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Abstract Semi-supervised learning has become an attractive methodology for improving

classification models and is often viewed as using unlabeled data to aid supervised learning.

However, it can also be viewed as using labeled data to help clustering, namely, semi-

supervised clustering. Viewing semi-supervised learning from a clustering angle is useful

in practical situations when the set of labels available in labeled data are not complete, i.e.,

unlabeled data contain new classes that are not present in labeled data. This paper ana-

lyzes several multinomial model-based semi-supervised document clustering methods under

a principled model-based clustering framework. The framework naturally leads to a deter-

ministic annealing extension of existing semi-supervised clustering approaches. We com-

pare three (slightly) different semi-supervised approaches for clustering documents: Seeded
damnl, Constrained damnl, and Feedback-based damnl, where damnl stands for multino-

mial model-based deterministic annealing algorithm. The first two are extensions of the

seeded k-means and constrained k-means algorithms studied by Basu et al. (2002); the last

one is motivated by Cohn et al. (2003). Through empirical experiments on text datasets,

we show that: (a) deterministic annealing can often significantly improve the performance

of semi-supervised clustering; (b) the constrained approach is the best when available la-

bels are complete whereas the feedback-based approach excels when available labels are

incomplete.
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1. Introduction

Learning with both labeled and unlabeled data, also called semi-supervised learning or trans-
ductive learning,1 has recently been studied by many researchers with great interest (Seeger,

2001), mainly as a way of exploiting information in unlabeled data to enhance the performance

of a classification model (traditionally trained using only labeled data). A variety of semi-

supervised algorithms have been proposed, including co-training (Blum & Mitchell, 1998),

transductive support vector machine (Joachims, 1999), entropy minimization (Guerrero-

Curieses & Cid-Sueiro, 2000), semi-supervised EM (Nigam et al., 2000), graph-based ap-

proaches (Blum & Chawla, 2001; Zhu et al., 2003), and clustering-based approaches (Zeng

et al., 2003). They have been successfully used in diverse applications such as text classifica-

tion or categorization, terrain classification (Guerrero-Curieses & Cid-Sueiro, 2000), gesture

recognition (Wu & Huang, 2000), and content-based image retrieval (Dong & Bhanu, 2003).

Despite the empirical successes, negative results have been reported (Nigam, 2001) and the

usefulness of unlabeled data and transductive learning algorithms have not been appreciated

by theoretical studies. For example, Castelli and Cover (1996) proved that unlabeled data are

exponentially less valuable than labeled data in classification problems, even though the proof

comes with strong assumptions that the input distribution is known completely and that all

class-conditional distributions can be learned from unlabeled data only. Using Fisher informa-

tion matrices to measure the asymptotic efficiency of parameter estimation for classification

models, Zhang and Oles (2000) theoretically and experimentally questioned the usefulness

and reliability of transductive SVMs for semi-supervised learning. Cozman et al. (2003)

recently presented an asymptotic bias-variance analysis of semi-supervised learning with

mixture models. They showed that unlabeled data will always help if the parametric model

used is “correct” or has low bias, meaning that the true model is contained in the parametric

model family. If the model is not “correct”, additional unlabeled data may hurt classification

performance. Their analysis is limited due to the assumptions that all classes are available in

the labeled data and the distributions for both labeled and unlabeled data are the same.

These results remind us to be careful in applying semi-supervised learning to real world

applications: In a text categorization task, we might not have all categories in the labeled

data; in a network intrusion detection system, we will certainly encounter new attack types

never seen before. Furthermore, new classes may follow different models than those used to

characterize labeled data. Since semi-supervised classification models are not well positioned

to detect new classes, we are motivated to look at semi-supervised clustering, which exploits

labeled data to enhance clustering results on unlabeled data. Semi-supervised clustering

can be used to discover new classes in unlabeled data in addition to assigning appropriate

unlabeled data instances to existing categories.

In semi-supervised clustering, labeled data can be used as initial seeds (Basu et al., 2002),

constraints (Wagstaff et al., 2001), or feedback (Cohn et al., 2003). All these existing ap-

proaches are based on model-based clustering (Zhong & Ghosh, 2003) where each cluster

is represented by its “centroid”.2 Seeded approaches use labeled data only to help initialize

cluster centroids; Constrained approaches keep the grouping of labeled data unchanged (as

fixed constraints) throughout the clustering process; Feedback-based approaches first run a

regular clustering process and then adjust resulting clusters based on labeled data. Basu et al.

1Some researchers make a subtle distinction between semi-supervised learning, where there are two sets of
unlabeled data—unlabeled training data and unlabeled test data, and transductive learning, where there is only
one set of unlabeled data. In this paper, we take the second view.
2Here “centroid” is a general concept and can be a set of parameters for a probabilistic model.
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(2002) compared the first two approaches on text documents based on spherical k-means

(Dhillon & Modha, 2001). They observed that the constrained version fares at least as well

as the seeded version.

On the application side, much existing work focused on document classification or clus-

tering, which has become an increasingly important technique for (un)supervised document

organization, automatic topic extraction, and fast information retrieval or filtering. For exam-

ple, a web search engine often returns thousands of pages in response to a broad query, making

it difficult for users to browse or to identify relevant information. Clustering methods can

be used to automatically group the retrieved documents into a list of meaningful categories.

Similarly, a large database of documents can be pre-classified or pre-clustered to facilitate

query processing by searching only the clusters that are close to the query (Jardine & van

Rijsbergen, 1971). In this paper, we focus on semi-supervised clustering of text documents

for improving the organization of document collections based on a set of labeled documents.

This paper presents deterministic annealing (DA) extensions of the three semi-supervised

clustering methods—seeded clustering, constrained clustering, and feedback clustering—

under a model-based clustering framework (Zhong & Ghosh, 2003) and compares their

performance on real text datasets with multinomial models.3 Our experimental results show

that deterministic annealing (Rose, 1998) can significantly boost the performance of semi-

supervised clustering.

Our comparative study also shows that, for multinomial model-based clustering of docu-

ments, the constrained approach performs better than the other two when the classes in labeled

data are complete, whereas the feedback-based approach is superior when the labeled data

contain only a partial set of text categories. To our knowledge, the semi-supervised DA al-

gorithms are new and the comparison between feedback-based approaches and the other two

(seeded and constrained) has not been done before.

The organization of this paper is as follows. Section 2 briefly describes multinomial model-

based document clustering with deterministic annealing. Section 3 analyzes three enhanced

semi-supervised clustering algorithms based on multinomial models and deterministic an-

nealing. Section 4 presents a comparative study and discusses clustering results on several text

datasets. Section 5 discusses some related work, followed by concluding remarks in Section 6.

2. Multinomial model-based deterministic annealing

In Zhong and Ghosh (2003), we presented a unified analysis of model-based partitional

clustering from a DA point of view. In this section we shall first summarize model-based

DA clustering and then describe multinomial models used for clustering documents. Some

properties and results of multinomial model-based DA clustering will also be discussed.

2.1. Model-based DA clustering

In model-based clustering, one estimates K models (� = {λ1, . . . , λK }) from N data objects,

with each model representing a cluster. Let X be a random variable characterizing the

set of data objects, Y a random variable characterizing the set of cluster indices. Let

the joint probability between X and Y be P(x, y). Defining a prior entropy H (Y ) as

3As we shall see in Section 2, the multinomial model-based clustering is closely related to the recent
information-theoretic (Kullback-Leibler or KL) clustering (Dhillon & Guan, 2003) and Information Bottleneck
(IB) clustering (Tishby et al., 1999) methods.
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H (Y ) = − ∑
y P(y) log P(y) and an average posterior entropy H (Y | X ) as H (Y | X ) =

− ∑
x P(x)

∑
y P(y | x) log P(y | x), we aim to maximize the expected log-likelihood with

entropy constraints

L = EP(x,y)[log P(x | λy)] + T · H (Y | X ) − T · H (Y )

=
∑

x

P(x)
∑

y

P(y | x) log P(x | λy) − T · I (X ; Y ) , (1)

there be a verb between I (X ; Y ) and the mutual information? The parameter T is a

Lagrange multiplier used to trade off between maximizing the expected log-likelihood

EP(x,y)[log P(x | λy)] and minimizing the mutual information between X and Y (i.e., com-

pressing data X into clusters Y as much as possible). If we fix H (Y ), minimizing I (X ; Y )

is equivalent to maximizing the average posterior entropy H (Y | X ), or maximizing the ran-

domness of the data assignment. The prior P(x) is usually set to be constant 1/N . As N goes

to infinity, the sample average approaches the expected log-likelihood asymptotically.

Maximizing (1) over P(y | x) and λy leads to a generic model-based partitional clustering

algorithm (Zhong & Ghosh, 2003) that iterates between the following two steps:

P(y | x) = P(y)P(x | λy)
1
T∑

y′ P(y′)P(x |λy′ )
1
T

= P(y)P(x | λy)β∑
y′ P(y′)P(x | λy′ )β

, β = 1

T
, (2)

and

λy = arg max
λ

∑
x

P(y | x) log P(x | λy) . (3)

If necessary, P(y) can be estimated as P(y) = ∑
x P(x)P(y | x) . It can be seen that P(y | x)

is actually dependent on model parameters �, thus should be written as P(y | x, �). For

simplicity, however, we use P(y | x) where there is no confusion. This model-based clustering

Fig. 1 Deterministic annealing algorithm for model-based clustering
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algorithm is parameterized by the parameter T , which has a temperature interpretation in

deterministic annealing (Rose, 1998). In practice, an inverse temperature parameter β is

often used. A generic model-based DA clustering algorithm (Fig. 1) can be constructed by

gradually decreasing temperature T . At each temperature, the EM algorithm (Dempster et al.,

1977) is used to maximize (1), with cluster labels Y being the hidden variable and Eqs. (2)

and (3) corresponding to E-step and M-step, respectively.

It can be shown (Zhong & Ghosh, 2003) that setting T = 0 leads to a generic k-means

clustering algorithm and setting T = 1 leads to the standard mixture-of-models EM clus-

tering algorithm (Banfield & Raftery, 1993). In other words, k-means and EM clustering

correspond to two different stages in the model-based DA clustering process (T = 0 and

T = 1, respectively).

2.2. Multinomial models

In Zhong and Ghosh (2005), we compared three different probabilistic models for clus-

tering text documents—multivariate Bernoulli, multinomial, and von Mises-Fisher (vMF)

(Mardia, 1975). The Bernoulli model was found to be the least suitable model due to its

limited binary representation of documents. For regular mixture-of-models clustering, vMF

models slightly outperform multinomial models. With the addition of deterministic anneal-

ing, however, multinomial models perform comparably with vMF models. Here is why we

use multinomial models instead of vMF models underlying the spherical k-means algorithm

(Banerjee et al., 2003): Even though the spherical k-means algorithm is simple and efficient,

the mixture-of-vMFs, a soft version of spherical k-means, involves Bessel function in its

parameterization and requires intensive computation even for approximated parameter esti-

mation (Banerjee et al., 2003). A deterministic annealing extension would be computationally

even more complicated and mask the original purpose of this paper. A standard description of

multinomial models is available in many statistics or probability books (e.g., Stark & Woods

1994); here we briefly discuss it in the context of clustering text documents.

A traditional vector space representation is used for text documents, i.e., each document is

represented as a high-dimensional vector of “word” counts in the document. The “word” here

is used in a broad sense since it may represent individual words, stemmed words, tokenized

words, or short phrases. The dimensionality of document vectors equals the vocabulary size.

Based on the naı̈ve Bayes assumption, a multinomial model for cluster y represents

a document x by a multinomial distribution of the words in the vocabulary P(x | λy) =∏
i Py(i)x(i) , where x(i) is the i-th dimension of document vector x , indicating the number

of occurrences of the i-th word in document x . To accommodate documents of different

lengths, we use a normalized (log-)likelihood measure

log P̃(x | λy) = 1

|x | log P(x | λy) , (4)

where |x | = ∑
i x(i) is the length of document x . The Py(i)’s are the multinomial model

parameters and represent the word distribution in cluster y. They are subject to the constraint∑
i Py(i) = 1 and can be estimated by counting the number of documents in each cluster

and the number of word occurrences in all documents in the cluster y (Nigam, 2001). With

maximum a posteriori estimation and Dirichlet prior P(λy) = C · ∏
i Py(i), the parameter

estimation of multinomial models amounts to

Py(i) = 1 + ∑
x P(y | x)x(i)∑

j

(
1 + ∑

x P(y | x)x( j)
) = 1 + ∑

x P(y | x)x(i)

|V | + ∑
j

∑
x P(y | x)x( j)

, (5)
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where |V | is the size of the word vocabulary. The posterior P(y | x) can be estimated from

(2).

A connection between multinomial model-based clustering and the divisive Kullback-

Leibler clustering (Dhillon et al., 2002; Dhillon & Guan, 2003) is worth mentioning here.

It is briefly mentioned in Dhillon and Guan (2003) but they did not explicitly stress that the

divisive KL clustering is equivalent to multinomial model-based k-means, which maximizes

the following objective function:

1

N

∑
x

1

|x | log P
(
x |λy(x)

) = 1

N

∑
x

log P̃
(
x | λy(x)

)
, (6)

where the P̃ notation is defined in (4). This provides another good reason for our choice of

multinomial models in this paper.

2.3. Multinomial model-based DA clustering (damnl)

Substituting the generic M-step in the model-based DA clustering (Fig. 1) with (5) gives a

multinomial model-based DA clustering algorithm, abbreviated as damnl. The normalized

log-likelihood measure (4) is used since it accommodates different document lengths and

leads to a stable annealing process in our experiments.

After some algebraic manipulation, the objective function of damnl can be written as

L = −
∑

x

DK L (Px | Py(x)) − T · I (X ; Y ) +
∑

x

H (Px ) , (7)

where the last term is a constant. This leads to the following connection to the Information

Bottleneck method.

Connection to information bottleneck

In this section we show that, when applied to clustering, the Information Bottleneck method

(Tishby et al., 1999) can be seen as a special case of model-based DA clustering with the un-

derlying probabilistic models being multinomial models. This was mentioned by Slonim and

Weiss (2003) when they explored the relationship between maximum likelihood formulation

and information bottleneck.

The IB method aims to minimize the objective function

F = I (X ; Y ) − β I (Z ; Y )

= I (X ; Y ) + β(I (Z ; X ) − I (Z ; Y )) − β I (Z ; X )

= I (X ; Y ) + βEP(x,y)[DK L (P(z | x) | P(z | y))] − β I (Z ; X ) (8)

It trades off between minimizing the mutual information between data X and compressed

clusters Y and preserving the mutual information between Y and a third variable Z . Both

X and Z are fixed data but Y represents the cluster structure that one tries to find out. The

last term in (8) can be treated as a constant w.r.t. to Y and thus the clustering algorithm. It

is easy to see that minimizing (8) is equivalent to maximizing (7), with β being the inverse

of temperature T and Z being a random variable representing the word dimension. This

relationship was also noted in Banerjee et al. (2004).
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Fig. 2 Training curves for, (a) average log-likelihood, and, (b) average (normalized) posterior entropy,
for document clustering results using multinomial model-based deterministic annealing on the six datasets
described in Table 1

2.4. Annealing results for damnl

To see the annealing effect of the damnl algorithm, we draw out the training curves (Fig. 2)

for both the average (normalized) log-likelihood objective (6) and the average normalized

entropy of the posterior distribution

H̄post = 1

N

∑
x

H (P(y | x))/ log K .

The datasets and experimental setting are explained in Section 4. The X -axis in Fig. 2

shows the inverse temperature parameter β. Each curve is for one text dataset. When β is low,

i.e., temperature is high, the average posterior entropy is (close to) 1, which means that the

probabilities of a document being assigned to different clusters are (approximately) equal.

As β gets large, i.e., temperature decreases to (close to) 0, the average posterior entropy

decreases toward 0, which means that the clustering becomes hard and each document goes

to only one cluster with high probability. It can be seen that at some stage of the annealing

process, the average log-likelihood jumps quickly and the average posterior entropy H̄post

drops to (close to) zero. This stage corresponds to the phase transition point in an annealing

process (Rose, 1998). The phase transitions for different datasets are observed to occur at

slightly different stages of the annealing process. To achieve good optimization results, one

must be careful to choose a temperature schedule that is slow enough not to skip the important

phase transition points (Rose, 1998).

3. Semi-supervised model-based DA clustering

In this section, we first present three semi-supervised clustering algorithms under the generic

model-based DA clustering framework (Section 2.1) and then discuss the weaknesses and

strengths of each approach.

Figure 3 shows the first semi-supervised model-based clustering algorithm—seeded DA

clustering. The clustering process differs from regular model-based DA clustering (Fig. 1)
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Fig. 3 Seeded DA clustering algorithm

Fig. 4 Constrained DA clustering algorithm

only in Step 1. The basic idea is to use labeled data to help initialize model parameters: we

partition data into a pre-specified number of clusters while keeping data instances with same

labels in the labeled data to be in the same cluster.

The second algorithm, constrained DA clustering, is shown in Fig. 4. In addition to using

labeled data to help initialization, this algorithm also constrains the assignment of labeled

data instances to be hard in the E-step (Step 2a)—each labeled instance must stay with its

label (initial cluster) with probability 1. This algorithm is basically the semi-supervised EM

Springer
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Fig. 5 Feedback DA clustering algorithm

algorithm (Nigam et al., 2000; Dong & Bhanu, 2003) wrapped by an annealing process, with

the E-step parameterized by a gradually decreasing temperature.

Finally, the feedback DA clustering algorithm is shown in Fig. 5. It is basically the

combination of the regular DA clustering algorithm (Fig. 1) and a constrained clustering

algorithm, with a feedback step (Step 2) in between. The basic idea is to first treat all

data as unlabeled and do a regular DA clustering, then take labeled data as feedback to

adjust the cluster structure. We caution that there could be several possible heuristic designs.

We choose the feedback step used here due to its simplicity since our main purpose is to

demonstrate the usefulness of feedback methods, not to find the best feedback strategy.

For each class k in the labeled data, we find the corresponding cluster that contains more

instances of class k than any other clusters and put all labeled instances of class k into this

cluster. In the case when the corresponding cluster is already occupied by another labeled

class, we create a new cluster and put all labeled instances of class k into the new cluster.

After the adjustment is done, we fix the cluster labels for labeled data instances and run

the constrained clustering algorithm (for which we use the algorithm in Fig. 4 with a fixed

high β).

The three algorithms presented above are generic and can be used with different mod-

els. Plugging multinomial models into the algorithms, we get three semi-supervised multi-

nomial model-based DA clustering algorithms, abbreviated as Seeded damnl, Constrained
damnl, and Feedback damnl, respectively. For comparison, we also construct three reg-

ular semi-supervised clustering algorithm using mixture-of-multinomials at a fixed low

temperature (i.e., high β). While k-means type algorithms (e.g., seeded k-means, etc.) could

be constructed, to reuse the code for the above three algorithms, we simply fix β at 100 in

the algorithms and get three semi-supervised mixture-of-multinomials algorithms. They are

named Seeded mixmnl, Constrained mixmnl, and Feedback mixmnl, respectively. According

to the results in Fig. 2, setting β = 100 makes the posterior data assignment very close to k-

means assignment since each data instance goes to its “closest” cluster with high probability.

Springer
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Table 1 Summary of text datasets (for each dataset, N is the total number of documents, |V | the total
number of words, K the number of classes, and Nc the average number of documents per class)

Data Source N |V | K Nc Balance

NG20 20 Newsgroups 19949 43586 20 997 0.991

classic CACM/CISI/CRANFIELD/MEDLINE 7094 41681 4 1774 0.323

ohscal OHSUMED-233445 11162 11465 10 1116 0.437

k1b WebACE 2340 21839 6 390 0.043

tr11 TREC 414 6429 9 46 0.046

la12 TREC 6279 31472 6 1046 0.289

The Constrained mixmnl algorithm is used in Step 3 of the Feedback damnl algorithm

(Fig. 5).

Intuitively, the Seeded damnl cannot take full advantage of labeled data since the DA

process starts the global search at a high temperature where each data instance goes to

every cluster with equal probability, which means the initial partition constructed with the

help of labeled data may not matter. In fact, one feature of deterministic annealing is its

insensitivity to initialization (Rose, 1998). However, starting the seeded approach directly at

a low temperature might work since seeding clusters with labeled data can position the local

search at a good starting point. The results shown in Basu et al. (2002) and our results in the

next section support this analysis. While the DA technique cannot help the seeded approach,

we expect that it will benefit the constrained and feedback approaches. Considering the

difference between the constrained approach and the feedback approach, we hypothesize

that� The constrained approach should perform better when the available labels are complete

and the amount of labeled data is reasonable. Through the DA process, the available labels

will guide/bias the search towards “correct” partitioning.� The feedback approach may be more appropriate when the available labels are incomplete

since it starts without the bias of labeled data and is expected to cover all potential labels

better than the constrained approach.

4. Experimental results

4.1. Datasets

We used the 20-newsgroups data4 and several datasets from the CLUTO toolkit5 (Karypis,

2002). These datasets provide a good representation of different characteristics: the number

of documents ranges from 414 to 19949, the number of words from 6429 to 43586, the

number of classes from 4 to 20, and balance from 0.046 to 0.998. The balance of a dataset

is defined as the ratio of the number of documents in the smallest class to the number of

documents in the largest class. So a value close to 1 indicates a very balanced dataset and

a value close to 0 signifies the opposite. A summary of all the datasets used in this paper is

shown in Table 1.

4 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
5 http://www.cs.umn.edu/∼karypis/CLUTO/files/datasets.tar.gz.
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The NG20 dataset is a collection of 20,000 messages, collected from 20 different usenet

newsgroups, 1,000 messages from each. We preprocessed the raw dataset using the Bow

toolkit (McCallum, 1996), including chopping off headers and removing stop words as well

as words that occur in less than three documents. In the resulting dataset, each document is

represented by a 43,586-dimensional sparse vector and there are a total of 19,949 documents

(after empty documents being removed).

All the datasets associated with the CLUTO toolkit have already been preprocessed (Zhao

& Karypis, 2001) in approximately the same way6 and we further removed those words

that appear in two or fewer documents. The classic dataset was obtained by combining the

CACM, CISI, CRANFIELD, and MEDLINE abstracts that were used in the past to eval-

uate various information retrieval systems.7 The ohscal dataset was from the OHSUMED

collection (Hersh et al., 1994). It contains 11,162 documents from the following ten cate-

gories: antibodies, carcinoma, DNA, in-vitro, molecular sequence data, pregnancy, prognosis,

receptors, risk factors, and tomography. The k1b dataset is from the WebACE project Han

et al. (1998). Each document corresponds to a web page listed in the subject hierarchy

of Yahoo! (http://www.yahoo.com). The tr11 dataset is derived from TREC collections

(http://trec.nist.gov).

4.2. Evaluation criteria

Clustering evaluation criteria can be based on internal measures or external measures. An

internal measure is often the same as the objective function that a clustering algorithm

explicitly optimizes, in this paper, the average log-likelihood (6). For document clustering,

external measures are more commonly used, since typically the benchmark documents’

category labels are known (but of course not used in the clustering process). Examples of

external measures include the confusion matrix, classification accuracy, F1 measure, average

purity, average entropy, and mutual information (Ghosh, 2003).

In the simplest scenario where the number of clusters equals the number of categories

and their one-to-one correspondence can be established, any of these external measures can

be fruitfully applied. However, when the number of clusters differs from the number of

original classes, the confusion matrix is hard to read and the accuracy difficult or impossible

to calculate. It has been argued that the mutual information I (Y ; Ŷ ) between a random

variable Y , governing the cluster labels, and a random variable Ŷ , governing the class labels,

is a superior measure compared to purity or entropy (Strehl & Ghosh, 2002; Dom, 2001).

Moreover, when normalized to lie in the range [0,1], this measure becomes relatively impartial

to K . There are several choices for normalization based on the entropies H (Y ) and H (Ŷ ). We

shall follow the definition of normalized mutual information (NMI) using geometrical mean,
NMI = I (Y ;Ŷ )√

H (Y )·H (Ŷ )
, as given in Strehl and Ghosh (2002). In practice, we use a sample estimate

NMI =
∑

h,l nh,l log
( n·nh,l

nh nl

)√( ∑
h nh log nh

n

)( ∑
l nl log nl

n

) , (9)

where nh is the number of documents in class h, nl the number of documents in cluster l and

nh,l the number of documents in class h as well as in cluster l. The NMI value is 1 when

6 That is, chopping off headers and removing stop words, but with a different software toolkit.
7 Available from ftp://ftp.cs.cornell.edu/pub/smart.
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Table 2 Running time results for four different initialization schemes
on six datasets. d is the data dimensionality (i.e., number of terms) and
Nnz the number of nonzeros in a term-document matrix

Average running time (seconds)

Random Perturb Marginal KKZ

tr11 0 0.018 0.485 0.359

k1b 0 0.047 1.033 0.438

ohscal 0 0.049 0.91 0.998

ng20 0 0.296 6.484 22.25

classic 0 0.048 1.244 0.248

la12 0 0.078 0.482 0.793

Complexity O(N ) O(Nnz + K d) O(K Nnz)

clustering results perfectly match the external category labels and close to 0 for a random

partitioning. This evaluation criterion is used in our experiments.

4.3. Cluster initialization

After surveying a range of literature (Katsavounidis et al., 1994; Meila & Heckerman, 2001;

He et al., 2004), we experimented with the following four initialization techniques:� Random: we randomly partition data into K groups.� Perturb: We first obtain a (global) multinomial model from all data (as if all data instances

were generated from a single model), and then randomly perturb parameters of the model to

get K initial models. This methods has been shown to perform well for spherical k-means

(Dhillon & Modha, 2001).� Marginal: This scheme was studied in Meila & Heckerman (2001) and showed slight ad-

vantage to random initialization. It amounts to sampling from a Dirichlet prior distribution

whose parameters are determined by the global multinomial model (same as the one used

in the Perturb scheme).� KKZ: This scheme is adapted from the initialization method used in Katsavounidis et al.

(1994), which has been shown to be one of the best initialization methods for k-means

clustering (He et al., 2004). Our modified version works as follows: We initialize the first

cluster model using the document that is most distant to the global multinomial model.

For each subsequent model, we use the document vector that is most distant to its closest

existing cluster. The distance to a cluster is measured by KL-divergence. This method is

deterministic compared to the previous three.

We compared the four initialization schemes for mixmnl and damnl algorithms8 and

found that the best scheme is KKZ for mixmnl and Random for damnl. Most of the time, the

Perturb and Marginal schemes are no better than the Random approach. Table 2 shows the

running time for different initialization schemes. The last row is the theoretical computational

complexity.

8 Results on six datasets are not shown here for simplicity. Another reason is that here we are more interested
in the results for semi-supervised algorithms.
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Fig. 6 Comparing NMI results for two initialization schemes (Random and KKZ) for feedback mixmnl on
six datasets

Here we are more interested in the effect of initialization on the presented semi-supervised

algorithms. Note that the seeded and constrained algorithms do not need any of these four

initialization schemes since they use labeled data to initialize clusters. Figure 6 shows the

comparison between Random and KKZ for the feedback mixmnl algorithm. The boxplot

results are drawn for the distribution of NMI values over 10 runs.9 Outliers are data with

values beyond the ends of the whiskers. The KKZ method has a clear advantage over Random
on five out of six datasets. Figure 7 shows that Random is not worse than KKZ for the feedback
damnl algorithm. Based on these results, we decided to use Random for all other algorithms

but KKZ for feedback mixmnl.

4.4. Experimental setup

For the damnl and semi-supervised damnl algorithms, an exponential schedule is used for the

inverse temperature parameter β with an initial value of 0.5 and final value of 200. From one

iteration to the next, β(m + 1) = 1.3β(m), where m is the iteration number. As seen from the

results in Fig. 2, this setting for β is reasonable for the DA process to capture phase transition

point(s) on all datasets used in our experiments. For semi-supervised mixmnl algorithms, β

is set at 100, as discussed in the previous section.

9 In the plots, the box has lines at the lower quartile (25%), median (50%), and upper quartile (75%) values.
The whiskers are lines extending from each end of the box to show the extent of the rest of the data (5% and
95%).
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Fig. 7 Comparing NMI results for two initialization schemes (Random and KKZ) for feedback damnl on six
datasets

We consider the following two different scenarios when selecting a subset of the documents

to be labeled data:� Complete labels—all document classes are randomly sampled. We construct a series

of training datasets by randomly sampling (without replacement) 2.5%, 5%, 7.5%, 10%,

20%, . . . , and 90% of all documents as the labeled set and the rest as the unlabeled set.

The sampling is not stratified, i.e., the percentage of documents in the labeled set may be

different for each class.� Incomplete labels—some classes are not available in the labeled set. We pick docu-

ments from only half of all classes. We first randomly decide the half of all classes and then

sample (not-stratified, without replacement) 2.5%, 5%, 7.5%, 10%, 20%, . . . , and 90% of

the documents in the selected (half of all) classes as the labeled set.

For each algorithm and each percentage setting, we repeat the random sampling process

ten times and report the average and standard deviation of NMI values for clustering results.

For better readability, we only show NMI results up to 60% in the figures in the next section.

4.5. Results analysis

Complete labels scenario

Figures 9–11 shows the NMI results for the complete labels scenario. The first three

figures compare semi-supervised mixmnl and semi-supervised damnl algorithms for the
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Fig. 8 Running time results for ng20 dataset

seeded approach, the constrained approach, and the feedback approach, respectively. The

results for the Seeded damnl algorithm are relatively flat across different amount of la-

beled data, confirming previous discussion on the weak effect of labeled data on seeded

DA clustering. In contrast, a clearer upward trend can be seen for the Seeded mixmnl algo-

rithm as the fraction of labeled data increases. The Seeded mixmnl algorithm also performs

significantly better than Seeded damnl in most situations except for the tr11 dataset and

when the fraction of labeled data is low. The reason for the exception on tr11 dataset may

be that the tr11 dataset is small and unbalanced and thus the amount of labeled data for

some classes may be too small or even near empty, causing the Seeded mixmnl algorithm

to get stuck in a bad local solution quickly. When the fraction of labeled data is small, the

initial models are less accurate, causing Seeded mixmnl to converge to a worse solution than

Seeded damnl.
Both constrained approaches and feedback approaches show clear benefits of having

more labeled data: the NMI values increase as the percentage of labeled instances grows,

as shown in Figs. 10 and 11. It is also evident that the DA versions perform at least as

well as the mixmnl versions and sometimes significantly better. The only exception is

for the constrained approach on the classic dataset and when the percentage of labeled

data is 10% or lower, where Constrained damnl performs significantly worse than Con-
strained mixmnl. Upon more examination, we find that the DA version reaches better av-

erage log-likelihoods even as it gives lower NMI values for this case. We suspect that the

DA process finds a better local maxima of the objective function but the resulting parti-

tion does not conform to the given labels. This will be further investigated in our future

work.

We compare the three semi-supervised approaches together in Fig. 12. For the seeded

approach, both Seeded mixmnl and Seeded damnl are selected; For the other two approaches,

Constrained damnl and Feedback damnl are selected since they outperform their mixmnl
counterparts. The Constrained damnl algorithm is obviously the winner, producing signifi-

cantly higher NMI values in most cases. The only exception is on the classic dataset with small
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Fig. 9 Comparing NMI results for Seeded damnl and Seeded mixmnl algorithms on the six datasets in
Table 1

amount of labeled data, as discussed above. Feedback damnl is overall better than Seeded
mixmnl, with superior performance on three datasets (classic, k1b, and ng20) and mixed re-

sults on the remaining three datasets (ohscal, tr11, and la12). Except on tr11 dataset, Seeded
mixmnl is the second best algorithm when the fraction of labeled data is 5% or higher.
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Fig. 10 Comparing NMI results for Constrained damnl and Constrained mixmnl on the six datasets in Table 1

Incomplete labels scenario

Figures 13–16 show the NMI results for the incomplete labels scenario. There is gen-

erally no strong upward trend except on ng20 and tr11 dataset and mainly for mixmnl
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Fig. 11 Comparing NMI results for Feedback damnl and Feedback mixmnl algorithms on the six datasets
in Table 1

approaches; Most other curves are relatively flat. This indicate that the benefit of labeled data

in the incomplete labels scenario is small.

The Seeded mixmnl algorithm outperforms Seeded damnl only on the classic dataset.

When the fraction of labeled data is less than 10%, Seeded damnl is always comparable to
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Fig. 12 Comparing NMI results for Seeded mixmnl, Constrained damnl, and Feedback damnl algorithms
on the six datasets in Table 1

or significantly better than Seeded mixmnl. This observation matches the one seen in the

complete labels scenario.

Mixed results are observed when comparing Constrained damnl with Constrained
mixmnl—the former wins on ng20 and tr11 datasets but loses on the others (Fig. 14). For feed-
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Fig. 13 Comparing NMI results for Seeded damnl and Seeded mixmnl on the six datasets in Table 1
(incomplete labels scenario)

back approaches, Feedback damnl fares at least as well as Feedback mixmnl and significantly

better on most datasets (classic, ng20, tr11, and la12), as shown in Fig. 15.

The three semi-supervised approaches are compared in Fig. 16. The Constrained mixmnl
seems to deliver very similar performance to the seeded counterpart. This can be seen in

Fig. 16, where the curves for Seeded mixmnl and Constrained mixmnl almost completely
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Fig. 14 Comparing NMI results for Constrained damnl and Constrained mixmnl on the six datasets in Table 1
(incomplete labels scenario)

overlap. For the constrained approach, both Constrained mixmnl and Constrained damnl are

selected because of the mixed results in Fig. 14; for the feedback approach, Feedback damnl
is selected due to better performance than its mixmnl counterpart. Overall, Feedback damnl
is the best algorithm and the only one that has consistent superior performance across all six
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Fig. 15 Comparing NMI results for Feedback damnl and Feedback mixmnl algorithms on the six datasets
in Table 1 (incomplete labels scenario)

datasets. The other algorithms usually perform comparably with Feedback damnl on two or

three (out of five) datasets but significantly worse on others.

In summary, the experimental results match favorably with the hypotheses discussed

in Section 3 and encourage us to further explore feedback-type approaches in real-world

adaptive environments.
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Fig. 16 Comparing NMI results for Seeded mixmnl, Constrained mixmnl, Constrained damnl, and Feedback
damnl algorithms on the six datasets in Table 1 (incomplete labels scenario)

Time complexity

Some time results are given in Fig. 8 for the largest dataset ng20. They are measured on a

2.4 GHz Pentium-4 PC running Windows XP, with the algorithms written in Matlab. The

damnl algorithms are about four to ten times slower than the mixmnl ones. This could be
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improved, for example, by using fewer iterations at each temperature. Such improvements

will be investigated in the future.

While the time complexities of all mixmnl algorithms go down as the fraction of labeled

data grows, Constrained damnl is the only one in the damnl category with this trend. This is

not surprising since the mixmnl algorithms will likely converge faster for a higher fraction

of labeled data. On the other hand, the Seeded damnl and Feedback damnl use labeled

information only at the beginning or the end of a damnl process and thus cannot take advantage

of faster mixmnl algorithms in the whole DA process.

5. Related work

The constrained approach studied in this paper is most related to the semi-supervised EM

algorithm presented in Nigam et al. (2000), where the classes of unlabeled data are treated

as missing data and labeled data used as E-step constraints in the EM algorithm. Nigam

et al. (2000) presented the algorithm, however, in a semi-supervised classification setting and

assumed that the class categories in labeled data are complete. In contrast, Dong and Bhanu

(2003) employed the semi-supervised EM algorithm in a clustering setting and extended it

to include the cannot-be-in-certain-cluster constraints for image retrieval applications.

Wagstaff et al. (2001) proposed a constrained k-means algorithm to integrate background

knowledge into the clustering process. They considered two types of constraints: must-link—

two data instances must be in the same cluster, and cannot-link—two data instances cannot

be in the same cluster. These constraints are different from labeled data constraints and more

similar to the constraints used in Dong and Bhanu (2003). However, the constrained k-means

algorithm is heuristic and the EM approach adopted by Dong and Bhanu (2003) seems to be

a more principled approach.

The must-link and cannot-link types of knowledge can also be used as feedback in an

interactive clustering process (Cohn et al., 2003). Our feedback-based approach is different

in the type of feedback—we use the class labels in labeled data, instead of must-link and

cannot-link pairs, as feedback constraints. Also, unlike our feedback-based approaches, Cohn

et al. (2003) employed feedback information to adjust distance metrics used for clustering.

Similar work on semi-supervised clustering through learning distance metrics appeared in

Chang and Yeung (2004) and in Basu et al. (2004). These methods mainly addressed the pair-

wise constraint-type feedback, which is sometimes argued to be a more realistic assumption

than available cluster labels. Although we focused on labels, our feedback-based algorithm

(Fig. 11) can be adapted to take into account pairwise constraints. This extension will be

investigated in our future work.

Basu et al. (2002) compared seeded spherical k-means and constrained spherical k-means

for clustering documents and showed that the constrained version performs better. Our results

supported the same conclusion, but for multinomial models and using deterministic annealing

extensions.

Even in a semi-supervised classification setting, clustering has been used to help increase

the amount of labeled data. For example, Zeng et al. (2003) showed that the clustering-based

strategy excels when the amount of labeled data is very small, according to experimental

results on text classification.

6. Conclusion

We have presented deterministic annealing extensions of three semi-supervised clustering

approaches based on a model-based DA clustering framework, with multinomial distribu-
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tions representing document clusters. Experimental results on several text datasets show

that: (a) The annealing process can often significantly improve semi-supervised clustering

results; (b) the constrained approach is superior when the available labels are complete while

the feedback-based approach should be selected if the labels are incomplete. In real world

applications (e.g., dynamic web page clustering, gene expression clustering, and intrusion

detection), where new concepts/classes are likely not covered in a small set of labeled data,

we expect the feedback-based approach to be a better choice.

We are aware that the specific seeded and feedback-based algorithms used in our exper-

iments are heuristic and just one of many possible designs. They can be improved but we

doubt that it will significantly change the conclusion drawn in this paper. In the future, we

plan to incorporate pairwise constraints (Wagstaff et al., 2001; Basu et al., 2002) into our

feedback-based approaches.

In our experiments, all algorithms are batch methods. That is, model parameters are up-

dated once for each iteration of going through the whole dataset. Online parameter update

(on visiting each individual data instance) can be employed to improve performance and is

useful in a data stream environment (Zhong, 2005). For example, Nigam and Ghani (2000)

reported that incremental approaches work better than iterative (batch) approaches. Devel-

oping an incremental version of the algorithms studied in this paper seems to be a viable

future direction.

Another interesting (and natural) direction is to automate the finding of new classes

in unlabeled data. Two existing methods are likely relevant—multi-clustering (Friedman

et al., 2001) and conditional information bottleneck (Gondek & Hofmann, 2003). The former

extends the information bottleneck method to generate two or more clusterings of the same

data that are as orthogonal as possible. The multi-clustering idea may be used in the semi-

supervised setting such that one clustering is supervised by labeled data and others seek for

new class labels. The conditional information bottleneck targets directly at finding clusters

that have low mutual information with existing labels, thus it may be suitable for discovering

new classes.
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