let U be a class of real-valued measurable functions defined on X . A function f ∈ U ,
often called a hypothesis, can be understood as a binary discriminant function andwe classify
an input x with the sign of a discriminant function, sign( f (x)). Define M = { f : X →
R | ‖ f ‖∞ ≤ 1} ⊆ U , where ‖ f ‖∞ = supx∈X | f (x)| is the supremum norm. We restrict
our attention to a class F ⊆ M and call F a hypothesis space. Throughout this paper, we
assume that the hypothesis space is symmetric, i.e., f ∈ F implies − f ∈ F . In PU learning,
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the main goal is to construct a classifier sign( f (x)) only from the positive dataset Xp and the
unlabeled dataset Xu with f ∈ F .

In this paper, the quantity π+, often called the class-prior, is assumed to be known as in the
literature (Kiryo et al. 2017; Kato et al. 2019) to focus on theoretical and practical benefits of
our proposed algorithm. We examine the performance when π+ is unknown in Experiment
3 of Sects. 6.1 and 6.2.

2.2 L-risk minimization in PU learning

In supervised binary classification, the L-risk is defined by

RL( f ) :=
∫
X×{± 1}

L(y, f (x))dPX ,Y (x, y)

= π+
∫
X
L(1, f (x))dPX |Y=1(x) + π−

∫
X
L(− 1, f (x))dPX |Y=− 1(x), (1)

for a loss function L : {± 1} × R → R (Steinwart and Christmann 2008, Section 2.1). We
denote the margin-based loss function by �(yt) := L(y, t) if a loss function L(y, t) can be
represented as a function of margin yt , the product of a label y and a score t for all possible
y ∈ {± 1} and t ∈ R.

Under the PU learning framework, however, the right-hand side of Eq. (1) cannot be
directly estimated due to lack of negatively labeled observations. To circumvent this problem,
many studies in the field of PU learning exploited the relationship PX = π+PX |Y=1 +
π−PX |Y=−1 and replaced PX |Y=−1 in Eq. (1) with (PX − π+PX |Y=1)/π− (Du Plessis et al.
2014; Sakai et al. 2017). That is, the L-risk can be alternatively expressed as:

RL( f ) =
∫
X
L(−1, f (x))dPX (x) + π+

∫
X
L(1, f (x)) − L(−1, f (x))dPX |Y=1(x). (2)

Now the right-hand side of Eq. (2) can be empirically estimated by the positive dataset Xp

and the unlabeled dataset Xu. However, the L-risk RL( f ) is not convex with respect to
f in general, and minimizing an empirical estimator for RL( f ) is often formulated as a
complicated non-convex optimization problem.

There have been several approaches to resolving the computational difficulty bymodifying
loss functions. Du Plessis et al. (2014) proposed to use non-convex loss functions satisfy-
ing the symmetric condition, L(1, f (x)) + L(− 1, f (x)) = 1. They proposed to optimize
the empirical risk based on the ramp loss �ramp(yt) = 0.5×max(0, min(2, 1− yt)) via the
concave-convex procedure (Collobert et al. 2006). Du Plessis et al. (2015) converted the prob-
lem to convex optimization through the linear-odd condition, L(1, f (x)) − L(− 1, f (x)) =
− f (x). They showed that the logistic loss �log(yt) = log(1 + exp(−yt)) and the double
hinge loss �dh(yt) = max(0,max(− yt, (1− yt)/2)) satisfy the linear-odd condition. How-
ever, all the aforementioned methods utilized a weighted sum of np + nu predefined basis
functions as a binary discriminant function, which triggered calculating the (np + nu) ×
(np + nu) Gram matrix. Hence, executing algorithms is not scalable and can be intractable
when np and nu are large (Sansone et al. 2019). Our first goal in this paper is to overcome
this computational problem by providing a computationally efficient method.
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3 Weighted integral probability metric and L-risk

In this section, we formally defineWIPM, a key tool for constructing the proposed algorithm,
and build a link with the L-risk in Theorem 1 below. Based on the link, we propose a new
binary discriminant function estimator and present its theoretical properties in Theorem 2.
We first introduce the earlier work by Sriperumbudur et al. (2012) that provided a closed-form
classifier in supervised binary classification.

3.1 Relation between IPM and L-risk in supervised binary classification

Müller (1997) introduced an IPM for any two probability measures P and Q defined on X
and a class F of bounded measurable functions, given by

IPM(P, Q;F) := sup
f ∈F

∣∣∣∣
∫
X

f (x)dP(x) −
∫
X

f (x)dQ(x)

∣∣∣∣ .

IPM has been studied as either a metric between two probability measures (Sriperumbudur
et al. 2010a; Arjovsky et al. 2017; Tolstikhin et al. 2018) or a hypothesis testing tool (Gretton
et al. 2012).

Under the supervised binary classification setting, Sriperumbudur et al. (2012) showed
that calculating IPM between PX |Y=1 and PX |Y=− 1 is negatively related to minimizing
the risk with a loss function, i.e., IPM(PX |Y=1, PX |Y=− 1;F) = − inf f ∈F RLc( f ), where
Lc(1, t) = − t/π+ and Lc(− 1, t) = t/π− for all t ∈ R. They further showed that a
discriminant functionminimizing the Lc-risk can be obtained analytically whenF is a closed
unit ball in RKHS. This result cannot be directly extended to PU learning due to absence of
negatively labeled observations. In the next subsection, we define a generalized version of
IPM and extend the previous results for supervised binary classification to PU learning.

3.2 Extension toWIPM and L-risk in PU learning

Let F be a given class of bounded measurable functions and let w̃ : X → R be a weight
function such that ‖w̃‖∞ < ∞. We define WIPM1 between two probability measures P and
Q with a function class F and a weight function w̃ by

WIPM(P, Q; w̃,F) := sup
f ∈F

∣∣∣∣
∫
X

f (x)dP(x) −
∫
X

w̃(x) f (x)dQ(x)

∣∣∣∣ . (3)

Note that WIPM reduces to IPM if w̃(x) = 1 for all x ∈ X . Other special cases of Eq. (3)
have been discussed in many applications. In the covariate shift problem, Huang et al. (2007)
and Gretton et al. (2009) proposed to minimize WIPM with respect to w̃ when F is the unit
ball in RKHS and P, Q are empirical distributions of test and training data, respectively. In
unsupervised domain adaptation, Yan et al. (2017) regarded P, Q as empirical distributions
of target and source data, respectively, where in this case, w̃ is a ratio of two class-prior
distributions.

1 AlthoughWIPM is not ametric in general, we keep saying the nameWIPM to emphasize that it is a weighted
version of IPM.

123



518 Machine Learning (2020) 109:513–532

We pay special attention to the case where w̃(x) is constant, w ∈ R, for every input value
and denote WIPM by WIPM(P, Q;w,F),

WIPM(P, Q;w,F) := sup
f ∈F

∣∣∣∣
∫
X

f (x)dP(x) − w

∫
X

f (x)dQ(x)

∣∣∣∣ .

In the following theorem, we establish a link between WIPM(PX , PX |Y=1; 2π+,F) and the
infimum of the �h-risk over F for the hinge loss �h(yt) = max(0, 1 − yt).

Theorem 1 (Relationship between �h-risk and WIPM) Let F be a symmetric hypothesis
space in M and �h(yt) = max(0, 1 − yt) be the hinge loss. Then, we have

inf
f ∈F R�h ( f ) = 1 − WIPM(PX , PX |Y=1; 2π+,F).

Moreover, if gF satisfies

WIPM(PX , PX |Y=1; 2π+,F) =
∫
X
gF (x)dPX (x) − 2π+

∫
X
gF (x)dPX |Y=1(x),

then inf f ∈F R�h ( f ) = R�h (− gF ).

Theorem 1 shows that the infimum of the �h-risk over a hypothesis space F equals the
negativeWIPM between the unlabeled data distribution PX and the positive data distribution
PX |Y=1 with the same hypothesis spaceF and theweight 2π+ up to addition by constant. Fur-
thermore, by negating theWIPMoptimizer gF , we obtain theminimizer of the �h-risk over the
hypothesis spaceF . Here,we define aWIPMoptimizer gF as a function that attains the supre-
mum, i.e., WIPM(PX , PX |Y=1; 2π+,F) = ∫

X gF (x) dPX (x) −2π+
∫
X gF (x)dPX |Y=1(x)

and we set fF = − gF for later notational convenience. Sriperumbudur et al. (2012) derived
a similar result to Theorem 1 by showing IPM(PX |Y=1, PX |Y=−1;F) = − inf f ∈F RLc( f )
in supervised binary classification. However, as we mentioned in Sect. 3.1, their method is
only applicable to supervised binary classification settings.

3.3 Theoretical properties of empiricalWIPM optimizer

Wedenote the empirical distributions of PX |Y=1 and PX by PX |Y=1,np and PX ,nu , respectively.

Let PX |Y=1,np = n−1
p

∑np
i=1 δxpi

and PX ,nu = n−1
u

∑nu
i=1 δxui , where δ(·) defined on X is the

Dirac delta function and δx (·) := δ(·− x) for x ∈ X . The empirical Rademacher complexity
of F given a set S = {z1, . . . , zm} is defined byRS(F) := Eσ

( 1
m sup f ∈F

∣∣∑m
i=1 σi f (zi )

∣∣).
Here, {σi }mi=1 is a set of independent Rademacher random variables taking 1 or − 1 with
probability 0.5 each and Eσ (·) is the expectation operator over the Rademacher random
variables (Bartlett and Mendelson 2002). Denote a maximum by a ∨ b := max(a, b), a
minimum by a ∧ b := min(a, b). For a probability measure Q defined on X , denote the
expectation of a discriminant function f by EQ( f ) := ∫

X f (x)dQ(x) and the variance by
VarQ( f ) := EQ( f 2) − (EQ( f ))2.

The empirical estimator for WIPM(PX , PX |Y=1;w,F) is given by plugging in the empir-
ical distributions,

WIPM(PX ,nu , PX |Y=1,np;w,F) = sup
f ∈F

∣∣∣∣∣
1

nu

nu∑
i=1

f (xui ) − w

np

np∑
i=1

f (xpi )

∣∣∣∣∣ ,
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and we define an empirical WIPM optimizer ĝF ∈ F that satisfies the following equation,

WIPM(PX ,nu , PX |Y=1,np;w,F) = 1

nu

nu∑
i=1

ĝF (xui ) − w

np

np∑
i=1

ĝF (xpi ). (4)

We set f̂F = −ĝF for notational convenience as in Sect. 3.2.
We analyze the estimation error R�h ( f̂F ) − inf f ∈F R�h ( f ) in the following theorem. To

begin, let χ(1)
np,nu(w) = w/

√
np + 1/

√
nu and χ

(2)
np,nu(w) = 2(w/np + 1/nu).

Theorem 2 (Estimation error bound for general function space) Let ĝF be an empirical
WIPM optimizer defined in Eq. (4) and set f̂F = − ĝF . Let F be a symmetric hypothesis
space such that ‖ f ‖∞ ≤ ν ≤ 1, VarPX |Y=1( f ) ≤ σ 2

X |Y=1, and VarPX ( f ) ≤ σ 2
X . Denote

ρ2 = σ 2
X |Y=1 ∨ σ 2

X . Then, for all α, τ > 0, the following holds with probability at least

1 − e−τ ,

R�h ( f̂F ) − inf
f ∈F R�h ( f ) ≤ Cα(EPnu

X
(RXu(F)) + 2π+EP

np
X |Y=1

(RXp(F)))

+ C (1)
τ,ρ2χ

(1)
np,nu(2π+) + C (2)

τ,ν,αχ(2)
np,nu(2π+), (5)

where Cα = 4(1 + α), C (1)
τ,ρ2 = 2

√
2τρ2, C (2)

τ,ν,α = 2τν
( 2
3 + 1

α

)
.

Due to Talagrand’s inequality, Theorem 2 provides a sharper bound than the existing
result based on McDiarmid’s inequality. Specifically, Kiryo et al. (2017, Theorem 4) utilized
McDiarmid’s inequality and showed that for τ > 0 and some Δ > 0 the following holds
with probability at least 1 − e−τ ,

R�h ( f̂ ) − inf
f ∈F R�h ( f ) ≤ 8(EPnu

X
(RXu(F)) + 2π+EP

np
X |Y=1

(RXp(F)))

+ χ(1)
np,nu(2π+)(1 + ν)

√
2τ + Δ. (6)

The following proposition shows that the proposed upper bound (5) is sharper than the
upper bound (6) under a certain condition.

Proposition 1 With the notations defined in Theorem 2, suppose that the following holds,

1 + ν

2
− 5

√
2τχ

(2)
np,nu(2π+)ν

6χ(1)
np,nu(2π+)

≥ ρ. (7)

Then, the proposed upper bound (5) is sharper than the previous result (6) proposed byKiryo
et al. (2017).

It is noteworthy that the second term in the left-hand side of (7) converges to zero as
np and nu increase because χ

(1)
np,nu(2π+) = OPX |Y=1,PX ((np ∧ nu)−1/2) and χ

(2)
np,nu(2π+) =

OPX |Y=1,PX ((np ∧ nu)−1). Due to (1 + ν)/2 ≥ ν ≥ ρ, the condition (7) is quite reasonable
if the upper bounds of the variances, σ 2

X and σ 2
X |Y=1, are sufficiently small.

In binary classification, one ultimate goal is to find a classifier minimizing the misclas-
sification error, or equivalently, minimizing the excess risk. Bartlett et al. (2006) showed
that there is an invertible function ψ : [− 1, 1] → [0,∞) such that the excess risk
R�01( f̂F ) − inf f ∈U R�01( f ) is bounded above by ψ−1(R�( f̂F ) − inf f ∈U R�( f )) if the
margin-based loss � is classification-calibrated. In particular, Zhang (2004) showed that
the excess risk is bounded above by the excess �h-risk, i.e., R�01( f̂F ) − inf f ∈U R�01( f ) ≤
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R�h ( f̂F ) − inf f ∈U R�h ( f ). This implies that an excess risk bound can be obtained by ana-
lyzing the excess �h-risk bound with Theorem 2. The following corollary provides the excess
risk bound.

Corollary 1 (Excess risk bound for general function space) With the notations defined in
Theorem 2, for all α, τ > 0, the following holds with probability at least 1 − e−τ ,

R�01( f̂F ) − inf
f ∈U R�01( f ) ≤ inf

f ∈F R�h ( f ) − inf
f ∈U R�h ( f )

+ Cα(EPnu
X

(RXu(F)) + 2π+EP
np
X |Y=1

(RXp(F)))

+ C (1)
τ,ρ2χ

(1)
np,nu(2π+) + C (2)

τ,ν,αχ(2)
np,nu(2π+).

4 WIPM optimizer with reproducing kernel Hilbert space

In this section, we provide a computationally efficient PU learning algorithm which builds
an analytic classifier when a hypothesis space is a closed ball in RKHS. In addition, unlike
the excess risk bound in Corollary 1, we explicitly derive the bound that converges to zero
when the sample sizes np and nu increase.

4.1 An analytic classifier viaWMMD optimizer

To this end, we assume that X ⊆ [0, 1]d is compact. Let k : X × X → R be a reproducing
kernel defined on X and Hk be the associated RKHS with the inner product 〈·, ·〉Hk : Hk ×
Hk → R. We denote the induced norm by ‖·‖Hk . Denote a closed ball in RKHS Hk with
a radius r > 0, by Hk,r = { f : ‖ f ‖Hk ≤ r}. We define the weighted maximum mean
discrepancy (WMMD) between two probability measures P and Q with a weight w and a
closed ballHk,r byWMMDk(P, Q;w, r) :=WIPM(P, Q;w,Hk,r ). The name ofWMMD
comes from the maximum mean discrepancy (MMD), a popular example of the IPM whose
function space is the unit ballHk,1, i.e., MMDk(P, Q) := IPM(P, Q;Hk,1) (Sriperumbudur
et al. 2010a, b). As defined in Eq. (4), let ĝHk,r ∈ Hk,r be the empirical WMMD optimizer
such that

WMMDk(PX ,nu , PX |Y=1,np;w, r) = 1

nu

nu∑
i=1

ĝHk,r (x
u
i ) − w

np

np∑
i=1

ĝHk,r (x
p
i ).

In addition, we set f̂Hk,r = − ĝHk,r , which leads the corresponding classification rule to

sign( f̂Hk,r (z)). In the following proposition, we show that this classification rule has an
analytic expression by exploiting the reproducing property f (x) = 〈 f , k(·, x)〉Hk and the
Cauchy-Schwarz inequality.

Proposition 2 Let k : X ×X → R be a bounded reproducing kernel. Then, the classification
rule has a closed-form expression given by

sign( f̂Hk,r (z)) =
{

+ 1 if (2π+)−1 < λ̂np,nu(z),

− 1 otherwise,
(8)
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where

λ̂np,nu(z) = n−1
p

∑np
i=1 k(z, x

p
i )

n−1
u

∑nu
i=1 k(z, x

u
i )

.

We call the classifier defined in Eq. (8) the WMMD classifier and the score λ̂np,nu(z) the
WMMD score for z. One strength of the WMMD classifier is that the classification rule has
a closed-form expression, resulting in computational efficiency. Furthermore, the WMMD
score λ̂np,nu is independent of the class-prior π+, and thus we can obtain the score function
without prior knowledge of the class-prior.

4.2 Explicit excess risk bound ofWMMD classifier

Since the empirical WMMD optimizer ĝHk,r is a special case of the empirical WIPM opti-
mizer, we have an excess risk bound from the result of Corollary 1.However,without knowing
convergence rates of the Rademacher complexities, EPnu

X
(RXu(F)) and EP

np
X |Y=1

(RXp(F)),

and the approximation error, the consistency of the classifier remains unclear. In this sub-
section, we establish an explicit excess risk bound that vanishes. We first derive an explicit
estimation error bound in the following lemma.

Lemma 1 (Explicit estimation error bound)With the notations defined in Theorem 2, assume
that a reproducing kernel k defined on a compact space X is bounded. Let r−1

1 =
supx∈X

√
k(x, x). Then, we have Hk,r1 ⊆ M. Moreover, for all α, τ > 0, the following

holds with probability at least 1 − e−τ ,

R�h ( f̂Hk,r1
) − inf

f ∈Hk,r1

R�h ( f ) ≤ (Cα + C (1)
τ,ρ2)χ

(1)
np,nu(2π+) + C (2)

τ,ν,αχ(2)
np,nu(2π+).

While the bound in Theorem 2 is expressed in terms EPnu
X

(RXu(F)) and EP
np
X |Y=1

(RXp(F)),

these are evaluated in terms of n p and nu in the upper bound in Lemma 1, giving an explicit
estimation error bound with O((np ∧ nu)−1/2) convergence rate. The key idea is to use
reproducing property f (x) = 〈 f , k(·, x)〉Hk and the Cauchy-Schwarz inequality to obtain
an upper bound for the Rademacher complexity.

In the following lemma, we elaborate on the approximation error bound. To begin, for any
0 < β ≤ 1, let βM := {β f : f ∈ M}. Set f ∗

1 (x) = sign(P(Y = 1 | X = x) − 1
2 ).

Lemma 2 (Approximation error bound over uniformly bounded hypothesis space) With the
notations defined in Lemma 1, we have

inf
f ∈Hk,r1

R�h ( f ) − inf
f ∈βM

R�h ( f ) ≤ β inf
g∈Hk,r1/β

‖g − f ∗
1 ‖L2(PX ),

for any 0 < β ≤ 1.

When β = 1, Lemma 2 implies that the approximation error inf f ∈Hk,r1
R�h ( f )

− inf f ∈U R�h ( f ) is bounded above by infg∈Hk,r1
‖g − f ∗

1 ‖L2(PX ) due to inf f ∈U R�h ( f )
= inf f ∈M R�h ( f ) (Lin 2002). Hence, a naive substitution to Corollary 1 will give a sub-
optimal bound because infg∈Hk,r1

‖g − f ∗
1 ‖L2(PX ) is non-zero in general. In the following

theorem, we rigorously establish the explicit excess risk bound which vanishes as np and nu
increase.We provide the pointer to a proof and the conditions (C1) and (C2) in “AppendixA”.

123



522 Machine Learning (2020) 109:513–532

Theorem 3 (Explicit excess risk bound) With the notations defined in Theorem 2 and in
Lemma 1, assume that the Gaussian kernel k(x, y) = exp(−‖x − y‖22/2) is used. Then,
r1 = 1. Furthermore, under the conditions (C1) and (C2), for all 0 < s < 1, α > 0, and
τ > 0, the following holds with probability at least 1 − e−τ :

R�01( f̂Hk,1) − inf
f ∈U R�01( f )

≤ (Cα + C (1)
τ,ρ2)χ

(1)
np,nu(2π+)1−s + C (2)

τ,ν,αχ(1)
np,nu(2π+)−sχ(2)

np,nu(2π+)

+ Cd‖dPX

dλ
‖L2(λ)‖ f ∗

1 ‖1/4,2{− s ln χ(1)
np,nu(2π+)}−1/16,

where

Cd =
⎧⎨
⎩

(√
2π

log 2

√
d

)1/8

+ 64
√
d

(
8

π

)d
⎫⎬
⎭ .

Compared to Corollary 1, the excess risk bound in Theorem 3 has an explicit form, thus
obviates the approximation error term. In addition, this bound converges to zero when np
and nu increase and the convergence rate is O({ln(np ∧ nu)}−1/16). To derive the excess risk
bound, we first note that themisclassification error is determined by the sign of a discriminant
function alone, i.e., inf f ∈U R�01( f ) = inf f ∈βM R�01( f ) for any 0 < β ≤ 1. Next, we show
that R�01(g) − inf f ∈βM R�01( f ) ≤ {R�h (g) − inf f ∈βM R�h ( f )}/β by modifying Bartlett
et al. (2006).We next obtain bounds for {R�h ( f̂Hk,r1

)−inf f ∈Hk,r1
R�h ( f )}/β using Lemma 1

and {inf f ∈Hk,r1
R�h ( f ) − inf f ∈βM R�h ( f )}/β using Lemma 2 and the previous result by

Smale and Zhou (2003, Proposition 1.1) in terms of β. A carefully chosen β provides the
explicit excess risk bound.

Niu et al. (2016) provided the excess risk bound expressed as a function of np, nu. How-
ever, their bound included combined terms of the approximation error and the Rademacher
complexity, as in Corollary 1. To the best of our knowledge, we are the first to explicitly
derive the excess risk bound with convergence rate in terms of a function of np, nu in PU
learning.

5 Related work

Excess risk bound in noisy label literature PU learning can be considered as a special case
of classification with asymmetric label noise, and many studies in this literature have shown
consistency results similar to Theorem 3 (Natarajan et al. 2013). Patrini et al. (2016) derived
an explicit estimation error when F is a set of linear hypotheses and Blanchard et al. (2016)
showed a consistency result of the excess risk bound when the hypothesis space is RKHS
with universal kernels. While the two studies assumed the one sample of data scheme, the
proposed bound is based on the two samples of data scheme. Therefore, our proposed excess
risk bound is expressed in np and nu, giving a new consistency theory.

Closed-form classifier Blanchard et al. (2010) suggested a score function similar to the
WMMD score by using different bandwidth hyperparameters for the denominator and the
numerator. However, with these differences, our method gains theoretical justification while
their score function does not. Du Plessis et al. (2015) derived a closed-form classifier based
on the squared loss. They estimated P(Y = 1 | X) − P(Y = − 1 | X) and showed the
consistency of the estimation error bound in the two samples of data scheme. However, the
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classifier is not scalable because it requires to compute the inverse of a (np +nu) × (np +nu)
matrix.

6 Numerical experiments

In this section, we empirically analyze the proposed algorithm to demonstrate its practical
efficacy using synthetic and real datasets. Pytorch implementation for the experiments is
available at https://github.com/eraser347/WMMD_PU.

6.1 Synthetic data analysis

We first visualize the effect of increasing the sample sizes np and nu on the discriminant
ability of the proposed algorithm (Experiment 1). Then we compare performance with (i)
the logistic loss �log, denoted by LOG, (ii) the double hinge loss �dh, denoted by DH, both
proposed by Du Plessis et al. (2015), (iii) the non-negative risk estimator method, denoted
by NNPU, proposed by Kiryo et al. (2017), (iv) the threshold adjustment method, denoted
by tADJ, proposed by Elkan and Noto (2008), and (v) the proposed algorithm, denoted by
WMMD (Experiments 2, 3, and 4).

Experiment 1 In this case, we used the two_moons dataset whose underlying distribu-
tions are

X |Y = y,U ∼ N

([
2(1 + y) − 4y cos(πU )

(1 + y) − 4y sin(πU )

]
,

[
0.42 0
0 0.42

])
,

where U refers to a uniform random variable ranges from 0 to 1 and N (μ,Σ) is the normal
distribution with mean μ and covariance Σ . We used the ‘make_moons’ function in the
Python module ‘sklearn.datasets’ (Pedregosa et al. 2011) to generate the datasets.

Figure 1 illustrates the decision boundaries of WMMD using the two_moons dataset.
The first row displays the case where the unlabeled sample size is small, nu = 50, and the
second row displays the casewhere the unlabeled sample size is large, nu = 400. The first and
second columns display the case where the positive sample sizes are np = 5 and np = 10,
respectively. The class-prior is fixed to π+ = 0.5, and we assumed that the class-prior is
known. We visualize the true mean function of the positive and negative data distributions
with blue and red lines, respectively. The positive data are represented by blue diamond
points, and the unlabeled data are represented by gray points. The decision boundaries of the
WMMD classifier tend to correctly separate the two clusters as np and nu increase.

In Experiments 2, 3, and 4, we evaluate: (i) the accuracy and area under the receiver
operating characteristic curve (AUC) as nu and π+ change when the class-prior is known
(Experiment 2) and unknown (Experiment 3); (ii) the elapsed training time (Experiment 4).
In these experiments, we set up the underlying joint distribution as follows:

X | Y = y ∼ N

(
y
12√
2
, I2

)
, Y ∼ 2 × Bern(π+) − 1, (9)

where Bern(p) is the Bernoulli distribution with mean p, 12 = (1, 1)T is the 2 dimensional
vector of all ones and I2 is the identity matrix of size 2.

Experiment 2 In this experiment, we compare the accuracy and AUC of the five PU
learning algorithms when the true class-prior π+ is known. Figure 2a, c show the accuracy
and AUC on various nu. The training sample size for the positive data is np = 100 and the
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Fig. 1 The illustration of the decision boundaries of the WMMD classifier using the two_moons dataset
with the increases in the size of positive and unlabeled samples. The true means of the positive and negative
data distributions are plotted by blue and red lines respectively. The gray ‘+’ points and the gray ‘−’ points
refer to the unlabeled positive and unlabeled negative training data, respectively (Color figure online)

class prior is π+ = 0.5. The unlabeled sample size changes from 40 to 500 by 20. We repeat
a random generation of training and test data 100 times. For comparison purposes, we add
the 1-Bayes risk for each unlabeled sample size. In terms of accuracy, the proposed WMMD
tends to be closer to the 1-Bayes risk as the nu increases. Compared with other PU learning
algorithms, WMMD achieves higher accuracy in every nu and achieves comparable to or
better AUC.

Figure 2b, d show a comparison of accuracy and AUC as π+ changes. The training sample
size for the positive and unlabeled data are np = 100 and nu = 400, respectively. The class-
priorπ+ changes from 0.05 to 0.95 by 0.05. The test sample size is 103. Training and test data
are repeatedly generated 100 times with different random seeds. In terms of accuracy, the
proposedWMMDperforms comparablywith LOG andNNPU, showing advantages over DH
and tADJ.When the true class-prior is less than equal to 0.8,WMMDperforms better in terms
of AUC, except for tADJ. The tADJ achieves the highest AUC because P(Y = 1 | X = x)
is proportional to P({x is from the positive dataset} | X = x). This empirically shows that
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(a) Accuracy comparison on variousnu. (b) Accuracy comparison on variousπ+.

(c) AUC comparison on variousnu. (d) AUC comparison on variousπ+.

Fig. 2 The comparison of the accuracy and AUC of the five PU learning algorithms when each of nu and π+
changes. The dashed curve represents the 1-Bayes risk. The curve and the shaded region represent the average
and the standard error, respectively, based on 100 replications

WMMD has a comparable discriminant ability to the other algorithms for a wide range of
class-priors.

Experiment 3 The main goal of this subsection is to show the robustness of the proposed
classifier in the case of unknown class-prior π+. In PU learning literature, π+ has been
frequently assumed to be known (Du Plessis et al. 2015; Niu et al. 2016; Kiryo et al. 2017;
Kato et al. 2019). However, this assumption can be considered to be strong in real-world
applications, and to correctly execute existing PU learning algorithms, an accurate estimate
of π+ is necessary. In this experiment, we compare the accuracy and AUC when the class-
prior π+ is unknown. For the WMMD classifier, we used a density-based method for the
class-prior estimation which can be obtained as a byproduct of the proposed algorithm. We
provide the pointer to a description in “Appendix A”. The results of LOG, DH, and NNPU
are given for completeness sake using the ‘KM1’ method2 by Ramaswamy et al. (2016). We
take these estimates as true values and repeat the same comparative numerical experiments
in Experiment 2.

Since the objective functions of the LOG, DH, and NNPU algorithms depend on the esti-
mate π̂+, we anticipate that both the accuracy and AUC rely on the quality of the estimation.

2 While the ‘KM2’ method by Ramaswamy et al. (2016) is often considered to be a state-of-the-art method
for estimating π+, in our experiments, estimates based on the ‘KM2’ method have a larger estimation error
than that of the ‘KM1’ method and thus we omitted it.
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(a) Accuracy comparison on variousnu when
the class-prior is unknown.

(b) Accuracy comparison on variousπ+ when
the class-prior is unknown.

(c) AUC comparison on variousnu when the
class-prior is unknown.

(d) AUC comparison on variousπ+ when the
class-prior is unknown.

Fig. 3 The comparison of the accuracy and AUC of the five PU learning algorithms when each of nu and π+
changes under the situation where π+ is unknown. The dashed curve represents the 1-Bayes risk. The curve
and the shaded region represent the average and the standard error, respectively, based on 100 replications.
LOG, DH, and NNPU use the estimate of the class-prior from the ‘KM1’ method

On the other hand, the tADJ algorithm does not depend on the class-prior, so the performance
is not affected. Also, as the proposed score function does not depend on the class-prior π+,
and since π+ is used only to determine a cutoff, the AUC of the proposed algorithm is less
affected by the estimation of π+.

Figure 3a, c compare the accuracy and AUC as a function of nu. WMMD performs worse
than LOG, DH, and NNPU, while AUC is higher. Though tADJ shows poor accuracy in a
wide range, it achieves high AUC comparable to WMMD. As we anticipated, WMMD is
more robust than LOG, DH, and NNPU in AUC. This is possibly because our score function
λ̂np,nu does not depend on π+. A similar trend can be found in Figure 3b, d. We note that the
‘KM1’ method is not scalable and thus may not be used for large-scale datasets.

Experiment 4 In this experiment, we compare the elapsed training time, including hyper-
parameter optimization, of the five PU learning algorithms. The data are generated from the
distributions described in Eq. (9), and we set np = 100, nu = 400, and π+ = 0.5. The
elapsed time is measured with 20 Intel®Xeon®E5-2630 v4@2.20GHz CPU processors.

Table 1 compares the elapsed training time and its ratio relative to that ofWMMD.WMMD
takes the shortest time among the five baseline methods. In particular, the training time for
WMMD is at least about 300 times shorter than that of the LOG and DH methods. This is
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Table 1 A summary of elapsed training time and its ratio for the five PU learning algorithms based on 100
replications

LOG DH NNPU tADJ WMMD

In seconds ×10 90.0 ± 4.7 96.1 ± 6.1 6.0 ± 0.1 0.4 ± 0.0 0.2 ± 0.0

In ratio 347.9 ± 23.4 371.0 ± 28.5 23.2 ± 1.1 1.8 ± 0.0 1.0 ± 0.0

We set np = 100, nu = 400, and π+ = 0.5. Average and standard error are denoted by ‘average ± standard
error’

Table 2 A summary of the eleven binary classification datasets

Dataset d # of samples np nu nte π+ Scale

heart_scale 12 122 10 60 60 0.62 Small

sonar_scale 60 207 10 100 100 0.47 Small

australian_scale 12 449 20 220 220 0.51 Small

australian_scale2 12 449 10 130 130 0.15 Small

breast-cancer_scale 10 683 20 340 340 0.35 Small

breast-cancer_scale2 10 683 40 340 340 0.65 Small

diabetes_scale 8 759 50 380 370 0.65 Small

skin_nonskin 3 245,057 103 105 105 0.79 Large

skin_nonskin2 3 245,057 103 105 105 0.21 Large

epsilon_normalized 2000 500,000 103 4 × 105 105 0.50 Large

HIGGS 26 8,786,441 103 106 105 0.50 Large

‘# of samples’ denotes the number of total samples after removing incomplete observations. We denote the
number of positive, unlabeled, and test samples, by np, nu, and nte after the random sampling, respectively.
We categorize the eleven datasets into two groups: the first seven datasets as small-scale and the last four
datasets as large-scale

because the WMMD classifier has an analytic form while the LOG and DH methods require
solving a non-linear programming problem.

6.2 Real data analysis

We demonstrate the practical utility of the proposed algorithm using the eight real binary
classification datasets from the LIBSVM3 (Chang and Lin 2011). Since some observations
from the raw datasets are not completely recorded, we removed such observations and con-
struct the dataset with fully recorded data. Next, to investigate the effect of varying π+,
we artificially reconstructed Xp and Xu through a random sampling from the fully recorded
datasets. For the three datasets australian_scale, breast-cancer_scale and
skin_nonskin, we reconstructed the data so that the resulting class-prior π+ ranges from
0.15 to 0.79. We add the suffix 2 for those datasets. We randomly resampled data 100
times for the seven small datasets and 10 times for the four big datasets: skin_nonskin,
skin_nonskin2, epsilon_normalized, and HIGGS. Table 2 summarizes statistics
for the eleven real datasets. We conduct two comparative numerical experiments when π+ is
known and unknown.

3 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Table 3 Accuracy and AUC comparison using the real datasets when the class-prior π+ is known

Dataset LOG DH NNPU tADJ WMMD

Accuracy (in %)

heart_scale 70.5± 0.8 68.4 ± 0.9 71.0± 0.8 65.1 ± 0.8 71.6± 0.8

sonar_scale 55.8 ± 0.6 52.9 ± 0.6 63.2± 0.6 60.7 ± 0.6 62.4± 0.6

australian_scale 85.4± 0.4 84.9± 0.6 79.2 ± 0.5 80.0 ± 0.7 84.2± 0.6

australian_scale2 85.7 ± 0.2 85.7 ± 0.2 86.7± 0.3 75.4 ± 2.0 86.2± 0.2

breast-cancer_scale 95.8± 0.1 96.0± 0.3 90.1 ± 0.3 91.0 ± 0.4 89.3 ± 0.5

breast-cancer_scale2 95.6± 0.3 94.4 ± 0.8 95.9± 0.1 92.5 ± 0.2 94.2 ± 0.3

diabetes_scale 66.7 ± 0.7 65.5 ± 0.9 69.4± 0.4 67.9 ± 0.3 66.4 ± 0.2

skin_nonskin – – 98.2± 0.1 78.0 ± 0.4 85.3 ± 0.7

skin_nonskin2 – – 98.6± 0.0 93.9 ± 0.1 98.1± 0.2

epsilon_normalized – – 64.5± 0.3 63.1 ± 0.1 56.3 ± 1.3

HIGGS – – 56.3± 0.2 52.6 ± 0.1 54.0 ± 0.2

AUC ×100

heart_scale 78.4± 1.0 78.3± 1.1 73.8 ± 0.9 72.5 ± 1.1 79.0± 0.9

sonar_scale 61.2 ± 0.8 60.6 ± 0.9 67.4± 0.7 66.2 ± 0.7 68.9± 0.8

australian_scale 91.1± 0.2 91.3± 0.3 87.8 ± 0.4 87.8 ± 0.5 90.4± 0.4

australian_scale2 89.2± 0.4 87.3 ± 0.4 84.3 ± 0.6 85.9 ± 0.7 88.6± 0.6

breast-cancer_scale 99.4 ± 0.0 99.3 ± 0.0 97.8 ± 0.1 95.6 ± 0.4 99.5± 0.0

breast-cancer_scale2 99.3± 0.0 99.2± 0.1 99.3± 0.0 97.2 ± 0.2 98.7 ± 0.2

diabetes_scale 74.0± 0.6 71.5 ± 1.1 73.5± 0.6 74.7± 0.5 74.5± 0.7

skin_nonskin – – 99.5± 0.1 94.8 ± 0.1 99.4± 0.1

skin_nonskin2 – – 99.7 ± 0.0 94.6 ± 0.0 99.8± 0.0

epsilon_normalized – – 70.0± 0.4 69.3 ± 0.1 62.2 ± 2.3

HIGGS – – 59.6 ± 0.2 65.3± 0.1 55.7 ± 0.3

We denote the memory error results for LOG and DH by the hyphen. Average and standard error are denoted
by ‘average ± standard error’. Boldface numbers denote the best and equivalent algorithms with respect to a
t-test with a significance level of 5%

Table 3 shows the average and the standard error of the accuracy and AUCwhen the class-
prior π+ is known. LOG and DH fail to compute the (np + nu) × (np + nu) Gram matrix
due to out of memory in the 12 GB GPU memory limit. WMMD achieves comparable
to or better accuracy and AUC than LOG, DH, and tADJ on most datasets. Compared to
NNPU, WMMD performs comparably on the small datasets. However, NNPU achieves
higher accuracy on skin_nonskin, epsilon_normalized, and HIGGS. The neural
network used in NNPU fits well to the complicated and high-dimensional structure of data
and shows high accuracy.

Table 4 compares the average and the standard error of the accuracy and AUC when the
class-prior π+ is unknown. As in Experiment 3 in Sect. 6.1, we estimate π+ using the ‘KM1’
method for LOG, DH, and NNPU, and using the density-based method for WMMD. The
LOG, DH, and NNPU algorithms are implemented on the seven small-scale datasets alone
because the method by Ramaswamy et al. (2016) is not feasible with the large-scale datasets
(Bekker and Davis 2018). Overall, WMMD shows comparable to or better performances
than other PU learning algorithms on most datasets. Compared to Table 3, WMMD and
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Table 4 Accuracy and AUC comparison using the real datasets when the class-prior π+ is unknown

Dataset LOG DH NNPU tADJ WMMD

Accuracy (in %)

heart_scale 39.5 ± 0.8 39.1 ± 0.7 42.4 ± 0.9 65.1 ± 0.8 70.5± 0.7

sonar_scale 53.5 ± 0.6 52.1 ± 0.5 59.9± 0.7 60.7± 0.6 54.3 ± 0.8

australian_scale 50.0 ± 0.2 50.0 ± 0.2 50.0 ± 0.2 80.0± 0.7 79.4± 1.0

australian_scale2 84.9 ± 0.2 84.9 ± 0.2 85.6± 0.3 85.5± 1.0 80.2 ± 1.0

breast-cancer_scale 65.0 ± 0.2 65.2 ± 0.2 65.0 ± 0.2 91.0± 0.4 93.0± 1.0

breast-cancer_scale2 35.0 ± 0.2 35.0 ± 0.2 35.0 ± 0.2 92.5± 0.2 92.6± 0.4

diabetes_scale 36.0 ± 0.3 41.1 ± 1.1 37.9 ± 0.5 67.9± 0.3 65.1 ± 0.2

skin_nonskin – – – 78.0 ± 0.4 82.2± 0.9

skin_nonskin2 – – – 93.9 ± 0.1 95.7± 0.4

epsilon_normalized – – – 63.1± 0.1 49.9 ± 0.1

HIGGS – – – 52.6± 0.1 50.9 ± 0.0

AUC ×100

heart_scale 67.2 ± 1.8 67.2 ± 1.4 71.0 ± 0.9 72.5 ± 1.1 77.1± 0.9

sonar_scale 60.5 ± 0.9 62.2 ± 0.9 66.6 ± 0.8 66.2 ± 0.7 69.7± 0.8

australian_scale 78.4 ± 1.1 72.5 ± 1.4 80.3 ± 0.6 87.8 ± 0.5 90.3± 0.3

australian_scale2 92.9± 0.2 89.6 ± 0.6 85.9 ± 0.7 92.4 ± 0.3 93.3± 0.2

breast-cancer_scale 98.9 ± 0.1 93.5 ± 1.8 54.8 ± 1.1 95.6 ± 0.4 99.5± 0.0

breast-cancer_scale2 14.4 ± 2.0 19.4 ± 3.8 91.5 ± 0.3 97.2 ± 0.2 99.0± 0.1

diabetes_scale 64.0 ± 1.3 63.8 ± 1.4 72.6 ± 0.5 74.7± 0.5 75.9± 0.5

skin_nonskin – – – 94.8 ± 0.1 99.5± 0.1

skin_nonskin2 – – – 94.6 ± 0.0 99.8± 0.0

epsilon_normalized – – – 69.3± 0.1 59.7 ± 1.8

HIGGS – – – 65.3± 0.1 55.4 ± 0.2

The ‘KM1’ method by Ramaswamy et al. (2016) is used for LOG, DH, and NNPU, and the density-based
method is used forWMMD.We denote the infeasible cases due to ‘KM1’ method by the hyphen. Other details
are given in Table 3

tADJ show robustness to unknown π+ in terms of AUC. This is because WMMD and tADJ
do not require estimation of π+ to construct score functions. In contrast, the other methods
require an estimate π̂+, and we observe a substantial drop in accuracy and AUC when the
‘KM1’ method estimate is used.

7 Concluding remarks

Existing methods use different objective functions and hypothesis spaces, and as a con-
sequence, different optimization algorithms. Hence, there is no reason that one method
outperforms uniformly for all scenarios. It is possible that one particular method may out-
perform in one scenario, for example, NNPU proposed by Kiryo et al. (2017) would perform
better in complicated data settings because of the expressive power of neural networks. How-
ever, the proposed method has a clear computational advantage due to the closed-form as
well as theoretical strength in terms of the explicit excess risk bound. Further, the proposed
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methodworks reasonablywell in both cases inwhichπ+ is known or unknown. In this regard,
we believe the proposed method can be used as a principled and easy-to-compute baseline
algorithm in PU learning.

Acknowledgements YK,WK, andMCPwere supported by the National Research Foundation of Korea under
Grant NRF-2017R1A2B4008956. MS was supported by JST CREST JPMJCR1403.

A Proofs and implementation details

All the proofs, implementation details, and additional experiments are provided in the
extended version due to the page limit (https://arxiv.org/abs/1901.09503). However, we have
no objection to the inclusion of the proofs here when the paper get accepted.
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