Skip to main content
Log in

Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To study the effect of ionic liquids (ILs) of the microstructure on the surface of the coal, four ILs ([Emim][BF4], [Bmim][BF4], [Bmim][NO3], and [Bmim][I]) were selected to treat the coal samples. Fourier transform infrared spectroscopy and synchronous thermal analyzer were employed to conduct the experimental tests. Active functional groups were analyzed when the ILs contained the same anion or cation. The results indicated that the quantity of the hydrocarbyls and the oxygen-containing functional groups for the coal sample treated by [Emim][BF4] was significantly less than the three coal samples by other ILs treated, in which the maximum area ratio of the hydrocarbons and the oxygen-containing functional groups was 0.553 and 1.159, respectively. However, ILs had lesser destructive effects on the aromatic hydrocarbons. The ILs containing [Emim]+ shared stronger destructibility to the coal’s micro-active structure than that containing [Bmim]+. The highest impact was the hydrocarbyl of the coal. While including the same [Bmim]+, the extent of destruction to the hydrocarbyls and the oxygen-containing functional groups of coal was varied in descending order as [NO3] > [I] > [BF4]. The aliphatic hydrocarbons were destroyed by the anion of ILs following the order: [I] > [BF4] > [NO3]. During the low-temperature oxidation stage, the apparent activation energy increased, whereas the reactivity of coal samples by ILs treated decreased in the order: [Bmim][NO3] < [Bmim][I] < [Bmim][BF4] < [Emim][BF4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen G, Ma X, Lin M, Lin Y, Yu Z. Study on thermochemical kinetic characteristics and interaction during low temperature oxidation of blended coals. J Energy Inst. 2015;88:221–8.

    Article  CAS  Google Scholar 

  2. Xu Y, Zhang Y, Zhang G, Guo Y, Zhang J, Li G. Pyrolysis characteristics and kinetics of two Chinese low-rank coals. J Therm Anal Calorim. 2015;122:975–84.

    Article  CAS  Google Scholar 

  3. Song Z, Kuenzer C. Coal fires in China over the last decade: a comprehensives review. Int J Coal Geol. 2014;133:72–99.

    Article  CAS  Google Scholar 

  4. Monnet A, Percebois J, Gabriel S. Assessing the potential production of uranium from coal–ash milling in the long term. Resour Policy. 2015;45:173–82.

    Article  Google Scholar 

  5. Tahmasebi A, Yu J, Han Y, Li X. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air. Fuel Process Technol. 2012;101:85–93.

    Article  CAS  Google Scholar 

  6. Deng J, Li QW, Xiao Y, Shu CM. Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation. Appl Therm Eng. 2017;110:1137–52.

    Article  CAS  Google Scholar 

  7. Tsai YT, Ho SC, Huang AC, Shu CM. Potential explosion hazard of polyester resin dust formed from a granulation process: Limiting oxygen concentration with different pressures. Appl Therm Eng. 2018;135:74–82.

    Article  CAS  Google Scholar 

  8. Wang DM, Xin HH, Qi XY, Dou GL, Ma LY. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics. Combust Flame. 2016;163:447–60.

    Article  CAS  Google Scholar 

  9. Rogers RD, Seddon KR. Chemistry. Ionic liquids–solvents of the future? Science. 2003;302:792–3.

    Article  PubMed  Google Scholar 

  10. Wilkes JS. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem. 2002;4:73–80.

    Article  CAS  Google Scholar 

  11. Cummings J, Shah K, Atkin R, Moghtaderi B. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel. 2015;143:244–55.

    Article  CAS  Google Scholar 

  12. Qi Y, Verheyen TV, Vijayaraghavan R, Macfarlane DR, Chaffee AL. Ambient temperature solubilisation of brown coal in ammonium carbamate ionic liquids. Fuel. 2016;166:106–15.

    Article  CAS  Google Scholar 

  13. Cao M, Gu X, Zhang A, Ma M. Study on rheological properties about ionic liquid and coal slurry. Coal Convers. 2009;32:40–3.

    CAS  Google Scholar 

  14. Li Y, Zhang XP, Lai SY, Dong HF, Chen XL, Wang XL, Nie Y, Sheng Y, Zhang SJ. Ionic liquids to extract valuable components from direct coal liquefaction residues. Fuel. 2012;94:617–9.

    Article  CAS  Google Scholar 

  15. Painter P, Pulati N, Cetiner R, Sobkowiak M, Mitchell G, Mathews J. Dissolution and dispersion of coal in ionic liquids. Energy Fuels. 2010;24:1848–53.

    Article  CAS  Google Scholar 

  16. Painter P, Cetiner R, Pulati N, Sobkowiak M, Mathews J. Dispersion of liquefaction catalysts in coal using ionic liquids. Energy Fuels. 2010;24:3086–92.

    Article  CAS  Google Scholar 

  17. Pulati N, Sobkowiak M, Mathews JP, Painter P. Low-temperature treatment of Illinois No. 6 coal in ionic liquids. Energy Fuels. 2012;26:3548–52.

    Article  CAS  Google Scholar 

  18. Kim JW, Kim D, Ra CS, Han GB, Park NK, Lee TJ, Kang M. Synthesis of ionic liquids based on alkylimidazolium salts and their coal dissolution and dispersion properties. J Ind Eng Chem. 2014;20:372–8.

    Article  CAS  Google Scholar 

  19. Bai L, Nie Y, Li Y, Dong H, Zhang X. Protic ionic liquids extract asphaltenes from direct coal liquefaction residue at room temperature. Fuel Process Technol. 2013;108:94–100.

    Article  CAS  Google Scholar 

  20. Wang LY, Xu YL, Jiang SG, Yu MG, Chu TX, Zhang WQ, Wu ZY, Kou LW. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf Sci. 2012;50:1528–34.

    Article  Google Scholar 

  21. Wang L, Xu Y, Wang S, Song Z. Inhibiting effect of [HOEmim][BF4] and [Amim]Cl ionic liquids on the cross-linking reaction of bituminous coal. Int J Min Sci Technol. 2016;26:353–9.

    Article  CAS  Google Scholar 

  22. Zhang W, Jiang S, Wu Z, Wang K, Shao H. An experimental study of the effect of ionic liquids on the low temperature oxidation of coal. Int J Min Sci Technol. 2012;22:687–91.

    Article  CAS  Google Scholar 

  23. Zhang W, Jiang S, Wang K, Wang L, Wu Z, Kou L, Ju X. Study on coal spontaneous combustion characteristic structures affected by ionic liquids. Procedia Eng. 2011;26:480–5.

    Article  CAS  Google Scholar 

  24. Hu ZQ, Zhang SF, Lei ZP, Shui HF, Wang ZC, Ren SB. Study on the thermal extraction of Xianfeng lignite in ionic liquid 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate. J Fuel Chem Technol. 2015;43:513–8.

    Article  CAS  Google Scholar 

  25. Lei ZP, Zhang SF, Zhang YQ, Shui HF, Wang ZC, Ren SB. Thermal extraction of lignite in ionic liquid and separation and characterization of its extracts. J Fuel Chem Technol. 2013;41:814–8.

    Article  CAS  Google Scholar 

  26. Lei Z, Wu L, Zhang Y, Shui H, Wang Z, Pan C, Li H, Ren S, Kang S. Microwave-assisted extraction of Xianfeng lignite in 1-butyl-3-methyl-imidazolium chloride. Fuel. 2012;95:630–3.

    Article  CAS  Google Scholar 

  27. Lei Z, Wu L, Zhang Y, Shui H, Wang Z, Ren S. Effect of noncovalent bonds on the successive sequential extraction of Xianfeng lignite. Fuel Process Technol. 2013;111:118–22.

    Article  CAS  Google Scholar 

  28. Cummings J, Tremain P, Shah K, Heldt E, Moghtaderi B, Atkin R, Kundu S, Vuthaluru H. Modification of lignites via low-temperature ionic liquid treatment. Fuel Process Technol. 2017;155:51–8.

    Article  CAS  Google Scholar 

  29. Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–426.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao Y, Li QW, Deng J, Shu CM, Wang W. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion. J Therm Anal Calorim. 2017;127:1009–17.

    Article  CAS  Google Scholar 

  31. Deng J, Xiao Y, Li QW, Lu JH, Wen H. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel. 2015;157:261–9.

    Article  CAS  Google Scholar 

  32. Weng SF, Xu YZ. Fourier transform infrared spectrometer. 3rd ed. Beijing: Chemical Industry Press; 2016 (in Chinese).

    Google Scholar 

  33. Wang DM. The coal oxidation dynamics: theory and application. Beijing: Science Press; 2012 (in Chinese).

    Google Scholar 

  34. Deng J, Zhao JY, Xiao Y, Zhang YN, Huang AC, Shu CM. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6331-3.

    Article  Google Scholar 

  35. Hu RZ, Shi JZ. Thermal analysis kinetics. Beijing: Science Press; 2001 (in Chinese).

    Google Scholar 

  36. Furusaki A, Konno H, Furuichi R. Pyrolytic process of La (III)–Cr(VI) precursor for the perovskite type lanthanum chromium oxide. Thermochim Acta. 1995;253:253–64.

    Article  CAS  Google Scholar 

  37. Deng J, Zhao JY, Huang AC, Zhang YN, Wang CP, Shu CM. Thermal behaviour and microcharacterization analysis of second-oxidation coal. J Therm Anal Calorim. 2017;127:439–48.

    Article  CAS  Google Scholar 

  38. Sauer DN. Semi-quantitative FTIR analysis of a coal tar pitch and its extracts and residues in several organic solvents. Energy Fuels. 1992;6:518–25.

    Article  Google Scholar 

  39. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 5120-4136), the China Postdoctoral Science Foundation (No. 2016-M-590963), and the Industrial Science and Technology Project of Shaanxi Province, China (No. 2016-GY-192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Bai, ZJ., Xiao, Y. et al. Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids. J Therm Anal Calorim 133, 453–463 (2018). https://doi.org/10.1007/s10973-018-7310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7310-z

Keywords

Navigation